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Figure S1. Additional analyses of adaptation rate and washout for the environments presented in Figure 2.  
Analysis of adaptation data by condition and movement direction. When analyzing the data by condition (P1N1, P1, P7, 
P20) as well as movement direction with a two-way (condition x movement direction) ANOVA we found a highly 
significant effect of condition (p = 1.2x10-22, F(3,137) = 52.5) but no overall effect of movement direction (p = 0.57, 
F(1,137) = 0.33). There was however a moderately significant interaction of condition x movement direction (p = 0.0048, 
F(3,137) = 4.5). Correspondingly, in this model, the experimental condition effect accounts for 51% of the variance in the 
data, whereas the interaction effect accounts only for 4%, and the movement direction effect accounts only for 0.1%, 
indicating that the condition effect dominates. Importantly, both the 270 deg data and the 90 deg data independently show 
a positive relationship between motor adaptation rates and environmental consistency on a one-way ANOVA (p = 
1.2x10-15, F(3,69) = 42.4 for the 270 deg data, and p = 4.4x10-7, F(3,68) = 13.7 for the 90 deg data). 
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Figure S2. Analysis on the predictability of FF trials in the P1 experiment; related to Figure 2. FF trials following 
10, 11, or 12 washout trial display essentially identical displacements (between 21.8 and 22.7 degrees in all cases), and 
thus there is no significant effect of trial number overall (p = 0.81, F(2,33) = 0.21) and, in particular, the displacements 
are not significantly different when the FF follows 10 washout trials vs. 12 (p = 0.76), or when the FF follows 10 
washout trials vs. 11 (p = 0.23). 
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Figure S3. Relationships between adaptation rate, environmental consistency and feedback response strength in 
our data; related to Figure 3. 
 (A) If instead of analyzing the consistency of the FF in the learning environments as in Figure 3, we look at the 
consistency of the errors induced by these environments, similar results are obtained. Fit of mean learning rate for all 
different learning environments as a function of angular error consistency in the environment. Note that both the fits for 
the P1N1, P1, P7 and P20 data alone (grey solid line) and the fit including the RN and P1L data as well (black solid line) 
are able to explain a high percentage the variance of the data – 90% (F(1,2) = 17.49, p = 0.053) and 85% (F(1,4) = 23.21, 
p = 0.0085), respectively. The grey dotted line indicates the average initial adaptation rate for all groups and the dashed 
black curves denote 95% confidence intervals on the overall fit (black solid line). These results suggest that 
environmental consistency can be estimated by the motor system using either the kinematic errors or forces experienced. 
 (B) Feedback response strength is plotted as a function of the adaptation rate in each environment, to determine whether 
these two features of motor control are independent across the experiments in our study. Feedback response strength is 
measured as the percent reduction in kinematic error for the first FF trial in each block late in learning compared to the 
initial exposure at the onset of the environment. Note that when fitting for the P1N1, P1, P7 and P20 data alone (grey 
solid line) a linear fit is able to explain 53% of the variance in the data (F(1,2) = 2.30, p = 0.27), however, once the RN 
and P1L results are included and the data are refitted (black solid line) adaptation rate is only able to explain 0% of the 
variance in the feedback response strength data (F(1,4) = 0.0006, p = 0.98) indicating that feedback response strength and 
adaptation rate are independent features in our data set.  The black dashed curves denote the 95% confidence intervals on 
the overall fit (black solid line). 
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Figure S4. Pre-FF adaptation measurement for each of the eight different environments; related to Figure 3. 
The plot above shows the adaptation coefficients immediately before the FF trial of each measurement triplet This is the 
term denoted x(ECpre) in Equation 1 in the Experimental Procedures and Equation 2 in the Supplemental Experimental 
Procedures below. The data shown are from the measurements from the latter half of each environment. Positive 
adaptation is towards the direction that compensates for the FF which immediately follows these trials. We term this pre-
FF adaptation level xpre and note that, if we assume a single-state learning model like the one described in the 
Introduction (Combined estimation and prediction equation), such a non-zero xpre would bias the corresponding learning 
rate by an amount equal to (1-A2)*xpre as suggested by Marko et al. [39] because the adaptation level measured on the 
post-FF EC trial would be affected by the decay of any pre-FF adaptation as well as the FF-induced learning.  However, 
we chose not to explicitly correct for this effect, because obtaining sufficiently accurate estimates of A would be very 
difficult and all of our experiments – including RN & RW – were designed in a way that any real bias in our adaptation 
rate estimates stemming from this effect would be very small.  
 
