
Supplemental Text 1

For the Empirical Bayes approach, we used the following statistical model of the time series of
confirmed dengue cases for a particular municipality over the past twelve observed seasons:

Ys = f s + εs, εs ∼ N (0, σ2
s I) f s ∼ F

s = 1, 2, . . . , 12

Ys, f s, εs ∈ R52

Ys: observed epidemic trajectory for season s
f s: true underlying epidemic curve for season s (Denote i’th entry of f s as f s(i))
εs: vector of noise (measurement errors) for season s
σ2

s : variance of the noise εs

Our choice of the prior distribution of curves F is indexed by a triplet ( f , µ, δ) where f represents
a particular season’s underlying curve, µ represents the scaling of its attained values, and δ rep-
resents the shifting of the location of the curve f . We assumed that f followed a discrete uniform
distribution over f s

0 , Unif{ f s
0 , s = 1, . . . , N}, where f s

0 were historical trajectories Ys from season s
that was smoothed by quadratic trend filtering. We assumed that µ and δ follows a uniform distri-
bution within a fixed range, U(µm, µM) for µ and U(δm, δM) for δ. These distributions characterize
transformations of past season’s curves. The effect of these transformations is to shift and scale f
to have a peak height and peak location within a reasonable range of itself, with µm = −2, µM = 2
for a time shift (shift in index) and δm = .75, δM = 1.25 for a vertical scale. A variation of this
model would be to transform the drawn curves to have peak heights and locations corresponding
to a randomly drawn value within the historical range. We found this however to be an unreason-
able assumption for an epidemic pattern with vastly different scales across seasons.

Described generatively: we randomly drew f̂0 from { f s
0 , s = 1, 2, . . . , 12}, µ from U(µm, µM),

and δ from U(δm, δM) to form a sample curve from F, g0 ∈ R52, whose j’th entry is defined as
g0(j) = δ f̂0(j + argmaxi f̂0 − µ). Because of the analytical difficulty of drawing from the posterior
distribution directly, we used a modified (for computational efficiency reasons) importance sam-
pling in which we drew sample curves from a discretized version of the prior distribution and
assigned likelihood-based importance weights to each sample. These weights are proportional to
the likelihood of a curve drawn from the prior, given the observed data in the current (2014) sea-
son. The statistical model used in the likelihood calculation for the current season trajectory that
we used in the importance sampling weight calculation is identical with that of past seasons:

Y13 = f 13 + ε13, ε ∼ N (0, σ2
13 I)

Y13, f 13, ε13 ∈ R52

where for σ2
13 we assumed the same observed noise level of season s that the curve f 13 originated

from. Since we only observed 2014 (season 13) IR’s up to the week 19, we only used information
from these weeks as data: Y13(i) = f 13(i) + ε13(i), i = 1, . . . , 19. Since we treated each time point
as independent, the likelihood was calculated as a product of 19 univariate Gaussian densities.

The goal was to make inference about the noise-injected trajectory Y13 of the current season, or
functions of it, g(Y13). In this paper, we forecasted the entire upcoming trajectory of this season
(weeks 20-52) and some specific forecasting targets, which are functions of this trajectory: the
forecasted IR at each week of the World Cup period g(Y13) = Y13(i), i = 24, 25, · · · , 29 and the
average IR for round 1 and 2 of the World Cup period, g(Y13) = 1

3 ∑i∈{24,25,26} Y13(i) and g(Y13) =
1
3 ∑i∈{27,28,29} Y13(i). We obtained these forecasting targets by applying the above functions g(·) to
the posterior sample curves obtained by importance sampling, thus obtaining a posterior sample



of the forecasting targets. From this we produced point estimates of the forecasting targets, and
uncertainty measures such as Bayesian posterior intervals for forecasting targets and posterior
bands for the upcoming season’s IR trajectory.


