Supplemental Material to:

Gamze Kuser-Abali, Ahmet Alptekin, and Bekir Cinar

Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression

Epigenetics 2014; 9(4) http://dx.doi.org/10.4161/epi.27957 http://www.landesbioscience.com/journals/epigenetics/article/27957

SUPPLEMENTAL DATA

Overexpression of MYC and EZH2 Cooperates to Epigenetically Silence MST1 Expression

Gamze Kuser-Abali¹, Ahmet Alptekin¹, and Bekir Cinar^{1,2,*}

¹Department of Medicine-Hematology and Oncology and Biomedical Sciences, Cancer Biology and Uro-Oncology Programs, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048

²Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095

Primer Name	Primer Sequence (5'-3')	Application	
MST1	Fw: ACAAATCCTCCTCCCACATTCCG Rv: CACTCCTGACAAATGGGTGCTG	qRT-PCR	
EZH2	Fw: TGCACATCCTGACTTCTGTGAGC Rv: AGTCACTGGTCACCGAACACTC	qRT-PCR	
MYC	Fw: TCCCTCCACTCGGAAGGAC Rv: CTGGTGCATTTTCGGTTGTTG	qRT-PCR	
GAPDH	Fw: CTGGGCTACACTGAGCACC Rv: AAGTGGTCGTTGAGGGCAATG	qRT-PCR	
pMST1-Luc2	Fw: AGAGGTACCTGCCATTTTCCTAATACTTACTGATG Rv: AGAAAGCTTCTCACTGCTCCATCCTCCC	Cloning	
MST1-ChIP	Fw:TTTGTGGGGTGGGTTTAGGAGGTTTGT Rv: ACCAATAACCCCTCACCAACAACAA	ChIP-PCR	
miR-26a-RT	ACCACACGTCATGTGACTGCCTATCCT	Reverse Transcription	
miR-26a	Fw: AGCGTTGTTTCAAGTAATCCAGG Rv: ATCAACCACACGTCATGTGACT	qRT-PCR	
miR-26b-RT	CTTAGCGTTGCGATCTTCTCAACCTATCCT	Reverse Transcription	
miR-26b	Fw: GGCCGCTTCAAGTAATTCAGG Rv: TGCTTAGCGTTGCGATCTTCTC	qRT-PCR	
U6-RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAA ATATG	Reverse Transcription	
U6	Fw: GCGCGTGAAGCGTTC Rv: GTGCAGGGTCCGAGGT	qRT-PCR	

Table S1. Primers used in this study were listed.

Target	Cat. No.	Company	Dilution- Application	
MST1	3682	Cell Signaling (Danvers, MA)	1:1000 (WB) 1:50 (IHC)	
EZH2	612666	BD Biosciences (San Jose, CA)	1:5000 (WB) 1:100 (IHC)	
мус	sc-40	Santa Cruz Biotechnology (Santa Cruz, CA)	1:1000 (WB)	
H3K27me3	07-449	Millipore (Billerica, MA)	1:1000 (WB)	
Histone H3	06-755	Millipore (Billerica, MA)	1:1000 (WB)	
β-Actin	A2228	Sigma (St Louis, MO)	1:5000 (WB)	
Anti-mouse IgG-HRP	7076	Cell Signaling (Danvers, MA)	1:2000 (WB)	
Anti-rabbit IgG-HRP	7074	Cell Signaling (Danvers, MA)	1:2000 (WB)	
Alexa Fluor 488 conjugated goat anti-rabbit IgG	A-11008	Life Technologies (Grand Island, NY)	1:1000 (IHC)	
Alexa Fluor 568 conjugated goat anti-mouse IgG	A-21124	Life Technologies (Grand Island, NY)	1:1000 (IHC)	

WB: Western Blot; IHC: Immunohistochemistry

Table S2. Antibodies used in this study were listed.