First, we observe that this value of xpre is negligible for the P1, RN and RW environments. These very small and non-
significant values are to be expected, especially for the RN and RW environments: even though the learning 
measurement triplets in these experiments were not preceded by washout periods, these triplets were: (1) randomly 
placed in the training period and (2) randomly assigned a sign (positive or negative) for the FF probe trial.  This double 
randomization made it highly unlikely for xpre to be consistently biased in the direction of the following FF trial (which 
would be necessary to a consistent bias). 
 
Second, we observe that, whereas xpre appears statistically significant for the P1N1, P1L, P7, P7L and P20 environments, 
its corresponding values are rather small. The small values for xpre in these blocked paradigms mean even smaller values 
for (1-A2)*xpre. It is interesting to note that (1-A2)*xpre would almost always be small for blocked paradigms with 
washout periods before each measurement triplet, because a value of A substantially lower than 1 would insure a fairly 
rapid decay of adaptation prior to xpre, leading to a very small value for xpre itself. However, values of A close to 1, which 
may allow xpre to be of reasonable amplitude would insure that the term (1-A2) is small, which would in turn result in a 
small value for the (1-A2)*xpre bias even if xpre were not very small.  It is worth mentioning that the P1L group shows an 
xpre bias that is more than twice as high as any of the other groups, but still only 0.18 in size.  This makes sense because 
we were forced to substantially abbreviate the washout period for this group in order to fit the 540 cycles that this 
experiment required into a single (3.5 hour) session (and neither of the randomizations we used in the RN & RW 
experiments could be employed). We estimated the bias that would be associated with the P1L experiment, which has the 
largest xpre value. To do so, we coupled the “forward” bias equation (1-A2)*xpre with the corresponding “reverse” 
equation in order to obtain a system of two equations and two unknowns that allows for A to be estimated and thus the 
bias (1-A2)*xpre to be approximated. By the “reverse” equation, we mean the state-space equation analogous to the 
forward one given above that instead describes the propagation of learning from the last trial of a triplet (the post-FF EC 
trial) to the first trial of the following triplet (the pre-FF EC trial). In so doing, we estimated the bias (1-A2)*xpre to be 
about 0.01 which is indeed rather small.   
 
A critical technical issue with the specific (1-A2)*xpre bias correction is that it assumes 1-rate learning which is unlikely.  
The practical issue here is that, especially for the one-sided blocked paradigms with washout periods used in many of our 
experiments, xpre=xpre,SLOW+xpre,FAST  is likely to be dominated by slow learning, i.e. xpre,SLOW >> xpre,FAST (because fast 
learning  would decay and be washed out much more quickly during the washout period,  allowing only slow learning to 
possibly accumulate from one one-sided block to the next). Thus the overall decay bias would in fact have two 
components: (1-AFAST

2)*xpre,FAST + (1-A SLOW
2)*xpre,SLOW.  However, if decay is measured directly in a single trial 
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following adaptation, as in [39], where the (1-A2)*xpre bias correction is used, the estimated value for A would be 
approximately AFAST (as also admitted in [39]), because in contrast to xpre most of the learning following single-trial 
adaptation would be fast.  Correspondingly, the (1-A2)*xpre bias correction would do more harm than good if most of xpre 
was from xpre,SLOW (i.e., if  xpre,SLOW > xpre,FAST  as it almost certainly will be), because the (1-A2)*xpre bias correction 
would effectively apply AFAST to the decay of both xpre,FAST and xpre,SLOW (the latter of which would dominate and would 
be expected to, practically speaking, not decay at all since ASLOW > 0.99  less than 1% decay per trial). By “more harm 
than good” we mean that the “corrected” estimate of learning would be farther away from the true learning than the 
“uncorrected” estimate was. Thus we would maintain that the (1-A2)*xpre bias correction should only be considered if 
there is a reasonable expectation that xpre,FAST >> xpre,SLOW, which is not likely to be the case for our blocked experiments.  
Moreover, we would suggest that it is unclear whether this condition is likely to be met for the data in the Marko et al. 
[39] study where this correction was implemented, raising the issue of whether the (1-A2)*xpre correction did more harm 
than good in that study. 
 
