

Figure S1 related to Figure 1. (A) NiV-V inhibits MDA5 dephosphorylation in a dose-dependent manner. HEK293T cells were transfected with GST-MDA5 2CARD and increasing amounts of HA-tagged NiV-V. WCLs were subjected to GST pull-down (GST PD), followed by IB with anti-pS₈₈-MDA5 or anti-GST antibody. **(B) Densitrometric quantification of RIG-I S8 phosphorylation upon V protein expression.** The intensities of the bands from the Western blots shown in Figure 1F (first and second panels) were quantified by densitometric analysis. The extent of RIG-I S8 phosphorylation was calculated as the ratio of the amount of phosphorylated FLAG-RIG-I (first panel) to the amount of total FLAG-RIG-I (second panel). Values were normalized to control (FLAG-RIG-I cotransfected with vector). Data are the means +/- s.d. of three independent experiments. n.s., statistically not significant. **(C) MV-V and NiV-V robustly enhance the phosphorylation of MDA5 R**₈₀₆L. HEK293T cells were transfected with FLAG-MDA5 R₈₀₆L together with empty vector or the indicated HA-tagged paramyxovirus V proteins. WCLs were subjected to FLAG-IP, followed by IB with anti-pS₈₈-MDA5 or anti-FLAG antibody. **(D) MV-V and NiV-V do not inhibit MAVS binding of a MDA5 S**₈₈A mutant. HEK293T cells were transfected with MAVS-CARD-PRD-FLAG and GST or GST-MDA5 2CARD S₈₈A together with vector, MV-V, or NiV-V. WCLs were subjected to GST PD, followed by IB with anti-FLAG or anti-FLAG or anti-FLAG or anti-GST antibody.

Figure S2 related to Figure 2. PP1 binding of the paramyxovirus V proteins. (A) The V proteins of measles and Nipah virus, but not that of PIV5, bind to PP1 γ . HEK293T cells were transfected with V5-tagged PP1 γ together with vector, HA-tagged MV-V, NiV-V, or PIV5-V protein. PP1 γ binding was assessed by IP with anti-HA, followed by IB with anti-V5 antibody. (B) The measles V protein and PP1 co-localize at mitochondria-associated membranes (MAM). Confocal scanning laser images of HA-MV-V (green) and FLAG-PP1 γ (red) in transfected HeLa cells (as shown in Figure 2C). MAM were stained with MitoTracker (purple).

Α

(kDa)

37

50-

37

Figure S3 related to Figures 3 and 4. (A and B) Phosphorylation of the MV-V protein is enhanced by chemical inhibition of PP1. (A) Phosphorylation of MV-V-FLAG in transfected HEK293T cells treated with the indicated inhibitors (or DMSO control) for 4 h, determined by IB using anti-pan-phospho-Ser antibody (anti-pSer). (B) IB analysis of MV-V-FLAG phosphorylation upon treatment with 100 nM, 500 nM, or 1 μ M of Cantharidic acid for 4 h in transfected HEK293T cells. Arrow heads indicate phosphorylated forms of MV-V. (C and D) The C-terminal domain of the V protein (V_c) of measles and Nipah virus is sufficient for preventing MDA5 S88 dephosphorylation. HEK293T cells were transfected with FLAG-MDA5 together with GST or 4 μ g, 8 μ g, or 12 μ g of GST-fused MV-V_c (C) or NiV-V_c (D). WCLs were subjected to IP with anti-FLAG antibody, followed by IB with anti-pS₈₈-MDA5 or anti-FLAG antibody. Expression of GST and GST-fused V_c were determined by IB with anti-GST antibody.

Edmonston Schwarz Khartoum Sudan Tokyo.JPN/37.99 T11Ve-23 IP-3-Ca Yamagata Ichinose-B95a ²³²HRREISLIWNGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREIGLIWNGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREIGLIWNGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREIGLIWNGDRVFIDRWCNPMCSKVTLGTIRARCTCGKCPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREIGLIWNGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREISLIWDGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREISLIWDGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREISLIWDGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREISLIWDGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹
²³²HRREISLIWDGDRVFIDRWCNPMCSKVTLGTIRARCTCGECPRVCEQCRTDTGVDTRIWYHNLPEIPE²⁹⁹

Figure S4 related to Figure 4. The PP1-binding motif RIWY is conserved among different measles virus strains. Vc protein sequence alignment of different MV strains. Alignment was performed using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/clustalw2/</u>). Asterisks (*) indicate positions which have a single, fully conserved residue. Colons (:) indicate conservation between groups of strongly similar properties, and periods (.) indicate conservation between groups of weakly similar properties. The PP1-binding motif is indicated in red. Numbers indicate amino acids.

Figure S5 related to Figure 4. (A) Effect of the MV-V WT and Δ tail proteins on endogenous MDA5-PP1 binding stimulated by poly(I:C). Endogenous MDA5-PP1 binding in Mock-treated or poly(I:C)-stimulated HEK293T cells, transfected with vector or HA-tagged MV-V WT or Δ tail, assessed by IP with anti-MDA5, followed by IB with anti-PP1 α . (B) Mutation or deletion of the PP1-binding motif in the measles V protein does not affect its ability to inhibit the nuclear translocation of STAT2. Confocal images of 2fTGH cells, that had been transfected with either HA-tagged MV-V WT, MV-V AIAA, or MV-V Δ tail, were treated with IFN α for 30 min, or left untreated. Cells were then stained for endogenous STAT2 (green) or HA (MV-V, red). Nuclei were stained with DAPI (blue). Arrow heads indicate cells that show expression of MV-V.

Α

Figure S6 related to Figure 5. (A) Cloning strategy for the generation of the rMV^{KS}EGFP(3)-V Δ tail virus. Schematic of rMV^{KS}EGFP(3)V Δ tail (lower inset) nucleotide sequence of mutated region with P and V protein translations showing uninterrupted P sequence and in-frame V stop codons (underlined in red). Mutated nucleotides are shown as lowercase letters. (B and C) The growth defect of the V Δ tail virus in A549-hCD150 cells is dependent on its inability to antagonize MDA5. (B) Viral titers of rMV^{KS}EGFP(3) WT and V Δ tail were determined 48 h.p.i. in A549-hCD150 cells, that had been transduced with lentiviral particles expressing MDA5-specific shRNA (sh.MDA5) or non-targeting control shRNA (sh.C). Data are expressed as mean TCID₅₀ +/- s.d. (n=2) and are representative of 2 independent experiments. (C) Confirmation of MDA5 knockdown from the experiment shown in (B) as determined by qRT-PCR normalized to gapdh mRNA levels. The results are expressed as means +/- s.d. (n=2).