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Michele all’ Adige, Italy, 3 Department of Geography, University of Hawai’i at Mānoa, Honolulu, Hawaii, United States of America, 4 The Royal Society for the Protection of

Birds, Sandy, Bedfordshire, United Kingdom, 5 Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom, 6 Department of Civil Engineering

and Computer Sciences Engineering, Tor Vergata University, Rome, Italy, 7 Department of Forest Resources and Environment, University of Tuscia, Viterbo, Italy, 8 A Rocha

International, Cambridge, United Kingdom, 9 Institute of Biometeorology, National Research Council, Firenze, Italy, 10 Laboratory of Ecohydrology, Civil and
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Abstract

Tropical forests are major repositories of biodiversity, but are fast disappearing as land is converted to agriculture. Decision-
makers need to know which of the remaining forests to prioritize for conservation, but the only spatial information on forest
biodiversity has, until recently, come from a sparse network of ground-based plots. Here we explore whether airborne
hyperspectral imagery can be used to predict the alpha diversity of upper canopy trees in a West African forest. The
abundance of tree species were collected from 64 plots (each 1250 m2 in size) within a Sierra Leonean national park, and
Shannon-Wiener biodiversity indices were calculated. An airborne spectrometer measured reflectances of 186 bands in the
visible and near-infrared spectral range at 1 m2 resolution. The standard deviations of these reflectance values and their
first-order derivatives were calculated for each plot from the c. 1250 pixels of hyperspectral information within them.
Shannon-Wiener indices were then predicted from these plot-based reflectance statistics using a machine-learning
algorithm (Random Forest). The regression model fitted the data well (pseudo-R2 = 84.9%), and we show that standard
deviations of green-band reflectances and infra-red region derivatives had the strongest explanatory powers. Our work
shows that airborne hyperspectral sensing can be very effective at mapping canopy tree diversity, because its high spatial
resolution allows within-plot heterogeneity in reflectance to be characterized, making it an effective tool for monitoring
forest biodiversity over large geographic scales.
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Introduction

Mapping biological diversity is a fundamental conservation

priority [1] as threats from habitat loss, fragmentation and climate

change [2] continue to increase, and international agreements to

reduce biodiversity loss (e.g. the Aichi Biodiversity Targets, CBD

2010) require a basis for prioritizing their response [3]. The need is

particularly great for tropical forests, because they are major

repositories of plant diversity [4], [5], [2]and play a critical role in

the global carbon cycle and climate change mitigation, as

recognized in international processes such as REDD [6], [7].

However, effective large-scale mapping of biodiversity in tropical

forests has proven challenging and spatial information about

tropical forest biodiversity is scarce.

Airborne and spaceborne sensors are able measure land cover

characteristics over large scales so have the potential to map plant

biodiversity at these required scales [8], [9], perhaps because

spectral variation of reflectance values are correlated with spatial

variation in the environment by means of landscape structure and

complexity [10], [11]. The diversity of vegetation was found to

relate to the NDVI [12], [13], [14], [15] and both the richness and

evenness of tropical tree species were found to correlate with

Landsat TM reflectance [16], [17] and spaceborne hyperspectral

imagery [18]. Both the alpha and beta diversity of temperate

deciduous forest could be predicted using ASTER imagery [19].

In more specific applications, multi-temporal data have been used

to discriminate areas occupied by native trees from those

dominated by invasive alien species [20], [21]. Given that

canopy-tree diversity is often a good proxy for diversity of other

taxonomic groups, remote sensing may have potential for mapping

biodiversity in general [22]. Nonetheless, results using spaceborne

sensors have so far shown only moderate to poor predictive power,

even when using high resolution imagery [23], possibly due to low

spatial and radiometric resolutions. Furthermore, most sensors on

satellites are unable to capture fine-scale variation in biodiversity

[16], [12], [23], [24].

Airborne hyperspectral sensors enable mapping at the fine

scales desired by land managers [25], [26]. Hyperspectral data
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may provide information on how chemical and structural

properties of vascular plants vary within and across ecosystems

[27], [28] and technological improvements now allow them to be

used to monitor terrestrial ecosystem characteristics [29], [30].