We did however, make use of the pre-FF adaptation level measurements above to refine our measurements of feedback 
response strength. The idea here is that Fperturb-xpre,raw would be a better estimate of the environmental perturbation on a 
given trial than Fperturb alone. Thus, we normalized the kinematic errors used to compute feedback response strength by 
Fperturb-xpre rather than Fperturb alone (note that, practically speaking this entailed normalization of the current kinematic 
error estimates by 1-xpre, as learning coefficients like xpre in the paper are normalized by Fperturb and Fperturb/(Fperturb-xpre,raw) 
= 1/(1-xpre,raw/Fperturb) = 1/(1-xpre)) – also see Supplemental Experimental Procedures below. The small values of xpre we 
observe predict that the effect is small, but we felt that accounting for it might further improve the accuracy of our 
feedback response rate estimates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Tables 
 

 
Table S1. Group Mean and Individual Subject Data Analyses, related to Figure 3. 

Note that NS indicates not significant at  = 0.05. 

Fit For Group Mean Data Individual Subject Data 

R2 p-value R2 p-value 

Adaptation Rate 
vs. Consistency of FF 

W/O RN/P1L Data 0.94 0.030 0.60 3.3 x 10-15 
With RN/P1L Data 0.90 0.004 0.62 4.3 x 10-21 

Adaptation Rate 
vs. Variance of FF 

W/O RN/P1L Data 0.69 0.17 (NS) 0.45 1.3 x 10-10 
With RN/P1L Data 0.16 0.43 (NS) 0.19 9.9 x 10-6 

% Reduction in KE 
vs. Consistency of FF 

W/O RN/P1L Data 0.58 0.24 (NS) 0.09 0.012 
With RN/P1L Data 0.00 0.99 (NS) 0.00 0.78 

% Reduction in KE 
vs. Variance of FF 

W/O RN/P1L Data 0.95 0.024 0.17 0.00059 
With RN/P1L Data 0.82 0.013 0.24 1.0 x 10-6 

 
 

Table S2A. Bi-variate regression of adaptation rate onto both consistency and variance using group mean data (all 
groups) compared to univariate regressions. Related to Figure 3. 

 Regression onto 
Consistency of FF 

Regression onto 
Variance of FF 

Regression onto both Consistency and Variance of FF 
Consistency of FF Variance of FF 

Coefficients ( ± 95% C.I.) 0.20 ± 0.09 0.0032 ± 0.010 0.19 ± 0.13 0.0004 ± 0.0050 
R2 or partial R2 R2 = 0.90 R2 = 0.16 Rc

2 = 0.88 Rv
2 = 0.022 

F-statistic F(1,4) = 35.32 F(1,4) = 0.76 F(1,3) = 22.3 F(1,3) = 0.068 
p-value 0.004 0.43 0.018 0.81 

 
Table S2B. Bi-variate regression of adaptation rate onto both consistency and variance using individual subject data 

(all groups) compared to univariate regressions. Related to Figure 3. 
 Regression onto 

Consistency of FF 
Regression onto 
Variance of FF 

Regression onto both Consistency and Variance of FF 
Consistency of FF Variance of FF 

Coefficients ( ± 95% C.I.) 0.22 ± 0.035 0.0051 ± 0.0022 0.21 ± 0.041 -0.0006 ± 0.0017 
R2 or partial R2 R2 = 0.62 R2 = 0.19 Rc

2 = 0.51 Rv
2 = 0.0048 

F-statistic F(1,93) = 149.9 F(1,93) = 21.86 F(1,92) = 95.82 F(1,92) = 0.44 
p-value 4.3 x 10-21 9.9 x 10-6 < 10-15 0.51 

 
 
Table S3A. Bi-variate regression of feedback response strength (% reduction in kinematic error) onto both consistency 

and variance using group mean data (all groups) compared to univariate regressions. Related to Figure 3. 
  Regression onto 

Consistency of FF 
Regression onto 
Variance of FF 

Regression onto both Consistency and Variance of FF 
Consistency of FF Variance of FF 

Coefficients ( ± 95% C.I.) -0.01 ± 43.64 1.09 ± 0.71 -12.44 ± 13.70 1.26 ± 0.52 
R2 or partial R2 R2 = 0.00 R2 = 0.82 Rc

