Text S1. Supporting algorithms.

1. Markov chain Monte Carlo (MCMC) algorithm

Markov chain Monte Carlo (MCMC) Metropolis-Hastings algorithm proceeds as follows:

M1. Initialize θ_i i = 0.

M2. Propose a candidate value $\theta^* \sim q(\theta|\theta_i)$ where q is a proposal distribution.

M3. Set $\theta_{i+1} = \theta^*$ with following probability α .

$$\alpha = min \left\{ 1, \frac{f(D_{obs}/\theta^*, M)\pi(\theta^*/M)q(\theta_i/\theta^*)}{f(D_{obs}/\theta_i, M)\pi(\theta_i/M)q(\theta^*/\theta_i)} \right\}$$

Otherwise set $\theta_{i+1} = \theta_i$.

M4. If i < Repeat number, increment i = i + 1 and go to M2.

MCMC algorithm is designed as the stationary distribution is consistent with the posterior distribution $\pi(\theta|D_{obs},M)$.

2. ABC-MCMC algorithm

ABC-MCMC algorithm proceeds as follows:

AM1. Initialize θ_i , $D_{sim|\theta_i}$ i = 0.

AM2. Propose a candidate value $\theta^* \sim q(\theta|\theta_i)$ where q is a proposal distribution.

AM3. Simulate $D_{sim|\theta^*} \sim f(D_{sim}|\theta^*, M)$.

AM4. Set $\theta_{i+1} = \theta^*$ and $D_{sim|\theta_{i+1}} = D_{sim|\theta^*}$ with following probability α .

$$\alpha = \min \left\{ 1, \frac{f_w \left(D_{obs} / D_{sim|\theta^*}, \theta^*, M \right) \pi \left(\theta^* / M \right) q \left(\theta_i / \theta^* \right)}{f_w \left(D_{obs} / D_{sim|\theta_i}, \theta_i, M \right) \pi \left(\theta_i / M \right) q \left(\theta^* / \theta_i \right)} \right\}$$

Otherwise set $\theta_{i+1} = \theta_i$ and $D_{sim|\theta_{i+1}} = D_{sim|\theta_i}$.

AM5. If i < Repeat number, increment i = i + 1 and go to AM2.

ABC-MCMC algorithm is designed as the stationary distribution is consistent with the augmented posterior distribution $\pi_{ABC}(\theta, D_{sim}|D_{obs}, M)$.

3. ABC rejection sampler algorithm

ABC rejection sampler algorithm with use of the indicator function as the weighting function $(f_w(D_{obs}|D_{sim},\theta,M) \propto I(d(D_{obs},D_{sim}|\theta) \leq \varepsilon,M))$ proceeds as follows:

AR1. Sample $\theta^* \sim \pi(\theta|M)$.

AR2. Simulate $D_{sim|\theta^*} \sim f(D_{sim}|\theta^*, M)$.

AR3. If $d(D_{obs}, D_{sim|\theta^*}) \le \varepsilon$, accept θ^* , otherwise reject.

AR4. Go to AR1.

The samples obtained by ABC rejection sampler follow the augmented posterior distribution $\pi_{ABC}(\theta, D_{sim}|D_{obs}, M)$ with setting $f_w(D_{obs}|D_{sim}, \theta, M) \propto I(d(D_{obs}, D_{sim}|\theta) \leq \varepsilon, M)$.