Hyperspectral data allow individual tree species to be identified

from their signatures collected at the forest scale when using

airborne sensors [31], [32], [33]. The addition of co-registered

LiDAR data further improves performance by identifying intra

and inter-canopy shadows which alter species signatures [34],

[35]. [36] suggested that hyperspectral data reflects environmental

conditions acting upon plants, such as soil pH, water availability,

nitrogen availability and others, which are known to influence

species distributions and community composition.

Few maps of tree biodiversity are available for Africa [37], [38],

[39], [40], so our objective was to assess whether airborne

hyperspectral data could be used for this purpose, focusing on

canopy-tree biodiversity of a West African moist forest. We

estimated alpha-diversity (Shannon-Wiener Index; [41]) in 64

permanently-marked plots in Gola National Park, Sierra Leone,

which were also surveyed with a high-resolution airborne

spectometer. Among the wide range of modeling tools, we selected

Random Forests [42], a machine learning algorithm which

handles high dimensional input with ease and has been

demonstrated to function robustly [33], [36], [43]. In previous

studies using hyperspectral data, RF has been used by [33] to

discriminate tropical tree species and by [36] to analyze the species

richness of a temperate montane forest in Germany.

Materials and Methods

2.1 Study area and field data
The study area is located at the westernmost end of the West

African Upper Guinean Forest Belt, in Sierra Leone, covering the

central portion of the Gola Rainforest National Park (GRNP) and

some of the southern portion (Fig. 1), and included in an area

defined by UTM coordinates (WGS84, 29N) N307591, E858452

(northeast) and N253197, E807411(southwest). GRPN is collab-

oratively managed by the Royal Society for Protection of Birds,

the Conservation Society of Sierra Leone, and the Forestry

Division of the Government of Sierra Leone; they provided the

permits to collect the field data used in this study, and to fly over

the area during airborne data acquisition. Field study did not

involve endangered or protected species.

The region is characterized by lowland moist evergreen forests,

with some drier types in place, dominated by Fabaceae,

Euphorbiaceae and Sterculiaceae families [44]. The GRNP area

has been protected through conservation programs since 1989 but

commercial logging, most intensively in the southern block, was

carried out in 1963–1965 and 1975–1989. Recent land cover

mapping highlighted the importance of the GRNP in conserving

this forest from anthropogenic pressure in the surrounding areas

[45]. The climate is moist tropical, with annual rainfall around

2500–3000 mm, a dry season from November to April coincident

with leaf-off condition of some semi-deciduous tree species, and an

altitude of 70–410 m. Floristic information has been derived from

a field survey carried out in 2006–2007 [46]. During that survey

all trees with a Diameter at Breast Height (DBH) .30 cm were

recorded in circular plots sized 0.125 ha. We selected the plots

surveyed by an hyperspectral airborne campaign, excluding those

located less than 1 km from the park boundary and those affected

by cloud shadow in the hyperspectral data, retaining a total of 64

ground truth plots.

The biodiversity of a particular group of organisms in a location

can be quantified in terms of richness and evenness [47]. An

abundance-based measurement of plant diversity, like the

Shannon-Wiener Index, should reflect the structural variability

of a landscape much better than species richness, because it

captures differences in composition and dominance structure of a

given plant community [16]. We calculated the Shannon-Wiener

index for each plot, according to the formula:

H 0~
XR

i~1

pi ln pi

where pi is the proportion of individuals belonging to the ith

species in the plot data (R = total number of species).

2.2 Hyperspectral data
In March 2012 an airborne survey collected hyperspectral data

over parts of the Gola GRNP, using an AISA Eagle sensor with

FOV equal to 39.7u, set to record 244 bands with 2.3 nm spectral

resolution in the 400–1000 nm range and spatial resolution of 1 m

after radiometric correction and orthorectification (Fig. 2). Atmo-

spheric correction of the hyperspectral image strips was performed

using the Fast Line-of-Sight Atmospheric Analysis of Spectral

Hypercubes (FLAASH) algorithm [48]. Due to high noise levels,

all the bands out of the 450–900 nm range and four bands in the

759–766 nm range were removed, reducing the total number of

bands to 186. Minimum Noise Fraction (MNF) transformation

[49] was used to reduce noise further in the dataset. For each

image strip, 9 to 15 MNF components were selected by visual

screening and used to compute the inverse MNF and to transform

the whole set of bands back to the original data space.

