Supplemental Information

Supplemental Experimental Procedures

Plasmid Construction. FLAG-MDA5, GST-MDA5 2CARD, MAVS-CARD-PRD-FLAG, HA-PP1 α , HA-PP1 β , and HA-PP1 γ were previously described (Gack et al., 2007; Wies et al., 2013). pCR3-FLAG-PIV5-V and pCR3-FLAG-MV-V (Schwarz strain) were kindly provided by Karl-Klaus Conzelmann (LMU, Munich) and have been described (Schuhmann et al., 2011). pCAGGS-HA-NiV-V was provided by Chris Basler (Mount Sinai) and has been described (Shaw et al., 2005). FLAG- and V5-tagged PP1y were subcloned into the pIRES-FLAG and pIRES-V5 vectors, respectively, between *MluI* and *XbaI*. HA-tagged PIV5-V and MV-V genes were subcloned into the pCAGGS plasmid between EcoRI and XhoI. FLAG-tagged NiV-V was subcloned into pEF-Bos vector containing an N-terminal FLAG tag between NotI and SalI. GST-MV-V_N (aa 1-231), GST-MV-V_C (aa 232-299), GST-NiV-V_N (aa 1-407), and GST-NiV-V_C (aa 408-456) were constructed by subcloning into the pEBG vector between *BamHI* and *ClaI*. GST-MV-V_C and HA-MV-V AIAA mutants were generated through site-directed mutagenesis. GST-MV-V_C and HA-MV-V Δ tail mutants were generated through subcloning residues 232-283 or 1-283 into the pEBG or pCAGGS vector, respectively. All constructs were sequenced to verify 100% agreement with the original sequence.

Cell Culture and Transfection. HEK293T, HeLa, 2fTGH, and immortalized MDA5-deficient MEF cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM L-glutamine, and 1% (w/v) penicillin-streptomycin (Pen-Strep; Gibco-BRL). Immortalized MDA5-deficient MEFs were described previously (Wies et al., 2013). A549-hCD150 and Vero-hCD150 were cultured in Advanced Modified Eagle's

Medium (MEM) supplemented with 10% (v/v) FBS and 2 mM GlutaMAX (Gibco-BRL). Stable expression of CD150 was maintained in A549-hCD150 and Vero-hCD150 using 500 μ g/ μ L Zeocin (Invitrogen) and 400 μ g/ μ L G418 (Sigma) respectively. Transient transfections were performed with calcium phosphate (Clontech) or Lipofectamine LTX and Plus Reagent (Invitrogen) according to the manufacturer's instructions.

Immature monocyte-derived DCs were cultured as described before (Gringhuis et al., 2009). In short, peripheral blood mononuclear cells, obtained from buffy coats of healthy donors, were isolated by a Lymphoprep (Axis-shield) gradient step and monocytes were subsequently isolated by a Percoll (Amersham biosciences) gradient step. Purified monocytes were differentiated into immature DCs in the presence of 500 U/ml interleukin-4 and 800 U/ml granulocyte-macrophage colony-stimulating factor (Schering-Plough, Brussels, Belgium). DCs were used for experiments at day 6-7.

Viruses. MV^{Ed} and EMCV (strain EMC) were purchased from ATCC. DenV serotype 2 (strain 16681) was kindly provided by Lee Gehrke (Harvard/MIT). SeV (Cantell strain) was purchased from Charles River Laboratories.

Generation of an rMV expressing EGFP and a truncated V protein. rMV^{KS}EGFP(3) was generated by insertion of EGFP as an additional transcription unit (Lemon K, 2011; Ludlow et al., 2013a; Ludlow et al., 2013b). The plasmid template for rMV^{KS}EGFP(3) was further modified to generate rMV^{KS}EGFP(3)V Δ tail by exchanging the *AfeI/AscI* fragment with one containing two in-frame stop codons in the sequence encoding the unique C-terminus of the V protein. Sequence changes to introduce the stop codons were designed to be silent in the overlapping P reading frame. The first stop codon terminates the V protein just before the RIWY motif. Plasmid and primer sequences are available on request. Recombinant viruses were recovered from fowlpox-T7-infected Vero-hCD150 cells transfected with the full-length plasmids along with plasmids expressing MV N, P and L. Virus stocks were grown in B-LCL and tested negative for contamination with mycoplasma species. Virus titers were determined by endpoint titration in Vero-hCD150 cells, and expressed in 50% tissue culture infectious dose (TCID₅₀/ml).