Analysis Type of Tumor	Outlier		1 1	COPA	Dataset name in Oncomine	Outlier analysis	Gene			
Bladder Cancer (BC)	4	5	1	score	(number of samples)	threshold	rank			
Brain and CNS Cancer (B/CC)	8 3		-2.498		Outlier 25 th %	2%				
Breast Cancer (BrC)	19	24	1	-4.778	LaTulippe Prostate (35)	Outlier 10 th %	4%			
Cervical Cancer (CC)	2	3		-4.418		Outlier 95 th %	2%			
Colorectal Cancer (CRC)	14	12		2 105	Liu Prostate (57)	Outlier 10the/	20/			
Esophageal Cancer (EC)	2	4		-3.125		Outlier 10.1%	3%			
Gastric Cancer (GC)	5	3		-1.555	Luo Prostate (35)	Outlier 25 th %	6%			
Head and Neck Cancer (HNC)	3	8		-3.397	Luo Prostate 2 (30)	Outlier 25th%	8%			
Kidney Cancer (KC)	4	6	1	-6.333	Wallace Prostate (89)	Outlier 5th %	4%			
Leukemia (Leu)	11	16		-5.590	Arreduuani Prostate (21)	Outlier 5th %	3%			
Liver Cancer (LC)	3			-1.997		Outlier 25 th %	3%			
Lung Cancer (LuC)	7	9		0.000	Deat Deastate Q (00)	Outline Of Dor	00/			
Lymphoma (LyF)	7	8		-2.223	Best Prostate 2 (20)	Outlier 25"%	6%			
Melanoma (MLN)	4	6		-11.268	Varambally Prostate (19)	Outlier 5 th %	5%			
Myeloma (MyL)	2	4		-6.339		Outlier 10 th %	8%			
Other Cancer (OTC)	6	11	1	-1.775	Chandran Prostate (31)	Outlier 25 th %	7%			
Ovarian Cancer (OVC)	6	3		-2.691	Vanaja Prostate (40)	Outlier 5 th %	8%			
Pancreatic Cancer (PC)		7	-	5.535		Outlier 90 th %	2%			
Prostate Cancer (PCa)	3	11		7.000	Vanaja Prostate (40)	O util oction				
Sarcoma (SaC)	4	9	1	7.982		Outlier 95 th %	3%			
Significant Unique Analysis	117	136		2.688	Tomlins Prostate (101)	Outlier 90 th %	9%			
Total Unique Analysis	918		1	5.166	Varambally Prostate (19)	Outlier 90 th %	7%			
Gene rank 1510 1051 Threshold: $p \le 0.01$; Fold Change ≥ 2 ; Gene rank $\le 10\%$										

Figure S1. Cancer Outlier Profile Analysis (COPA) of publicly available microarray data sets in *Oncomine* for MST1 expression in 20 different tumor types including prostate cancer.

Figure S2. RT-qPCR analysis of MST1, MYC and EZH2 mRNA expression in frozen normal and cancerous prostate tissue samples. GAPDH mRNA was used as an internal control in PCR reactions. NP: Normal prostate (n=4), PC: Prostate cancer (n=8).

Figure S3. A) Methylation sensitive PCR (MSP) analysis of bisulfite-treated genomic DNA from fresh-frozen cancerous prostate tissue samples for MST1 promoter methylation. **B)** MSP analysis of bisulfite-treated genomic DNA from formalin-fixed and paraffin-embedded (FFPE) cancerous and non-cancerous prostate tissue samples. The procedures for MSP analysis were described in Materials and Methods. BPH: Benign prostate hyperplasia, N: normal (noncancerous) prostate, #: Blindly renamed patient ID number, M: Methylation, U: Unmethylation.

Figure S4. A) Analysis of MST1, EZH2, and β -Actin protein by western blot in C4-2 cells treated with increasing concentrations (0, 0.15, 0.5, and 2 μ M) of GSK126 for 72h in serum-fed conditions. MST1 protein levels were normalized to β -Actin (loading control) and the data presented as fold (f) change relative to DMSO control. **B)** Co-IF staining of EZH2 and MST1 protein levels in prostate tumor tissue sections. Alexa Fluor 488 stained MST1 (green), Alexa Fluor 568 stained EZH2 (red), and DAPI stained cell nuclei (blue). Magnification is 20x. Micrographs are representative of multiple images from two independent experiments.

Figure S5. A) Analysis of Mst1, EZH2 and MYC mRNA levels by semi-quantitative RT-PCR in C4-2 cells that were treated with increasing concentrations (0, 10, 20, 30, 40, or 60 μ M) of 10058-F4 for 3 days in serum-fed conditions. GAPDH mRNA expression was used as an internal control. **E)** Semi-quantitative RT-PCR analysis of miR-26a and miR-26b expression levels in C4-2 cells treated either with DMSO, 60 μ M 10058-F4 or 500 nM JQ1 for 48h. U6 expression was used as an internal control. **C-D)** QPCR analysis of MYC and EZH2 mRNA levels in p69 cells transiently transfected with mock (vector) or MYC expression construct. **E)** MSP analysis of MST1 promoter in C4-2 cells after treatment with DMSO (vehicle) or 5 μ M DZNep for 72h. The number below the image represents the percent ratio of methylated (m) to unmethylated (u) DNA intensity quantified by *ImageJ* software. Data are (±S.E.) from multiple experiments