For each of the 0.125-hectare permanent plots, we extracted

hyperspectral information from about 1250 pixels, and summarise

these data in three ways: (a) the minimum, maximum, mean, and

standard deviation of reflectances were calculated for the 186

hyperspectral bands remaining after data cleaning (n = 744; 186

bands 64 metrics); (b) first-order derivatives of the hyperspectral

reflectance curves can be useful for data analysis, as they allow

small variations of the spectral curve to be enhanced and

background noise to be suppressed [50], [51], so these were

generated by dividing the difference between successive reflectance

values by the wavelength interval, and then applying a seven-point

moving filter to smooth results [52], [53]; we calculated the

minimum, maximum, mean, and standard deviation of the

derivative values obtained for each plot (n = 716; 179 derivatives

6 four metrics); and (c) we calculated the Photochemical

Reflectance Index [54], the Red Edge Normalized Difference

Vegetation Index [55], the Atmospherically Resistant Vegetation

Index [56], the Vogelmann Red Edge Index [57], the Red Green

Ratio [58], the Simple Ratio [59], and the Anthocyanin

Reflectance Index [60]. We refer to these three datasets as (a)

reflectance-based metrics, (b) derivative-based metrics and (c)

vegetation indices.

2.3 Random Forests regression
We predicted the Shannon diversity index from spectral

information contained in the three alternative datasets using

Random Forests (RF), a machine learning algorithm employed in

many different application domains [61], [42]. RF is a tree-based

ensemble algorithm that generates hundreds or even thousands of

alternative models (hence, ‘forests’). In building a tree, instead of

using the best split among all variables, the best split among a

subset of randomly chosen variables is used (hence ‘Random’). To

Tropical Forest Biodiversity Mapping
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incorporate the results from the hundreds of models, RF regression

uses averaging. The importance of ‘‘features’’ (i.e. explanatory

variables) can be ranked in two ways. The first is the increase in

OOB-MSE if a particular feature is removed. The second is the

increase of purity among the splitting groups in the process of

building a decision tree if a particular feature is used. We chose to

use the first strategy to understand the relative importance of

different spectral regions in correlating with biodiversity.

RF was selected after careful consideration of its advantages and

shortcomings. An advantage of RF is that it only has two

parameters to tune - the number of random features for each split

(mtry), and the number of the trees/models to build (ntree) – and

having few parameters makes the result highly repeatable. Unlike

some other tools, there is no assumption on data distribution. The

embedded Out-of-Bag (OOB) strategy which separates one-third

of the samples aside for evaluation each time when a model is built

provides unbiased internal error estimation, and makes cross-

validation unnecessary [61] http://www.stat.berkeley.edu/

,breiman/RandomForests/cc_home.htm#ooberr). The OBB

strategy also makes feature (i.e. explanatory variable) ranking very

straightforward. In our data set, there are only 64 plots, which

represent a relatively small sample size considering the great

variety of tree species and the vast areal coverage of the study area.

Thus a tool using internal estimates is well-suited. However, RF

does have some well-recognised limitations. Given that it is a non-

linear statistical modelling approach based on empirical data,

models derived in one study region cannot be generalized to any

new data sets. Additionally, different airborne data acquisition

characteristics and preprocessing steps such as atmospheric and

radiometric corrections further complicates a direct reuse of

certain model. We chose RF after careful consideration, but do not

claim it is necessarily the best tool, nor has comparison been made

with other regression methods to show that RF provides the most

accurate results.

RF was implemented within the R statistics framework

(randomForest package; [62]) using procedures followed in numerous

other studies [63], [64]. [42] suggests mtry should be set at 1/3 of

the number of input features, while ntree should not normally

exceed 1000 [61]. We varied mtry but found 1/3 was a good

setting, and varied ntree between 100 and 1000 before settling on

200 after examining the goodness-of-fit statistics. RF regression

provides an estimate of the mean squared error of residuals, but

this is calculated from the OOB strategy so is different from the

MSE generated by least-squares regression. For this reason we call

it OOB-MSE. We calculated a pseudo-R2 which is equal to 1-

(OOB-MSE/% variability explained). Again, pseudo-R2 is indic-

ative, and cannot be compared directly with conventional R2.