2 = 0.74 Rv
2 = 0.95 

F-statistic F(1,4) = 0.00 F(1,4) = 17.88 F(1,3) = 8.34 F(1,3) = 59.03 
p-value 0.99 0.013 0.063 0.0046 

 
 
Table S3B. Bi-variate regression of feedback response strength (% reduction in kinematic error) onto both consistency 

and variance using individual subject data (all groups) compared to univariate regressions. Related to Figure 3. 
  Regression onto 

Consistency of FF 
Regression onto 
Variance of FF 

Regression onto both Consistency and Variance of FF 
Consistency of FF Variance of FF 

Coefficients ( ± 95% C.I.) 1.48 ± 10.32 1.01 ± 0.38 -13.81 ± 10.04 1.29 ± 0.42 
R2 or partial R2 R2 = 0.00 R2 = 0.24 Rc

2 = 0.078 Rv
2 = 0.30 

F-statistic F(1,89) = 0.08 F(1,89) = 27.62 F(1,88) = 7.47 F(1,88) = 36.9 
p-value 0.78 1.0 x 10-6 0.0076 3.00 x 10-8 

 
 
 
 



Supplemental Experimental Procedures: 

 

Ethics statement 

All experimental participants were naïve to the experimental purpose, provided informed consent 

and were compensated for their participation. All the experimental protocols were reviewed and 

approved by the Harvard University Committee on the Use of Human Subjects (CUHS) in 

research. 

 

General task description 

Subjects performed 10cm reaching movements in the horizontal plane with their dominant hands 

while grasping the handle of a 2-link robotic manipulandum, Figure 1A. They were presented with 

1cm-diameter circular targets displayed on a vertically oriented LCD monitor. The position of the 

subject’s hand was represented on the LCD monitor by a 3mm cursor. Position, velocity and force 

at the handle were measured with sensors installed in the manipulandum at a sampling rate of 

200Hz. The subjects were instructed to produce fast, continuous movements, and were provided 

visual feedback throughout the movement. Feedback about the movement time achieved was 

presented at the end of each movement.  Ideal movement times (500±50ms) were signaled by an 

animation of the target while a chirp sound was played. Here movement time on each trial was 

defined that the time between when the movement speed first exceeded 0.05m/s and the final time 

it went below 0.05m/s.  For movement completion times that were below or above the ideal range 

the targets were colored blue and red, respectively and the chirp sound was withheld. The mean 

peak speed for the movements in all experiments was 0.33±0.04m/s. All movements in the present 

study occurred in the 90º and 270º directions (Figure 1A). In certain movements, the subjects’ 

trajectories were disrupted by velocity-dependent dynamics. This was implemented by a viscous 

curl force-field (FF) at the handle produced by the motors of the manipulandum, Equation 1 and 

Figure 1B. 

 

ԦሻݒԦሺܨ     (1) ൌ Ԧݒܤ	 ൌ ቂ 0 ܾ
െܾ 0

ቃ ቂ
௫ݒ
 ௬ቃݒ

 

In this equation the constant 2 x 2 matrix B represents the viscosity associated with this FF. In 

particular, we constrained B so that it had a curl matrix form with amplitude ܾ as shown above. 

This curl form resulted in the direction of the force always orthogonal to the direction of the 

velocity vector. In most of the experiments (P1N1, P1, P1L, P7, P7L and P20) the magnitude of the 



scalar ܾ was set to 15 N/(m/s) and its sign was set so that half of the subjects experienced a 

clockwise FF (b=+15 N/(m/s)) while the other half experienced a counterclockwise FF (ܾ =-15 

N/(m/s)) during training. In these experiments, the FF blocks or single trials began with movements 

in the 270º direction. In the RN and RW environments the mean value of ܾ was approximately zero 

but its specific value was changed from one trial to the next as described below. 

  

We assessed the level of adaptation using error-clamp trials, i.e., we measured the force pattern that 

subjects produced when their lateral errors were held to near zero values in an error-clamp [14, 36-

37], Figure 1B. We then regressed the ideal force required to fully compensate the force-field onto 

these measured force patterns. The slope of this regression was used as the adaptation coefficient 

(x) that characterized adaptation in that trial. Note that the mean force patterns as well as the 

corresponding adaptation coefficients are shown in Figures 2-5. 