Reagents. HMV-poly(I:C) complexed with LyoVec was purchased from Invivogen. The following phosphatase inhibitors were used to test MV-V phosphorylation: Calyculin A (25 nM) (Sigma), Cantharidic acid (100 nM, 500 nM, and 1 μ M) (Abcam), Endothall (10 μ M) (Millipore), and (-)-p-bromotetramisole oxalate (50 μ g/mL) (Enzo Life Sciences). Silencing of endogenous MDA5 in A549-hCD150 cells was achieved by transduction of lentiviral particles expressing MDA5-specific shRNAs, or non-targeting control shRNAs (Santa Cruz Biotechnology) following the manufacturer's instructions.

Quantitative Real-time PCR in DCs. RNA isolation from primary human DCs was performed by using the mRNA capture kit (Roche Diagnostic Systems). cDNA was synthesized with a reverse transcriptase kit (Promega). For real-time PCR analysis, PCR amplification was performed in the presence of SYBR green in a 7500 Fast Real-time PCR System (ABI). Transcription of the target gene was adjusted for *GAPDH* transcription with Nt = 2Ct(GAPDH)-Ct(target). Primers for IFN- β , MxA and ISG15 were kindly provided by C.L. Verweij, VUmc, Amsterdam. **Confocal Microscopy.** For determining the ability of MV-V WT and mutant proteins to prevent STAT2 nuclear translocation, 2fTGH cells were transfected with Lipofectamine 2000 (Life Technologies) according to the manufacturer's instructions. At 24 h post-transfection, cells were treated with 1000 U/ml IFNα2 (PBL Biomedical Laboratories) for 30 min. Cells were fixed with 1% paraformaldehyde for 15 min and permeabilized in ice-cold 1:1 methanol/acetone for 10 min at -20 °C. Samples were washed with PBS and blocked with 5% bovine serum in PBS for 30 min. For immunostaining of HA-tagged MV-V proteins and endogenous STAT2, mouse anti-HA (Sigma) and rabbit anti-STAT2 (clone C-20, Santa Cruz) antibodies were used, followed by incubation with goat anti-mouse Alexa-fluor-594 and donkey anti-rabbit Alexa-fluor-488 (Life Technologies), respectively. Laser scanning images were taken on an Olympus IX8I confocal microscope.

Supplemental References

Gringhuis, S., den Dunnen, J., Litjens, M., van der Vlist, M., Wevers, B., Bruijns, S., and Geijtenbeek, T. (2009). Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nature immunology *10*, 203-213.

Lemon K, d.V.R., Mesman AW, McQuaid S, van Amerongen G, et a (2011). Early target cell sof measles virus after aerosol infection of non-human primates. PLoS pathogens 7, e1001263.

Ludlow, M., de Vries, R.D., Lemon, K., McQuaid, S., Millar, E., van Amerongen, G., Yuksel, S., Verburgh, R.J., Osterhaus, A.D.M.E., de Swart, R.L., *et al.* (2013a). Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. Journal of General Virology *94*, 1933-1944.

Ludlow, M., Lemon, K., de Vries, R., McQuaid, S., Millar, E., van Amerongen, G., Yüksel, S., Verburgh, R., Osterhaus, A., de Swart, R., *et al.* (2013b). Measles virus infection of epithelial cells in the macaque upper respiratory tract is mediated by subepithelial immune cells. Journal of virology *87*, 4033-4042.

Schuhmann, K., Pfaller, C., and Conzelmann, K.-K. (2011). The measles virus V protein binds to p65 (RelA) to suppress NF-kappaB activity. Journal of Virology 85, 3162-3171.

Shaw, M., Cardenas, W., Zamarin, D., Palese, P., and Basler, C. (2005). Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. Journal of Virology *79*, 6078-6088.