Figure 1. Gola Rainforest National Park, the study area in Sierra Leone. The strips of hyperspectral data which have been collected over the
area are shown, together with the location of field plots overlapping the strips.
doi:10.1371/journal.pone.0097910.g001
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Results

3.1 Forest plot data
The 64 plots contained a total of 133 species. In the cumulated

sampled area (8.125 ha) the total number of recorded trees was

676. The 15 most common species (i.e. .10 individuals)

comprised .50% of individuals (Table 1), with Caesalpinioideae

being the most represented sub-family. The species-area curve

showed that the sampled area was big enough to capture most of

the large-tree diversity of the site [65] (Fig. 3). The Shannon-

Wiener index ranged between 0 and 2.63, with a mean value of

1.68 and a standard deviation of 0.48.

3.2 Regression results
RF indicate that the Shannon-Wiener index can be predicted to

a good level of accuracy using the plot-level statistics derived from

hyperspectral bands (Figure 4 and Table 2). Models fitted using

the reflectance-based metrics (i.e. calculated directly from the

hyperspectral reflectances) had pseudo-R2 = 84.9% and OOB-

RMSE = 0.30. Models fitted using derivative-based metrics had

lower explanatory power, with pseudo-R2 = 71.4% and OOB-

RMSE = 0.35. Vegetation indices were very poor predictors of

diversity, giving rise to negative pseudo-R2 that indicate an

inability of the models (on average) to explain any of the variability

in biodiversity among plots The mtry and ntree for the HS metrics

were set at 340 and 200, respectively. The mtry and ntree for the HS

1st derivatives were 280 and 200 respectively.

The rank importance of ‘‘features’’ (calculated from the

percentage increase in OOB-MSE when features are removed

one-by-one from the model) indicates that within-plot-variation in

hyperspectral reflectances are strongly correlated with the

biodiversity index. Fig. 5 shows the ranking of hyperspectral

reflectance-based metrics (maximum, minimum, mean, standard

deviation of band reflectance) and Fig. 6 for the same metrics

derived from the derivative-based dataset. When hyperspectral

band metrics were used, the most important inputs were standard

deviations from the green region, but contributions came from

across the spectrum and for other metrics. When the derivative-

based dataset was used, standard deviations from the near infrared

region provided by far the highest ranking inputs, possibly due to

the ability of the derivatives to suppress background signals that

are prevalent in this region. In both of these models, the most

important statistical metric was standard deviation, indicating that

within-plot spectral variation is most informative in explaining

diversity variation.

Discussion

The West African study is the latest in a series to shows that

airborne imaging spectroscopy can be effective at mapping tree

diversity, particularly when recorded at high resolution [26]. The

Random Forests algorithm found that within-plot variability in

various hues of green was closely related to biodiversity (pseudo-

R2 = 84.9%). Spectral reflectance vary greatly within individual

tree crowns, between tree crowns of the same species, and are

influenced by viewing geometry soil characteristics, forest vigor

and the presence of liana [31], [32], [66], [38], [67]. However,

these statistical analyses seem to have picked up the same signal as

the naked eye would – that species-rich plots have a greater

number of subtly different canopy colors than species-poor plots.

It is likely that the high resolution of our imagery (1 m pixel size

vs .5 m diameter for a typical tree crown) was important to

characterizing variability in spectral reflectances. In another study

using high resolution imagery, [25] related vascular plants species

Figure 2. A strip of hyperspectral data (in false-color composite
at 807.5 (R), 597.3 (G) and 467.3 (B) nm) showed as an example
of available imagery, and with overlapped field plots areas,
colored in yellow.
doi:10.1371/journal.pone.0097910.g002
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richness in lowland forest in Hawaii to hyperspectral data from

NASA’s Airborne Visible/Infrared Imaging Spectrometer (pixel

size of 3.6 m). They found that a regression model using derivative

reflectances in regions associated with upper-canopy pigments,

water and nitrogen content had a high goodness of fit (R2 = 0.85).

