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SUPPLEMENTARY INFORMATION

CsA treated conditions
Th e eff ects of EIPA on axonal MMP were compared to those by cyclo-
sporin A (CsA), a well known drug that targets the mitochondria and 
been shown to be neuroprotective during TBI59. Th e eff ects of CsA on 
MMP and axonal degeneration were assessed. CsA was administered at 
1 µM in serum free media 1 hour before strain injury until the end of 
the experiment.

Immunohistochemical staining
Hippocampal slices and extending axons were fi xed in 4% paraformal-
dehyde (Sigma) for 20 minutes. Th e cultures were washed three times 
in Tris Buff ered Saline (TBS) (0.5M Tris Base, 9% NaCl, pH 7.4) for 5 
minutes each, blocked and permeabilized for 1 hour at room temperature 
using 0.1% Triton-X, 1% bovine serum albumin, 10% goat serum and 
TBS. Primary antibodies in TBS with 1% goat serum were then added to 
cultures and incubated overnight at 4°C. Aft er washing the cultures three 
times with TBS for 5 minutes each, secondary antibodies in TBS were 
added for 1 hour at room temperature. Th e cultures were then washed 
three times with TBS for 5 minutes each and stored in PBS at 4°C for 
imaging. Primary antibodies used were: mouse anti-tubulin beta III IgG1 
(Millipore) at 10 µg/ml and rabbit anti-amyloid precursor protein (APP) 
C-terminus IgG (Millipore) at 10 µg/ml. Secondary antibodies used were: 
goat anti-mouse Alexa Fluor 647 IgG (Invitrogen) and goat anti-rabbit 
Alexa Fluor 488 IgG (Invitrogen). Isotype controls used were: purifi ed 
mouse IgG1 (BD Bioscience) at 10 µg/ml and purifi ed rabbit IgG (Invit-
rogen) at 10 µg/ml. Axons were excited using 488 nm and 647 nm fi lters 
and the same exposure time for each fi lter was used for all experiments.

Supplementary Table 1 Increase in the number of mitochondria by 24 hours aft er 25% applied strain as compared to before injury. *P < 0.05 positions 1, 2 
and 11 are signifi cant compared to positions 4–7, and all positions were signifi cant as compared to before injury (number of experiments = 6).

Position across pressure cavity

1 2 3 4 5 6 7 8 9 10 11

Fold increase
*

3.9 ± 0.5 
*

3.1 ± 0.4 2.8 ± 0.5 2.1 ± 0.4 2.2 ± 0.4 2.1 ± 0.4 2.4 ± 0.3 2.4 ± 0.6 2.4 ± 0.7 2.8 ± 0.5
*

3.3 ± 0.5
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Supplementary Figure 1 Representative images of strain injured axons 
immunostained for β-tubulin and amyloid precursor protein (APP). 
β-tubulin staining: (a) Unstrained axon, (i) phase contrast image and (ii) 
β-tubulin stain; (b) 10% applied strain, (i) 1 hour post injury, (ii) 4 hours 
post injury and (iii) 24 hours post injury; (c) 25% applied strain, (i) 1 hour 
post injury, (ii) 4 hours post injury and (iii) 24 hours post injury; (d) 45% 
applied strain, (i) 1 hour post injury, (ii) 4 hours post injury and (iii) 24 hours 
post injury. APP staining: (e) Unstrained axon, (i) phase contrast image, (ii) 
APP staining and (iii) enlarged box section of (ii); (f) 10% applied strain, 
(i) 1 hour post injury, (ii) 4 hours post injury and (iii) 24 hours post injury; 
(g) 25% applied strain, (i) 1 hour post injury, (ii) 4 hours post injury and 
(iii) 24 hours post injury; (h) 45% applied strain, (i) 1 hour post injury, 
(ii) 4 hours post injury and (iii) 24 hours post injury. Scale bar, 10 µm.

Supplementary Figure 2 Representative images of changes in MMP 
after applying a uniaxial strain injury as assessed using JC-1 dye. (a) 10% 
applied strain, (i) JC-1 fl uorescence before injury and (ii) 24 hours after 
injury. (b) 25% applied strain, (i) JC-1 fl uorescence before injury and 
(ii) 24 hours after injury. (c) 45% applied strain, (i) JC-1 fl uorescence 
before injury and (ii) 24 hours after injury.
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Supplementary Figure 3 Monitoring mitochondrial membrane potential 
changes over a 24-hour period after application of Cyclosporin A and 
uniaxial strain injuries. Mitochondrial membrane potential changes are 
normalized to their potential before injury and assessed at 11 discrete 
sections along the axons and 6 time points, i.e. immediately following 
injury (0 hour), 1 hour, 2 hours, 4 hours, 9 hours and 24 hours post 
injury. (a) 10% applied strain, (b) 25% applied strain and (c) 45% 
applied strain. *P < 0.05 compared to MMP at that particular position 
before injury. †P < 0.05 compared to MMP at that particular time point 
at positions 1 and 11 (number of experiments = 6).

Supplementary Figure 4 Representative images of changes in MMP 
after application of the NHE-1 inhibitor EIPA and uniaxial strain injuries 
as assessed using JC-1 dye. (a) 10% applied strain, (i) JC-1 fl uorescence 
before injury and (ii) 24 hours after injury. (b) 25% applied strain, (i) JC-1 
fl uorescence before injury and (ii) 24 hours after injury. (c) 45% applied 
strain, (i) JC-1 fl uorescence before injury and (ii) 24 hours after injury. 
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