 

Measures of feedforward learning and feedback control 

In all experiments, we measured feedforward adaptation based on the lateral force output observed 

during error clamp trials.  Compared to kinematic measures of learning, this force-based measure 

can be more directly compared to the force-based nature of the environments we employed, and it 

is unaffected by limb stiffness.  In particular, the adaptation rates reported in this study were 

calculated by obtaining the difference between the adaptation coefficient for the error-clamp trial 

following the first FF trial in a measurement cycle (ECPost) and the adaptation coefficient for the 

error-clamp trial preceding this force-field trial (ECPre), Equation 2 and Figure 1B. 

 

݁ݐܴܽ	݊݋݅ݐܽݐ݌ܽ݀ܣ   (2) ൌ ௉௢௦௧ሻܥܧሺݔ	 െ  ௉௥௘ሻܥܧሺݔ	

 

The percent reduction in kinematic error in a given FF trial (eFF) compared to the kinematic error in 

the first presentation of the FF (eInit) was calculated by subtracting eFF, corrected to account for the 

amount of adaptation in the preceding trial, from eInit, and normalizing by (eInit), as shown in 

Equation 3 for all experiments. As adaptation directly leads to corrections in error that are 

independent of stiffness, we corrected the kinematic error in a given FF trial (eFF) for the amount of 

adaptation in the preceding trial by normalizing eFF by the corresponding gap in adaptation (i.e. the 

adaption shortfall), 1 െ    .௉௥௘ሻܥܧሺݔ
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Learning environment experiments: definitions of consistency and variability 

Different learning environments were created to study the environmental modulation of adaptation 

rate in different experiments, Figure 1B. We operationally defined environmental consistency is 

defined as the lag-1 autocorrelation (R(1)) of the FF sequence, i.e., the expected value of the 

covariance of the magnitude of the force between the current trial and the subsequent trial in the 

same movement direction, normalized by the overall variance of the force-field environment, 

Equation 4. 

 

ሺ1ሻܴ	:ݕܿ݊݁ݐݏ݅ݏ݊݋ܥ    (4) ൌ 	
ாሾሺிி೙ିఓಷಷሻሺிி೙శభିఓಷಷሻሿ

ఙಷಷ
మ  

 

We note that for all environmental consistency and variability calculations, we used the adaptation 

coefficient x as a measure of the effective FF strength for error clamp trials, because in the robotic 

manipulandum produced a force that matched the adapted motor output in each error clamp trial. 

 

Learning environment experiments: paradigm details 

Note that all experiments began with a 200-trial baseline/familiarization period before the 

environment being studied was applied.  Note also that all blocked experiments were balanced in 

terms of FF direction with half of the subjects experiencing clockwise curl FFs and the other half 

experiencing counterclockwise curl FFs. 

 

In the anti-consistent learning environment (P1N1; R(1)=-0.3) experiment, 21 subjects (mean 

age=20.7 ± 2.5 years; 7 male) completed two baseline blocks of null movements (100 

movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 

then exposed to 50 environment cycles where they experienced the following sequence of trials in 

each movement direction: a single positive FF trial (b=15 N/(m/s)), followed by a single negative 

FF trial (B=-15 N/(m/s)), followed by 11-13 washout (null) trials. To assess the adaptation rate of 

the subjects we randomly interspersed error-clamp trials before and after the positive FF trial in a 

subset of the FF cycles (40%) with the aforementioned sequence. The adaptation rate was 

calculated as described above for both the 90º and 270º directions. 

 

In the inconsistent learning environment (P1; R(1)=-0.05) experiment, 12 subjects (mean age=23.8 

± 6.6 years; 1 male) were exposed to two baseline blocks of null movements (100 



movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 

then exposed to 45 environment cycles where they experienced the following sequence of trials in 

each movement direction: a single positive FF trial (ܾ=15 N/(m/s)), followed by 10-12 washout 

(null) trials. Randomly interspersed in a subset of the environment FF cycles (44%) we introduced 

error-clamp trials before and after the positive FF trial of the aforementioned sequence to assess the 

subjects’ adaptation rate. This process was applied to both the 90º and 270º directions. 