In contrast, [36] had less success with lower resolution imagery in

German montane forests. Using HyMap hyperspectral imaging

(VIS-SWIR with 7 m spatial resolution), they obtained a

maximum R2 of only 0.29 between species richness and

reflectances, even when full waveform lidar data were included

in the model. A better fit was obtained by the same sensors, this

Figure 3. Species-area curve obtained from field data, illustrating the increase in species numbers resulting from the increase in the
area of field data collection.
doi:10.1371/journal.pone.0097910.g003

Table 1. List of most common trees (by individuals’ number and % over all trees) found in the study area.

Species name # of trees % of trees Family name

Heritiera utilis 61 9.0 Malvaceae

Protomegabaria stapfiana 57 8.4 Phyllanthaceae

Cynometra leonensis 50 7.4 Caesalpinioideae

Brachystegia leonensis 28 4.1 Caesalpinioideae

Gilbertiodendron bilineatum 28 4.1 Caesalpinioideae

Stachyothyrsus stapfiana 24 3.6 Caesalpinioideae

Phyllocosmus africanus 20 3.0 Ixonanthaceae

Xylopia quintasii 18 2.7 Annonaceae

Parinari excelsa 18 2.7 Chrysobalanaceae

Calpocalyx brevibracteatus 16 2.4 Mimosoideae

Sacoglottis gabonensis 14 2.1 Humiriaceae

Octoknema borealis 13 1.9 Olacaceae

Uapaca guineensis 13 1.9 Euphorbiaceae

Berlinia confusa 10 1.5 Caesalpinioideae

Bussea occidentalis 10 1.5 Caesalpinioideae

Total 380 56.2

doi:10.1371/journal.pone.0097910.t001
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time at 5 m pixel size, when mapping Shannon-Wiener index

within a savanna ecosystem (R2 of 0.41; [9]).

Among the studies based on satellite data at lower spatial

resolution, one successful result has been obtained by [19] who

retrieved the Shannon index with a coefficient of determination of

0.61 in a temperate forest using ASTER data. Another study

directly estimating the Shannon-Wiener index in a tropical forest

was realized by [18] using the Hyperion sensor in Costa Rica with

30 m pixel size. Using wavelet decomposition followed by a

stepwise regression they found that the Shannon index could be

predicted with a R2 of 0.84; vegetation indices were not such good

predictors as wavelet features. The selected bands were those from

the shortwave infrared region and one from the visible region of

the spectra (621 nm). Our results are very similar to those obtained

by [18] with respect to the ecosystem under analysis, the ability to

retrieve the Shannon-Wiener index, and the poor results obtained

with vegetation indices.

Together, these satellite and airborne based results suggest that

spatial resolution is not the main key to successful mapping of

biodiversity, and additional studies targeting different ecosystems

are needed to clarify the relative importance of spatial and spectral

resolution.

Derivative analysis might not be optimal for our aims and data,

resulting in a lower R2 (Fig. 4; Table 2), similarly to what has been

found by [32] in a tropical tree classification study. A possible

explanation can be attributed to the fact that derivative is very

sensitive to noise in the original spectrum. The residual noise is

emphasized in the derivative spectra and this may vary according

to the pixel location on the tree crown. In addition, environmental

or stress factors such as moisture content and leaf age introduce

subtle variations in crown reflectance that are enhanced by

differentiation. Consequently, spectral variation within crowns can

be unnecessarily boosted in the derivative domain, interfering with

the identification of differences amongst crowns.

Species richness and Shannon-Wiener index are both widely

used as indices of diversity in the remote sensing literature, but we

argue that the abundance weighted index is more valuable from

an ecological perspective. [25] estimated species richness and

Shannon-Wiener index in lowland Hawaii from AVIRIS,

obtaining a better goodness-of-fit when using species richness.

Similarly, [36] found that species richness was the better of the two

response variables in terms of goodness-of-fit for German forests.

The reason we recommend using the Shannon-Wiener index is

that ecosystem processes, such as water balance and nutrient

cycles, depends primarily on the functional characteristics of the

most abundant species [68]. The Shannon-Wiener index is

weighted in favor of abundant-species, making it more useful for

relating spectral signals to local ecological processes. However, a

Figure 4. Scatterplots of the predicted versus the expected Shannon-Wiener index values, obtained by two models, on the left the
one based on hyperspectral reflectance band metrics, and on the right the model based on first-derivatives reflectance metrics.
doi:10.1371/journal.pone.0097910.g004

Table 2. Random Forests models results using the three input sets.

Random Forests Out-of-bag estimates

Shannon index

Hyperspectral band reflectance metrics pseudo-R2 = 84.91%, OOB-RMSE = 0.30

First derivatives reflectance metrics pseudo-R2 = 71.42%, OOB-RMSE = 0.35

Vegetation indices pseudo-R2: -15.97%, OOB-RMSE = 0.51

doi:10.1371/journal.pone.0097910.t002

Tropical Forest Biodiversity Mapping

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e97910



key open question in biodiversity studies is whether information on

canopy biodiversity can be a surrogate for sub-canopy biodiversity;

with this respect is of interest the [34] research, which estimated

the diversity of foliar chemicals within the canopy as a whole using

hyperspectral data, and related this to faunal and floral

distributions.

There is currently great interest in using airborne remote

sensing to go one step further, and map individual canopy species

in tropical forests [26]. Biophysical and functional attributes of

forest canopies that can be used to distinguish among individual

species [69], and help in understanding the relationships among

spectral response, foliar biochemical components and canopy

geometry. For instance, [20] used spaceborne hyperspectral data

to map the spread of a nitrogen-fixing invasive trees in Hawaii,

because the nitrogen-fixer was spectrally different from non-fixing

trees. They also found that phenology is a key to distinguish

species, and suggested the need for intense multi-temporal

monitoring to maximize species separability. [70] have also

discussed the role of hyperspectral remote sensing in tracking

plant invasions, highlighting that these data can inform predictive

models of invasions and species habitat suitability analysis. Using

AVIRIS data from Hawaii, [71] found that differences in canopy

spectral signatures were linked to differences measured in leaf

pigment (chlorophyll, carotenoids), nutrient (N,P), and structural

(specific leaf area, SLA) properties, as well as to canopy leaf area

index. In a study addressing how leaf spectroscopy scales to

canopy level reflectances, [72] used a leaf optical radiative transfer

model (PROSPECT-5) to explore the relationship linking classi-

fication accuracy at the leaf level to canopy biodiversity, and found

that it showed an asymptotic trend which suggests the uniqueness

of spectral signature for a significant proportion of the 188 studied

tropical species. Detecting individual species from aircraft is more

technically demanding than the analyses presented here, but the

approaches hold great promise and may eventually dispense off

the need for diversity-index mapping.

Conclusions

The present research demonstrates the ability of an airborne

hyperspectral sensor to predict the canopy Shannon-Wiener index

in African tropical forests, and is among those pioneer valuable

efforts that could open the way to improved biodiversity

monitoring. Airborne hyperspectral sensors represent today an

important and cost-effective tool to target areas with high

biodiversity, high vulnerability to change (e.g., occurring on

deforestation fronts) and/or with tree species that are of particular

importance [66].

However, data acquisition in remote and biodiversity rich study

areas is still exceptionally challenging. Problems with data and

ground truth gathering as those we faced, such as the time lag

between field data collection and the airborne survey, or the

difficulties in obtaining accurate geo-referencing of field plots,

might affected the results and have to be carefully considered

when planning hyperspectral-based biodiversity monitoring.

Our experience shows that the use of standard devation of

reflectance provides satisfactory results, in agreement with the

Figure 5. Ranking of hyperspectral metrics, a way to identify the regions most contributing to model success, with maximum,
minimum, mean, standard deviation of band reflectance in the four different frames of the figure. The y-axis represents the percentage
increase in OOB- MSE and the x-axis is the band region (in nm).
doi:10.1371/journal.pone.0097910.g005
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spectral variation hypothesis. We find RF an effective regression

tool which is fairly easy to use, and the OOB feature ranking a

valuable source of info pertaining to the feature importance.

Overall, considering other available studies and results, there is

a clear need to further increase research on the use of airborne and

spaceborne hyperspectral imagery in different ecosystems, to

enhance our understanding of the optimal techniques to map the

distribution of life on earth. This should be accompanied by

quality biodiversity field information collected with proper

sampling strategies. For future studies planning, the addition of

SWIR spectral region should be considered, as well as of airborne

laser scanner (ALS) data, recently reported as valuable source of

information for biodiversity [73], [35], [74].
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