 

In the medium consistency learning environment (P7; R(1)=0.74) experiment, 12 subjects (mean 

age=23.8 ± 6.6 years; 1 male) completed two baseline blocks of null movements (100 

movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 

then exposed to 27 environment cycles where they experienced the following sequence of trials in 

each movement direction: seven positive FF trials (b=15 N/(m/s)), followed by 15-18 washout 

(null) trials. Randomly interspersed in a subset of the environment cycles (44%) we introduced 

error-clamp trials before and after the first FF trial of the aforementioned sequence to assess the 

subjects’ adaptation rate. This process was applied to both the 90º and 270º directions. 

 

In the high consistency learning environment (P20; R(1)=0.90) experiment, 28 subjects (mean 

age=22.8 ± 3.9 years; 15 male) completed two baseline blocks of null movements (100 

movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 

then exposed to 27 environment cycles where they experienced the following sequence of trials in 

each movement direction: twenty positive FF trials (b=15 N/(m/s)), followed by 28-32 washout 

(null) trials. Randomly interspersed in a subset of the environment cycles (44%) we introduced 

error-clamp trials before and after the first FF trial of the aforementioned sequence to assess the 

subjects’ adaptation rate. In addition, for 16 out of these 28 subjects, at the end of the last FF 

environment cycle we added a single negative FF trial, surrounded by EC trials, to assess the 

adaptation rate associated with this novel perturbation. This was done for both the 90º and 270º 

movement directions.  

 

A group of 18 subjects (mean age=20.3 ± 2.7 years; 6 male) completed an extended version of the 

medium consistency learning environment experiment (P7L; R(1)=0.73), modified to include the 

approximately the same number of FF trials used in the high consistency learning environment 

experiment (P20) – 539 FF trials in P7L vs 540 FF trials in P20. These subjects completed 2 blocks 

of 100 null familiarization trials in the 90º/270º directions, and then 77 environment cycles where 

they experienced the following sequence of trials in each movement direction: seven positive FF 



trials (B=15 N/(m/s)), followed by 10-14 washout (null) trials. Randomly interspersed in a subset 

of the environment cycles (45%) we introduced error-clamp trials before and after the first positive 

FF trial of the aforementioned sequence to assess the subjects’ adaptation rate. In addition, at the 

end of the last FF environment cycle we added a single negative FF trial, surrounded by EC trials, 

to assess the adaptation rate associated with this novel perturbation. This process was applied to 

both the 90º and 270º directions. 

 

A  group of 12 subjects (mean age=21.8 ± 2.9 years; 4 male) completed an extended version of the 

inconsistent learning environment experiment (P1L; R(1)=-0.45), modified to include the same 

number of FF trials (540) used in the high consistency learning environment experiment (P20). 

These subjects completed 2 blocks of 100 null familiarization trials in the 90º/270º directions, and 

then 540 environment cycles where they experienced the following sequence of trials in each 

movement direction: one positive FF trials (b=15 N/(m/s)), followed by 1-3 washout (null) trials. 

Randomly interspersed in a subset of the environment cycles (22%) we introduced error-clamp 

trials before and after the first positive FF trial of the aforementioned sequence to assess the 

subjects’ adaptation rate. The adaptation rate was calculated by subtracting the adaptation 

coefficient in the first EC trial from the adaptation coefficient in the second EC trial. This process 

was applied to both the 90º and 270º directions. 

 

In the random noise learning environment (RN; R(1)=0.02) experiment, 13 subjects (mean 

age=22.4 ± 3.5 years; 8 male) were exposed to two baseline blocks of null movements (100 

movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 

then exposed to an environment where the FF trials varied randomly, with magnitudes determined 

according to a normal distribution with standard deviation of 7.5 N/(m/s). Randomly interspersed 

in this environment we introduced error-clamp trials (1% of trials) to assess the adaptation rate of 

the subjects according to the following sequence of trials, (1) EC trial, (2) FF trial of magnitude ± 

15 N/(m/s), (3) EC trial, Figure 1B. The adaptation rate was calculated by subtracting the 

adaptation coefficient in the first EC trial from the adaptation coefficient in the second EC trial. 

This process was applied to both the 90º and 270º directions. 

 

Finally, in the random walk learning environment (RW; R(1)=0.76) experiment, 23 subjects (mean 

age=22.4 ± 3.5 years; 10 male) were exposed to two baseline blocks of null movements (100 

movements/block) in the 90º/270º directions to obtain familiarity with the task. The subjects were 



then exposed to an environment where the strength of the viscous FF followed a damped random 

walk: 

ܾሺ݇ሻ ൌ ሺܾ݇ܣ െ 1ሻ ൅  ሺ݇ሻݓ

 

Where ܾሺ݇ሻ is the strength of the force-field at trial ݇, ܣ ൌ 0.88 was the carryover (retention) 

coefficient and ݓሺ݇ሻ was zero-mean random noise with a standard deviation of 2.7 N/(m/s), chosen 

so that the variance of the overall environment roughly matched the variance of the random noise 

environment. Note that this is similar to a regular (undamped) random walk for which ܣ would be 

1. We used a value for the carryover coefficient (A) smaller than 1 to ensure that the amplitude of ܾ 

does not grow unbounded.  Note that this value is numerically equal to the expected value of the 

lag-1 autocorrelation (R(1)) for an infinitely long sequence ܾሺ݇ሻ. EC-FF-EC measurement triplets, 

like those described above, were randomly interspersed in this environment with a mean interval of 

30 trials to measure the adaptation rate in both the 90º and 270º directions. The perturbation trial in 

the triplet had a ܾ of +15Ns/m in half the triplets and -15Ns/m for the other half. Note that without 

interspersing these triplets the R(1) for the RW environment would be close to A = 0.88; however, 

the fact that the FF perturbations contained within these triplets are uncorrelated to the FF trials 

that precede or follow them reduces the lag-1autocorrelation from 0.88 to R(1) = 0.76. The 

amplitude of the FF coefficient b was capped at 24Ns/m. 

 

Data inclusion criteria 

In our data analysis grossly irregular trials were excluded. This included movements that were 

extremely fast (peak velocity > 0.5 m/s) or extremely slow (peak velocity < 0.22 m/s), as well as 

trials with extremely fast (< 75 ms) or extremely slow (> 2.5 sec) reaction times. This insured that 

subjects did not initiate movements too quickly, without correctly identifying the location of the 

target, or too late, indicating that they might have not been attending to the task. Applying these 

criteria resulted in the inclusion of at least 90% of the trials in each group: 94% in the P1N1 group, 

90% in the RN group, 97% in the P1 group, 94% in the P7 group, 93% in the P7L group, and 91% 

in the P20 group. Furthermore, we excluded from our analyses subjects for which less than one 

third of their EC triplet data fit the inclusion criteria within the number of trials analyzed. 

Specifically, from the analyses of the latter half of the data (Figures 2BC, 3 and 5 and Figure 6), 7 

subjects were excluded: one from the P7 environment, one from the P20 environment, one from the 

RN environment and four from the RW environment. From our analysis of the last third of the data 

(Figure 4B) the same two subjects from the P7 and P20 environments were excluded. 

 



Statistical analyses 

Differences in kinematic error during training between the learning environments were assessed 

with a one-way analysis of variance (ANOVA). We also used ANOVAs to assess differences in 

initial (first measurement sequence) and late (last half of measurement sequences) adaptation rate 

and percent reduction in kinematic error between the learning environments.  Notice that the 

number of degrees of freedom (DOF) of the error in the comparison of initial adaptation rate is 66 

and not 69 because trials from 3 subjects – one in the P1, one in the P7 and one in the P20 groups – 

failed at least one of the data inclusion criteria noted above. When significant differences arose in 

the ANOVAs, hypothesis-based post-hoc comparisons were performed using one-tailed t-tests. 

Comparisons between pairs of groups were performed using unpaired t-tests without the 

assumption of equal variances between groups, whereas within group comparisons were performed 

using paired t-tests.  

 

Calculation of confidence intervals for the responses predicted by the combined-CR model 

As the combined-CR prediction for the P7L-Opposite response was based on data from different 

subject populations (RW and P7L, since the prediction was equal to -RW+(P7L-RW)) we could not 

directly measure variability across subjects to determine SEM as is the other analyses presented in 

the paper.  Thus we utilized a bootstrapping procedure in order to estimate the SEMs associated 

with this combined-CR prediction (displayed in Figure 6C). Specifically, we repeatedly randomly 

sampled with replacement from the RW and P7L subject populations for a total of 10,000 

iterations, and used the standard deviation of the corresponding sample averages as a measure of 

SEM. The same process was used for the combined-CR prediction for the P20-Opposite response 

(Figure 6D). 
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