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SUMMARY

ATR controls chromosome integrity and chromatin
dynamics. We have previously shown that yeast
Mec1/ATR promotes chromatin detachment from
the nuclear envelope to counteract aberrant topolog-
ical transitions during DNA replication. Here, we
provide evidence that ATR activity at the nuclear
envelope responds to mechanical stress. Human
ATR associates with the nuclear envelope during S
phase and prophase, and both osmotic stress and
mechanical stretching relocalize ATR to nuclear
membranes throughout the cell cycle. The ATR-
mediated mechanical response occurs within the
range of physiological forces, is reversible, and is in-
dependent of DNA damage signaling. ATR-defective
cells exhibit aberrant chromatin condensation and
nuclear envelope breakdown. We propose that
mechanical forces derived from chromosome dy-
namics and torsional stress on nuclear membranes
activate ATR to modulate nuclear envelope plasticity
and chromatin association to the nuclear envelope,
thus enabling cells to copewith themechanical strain
imposed by these molecular processes.

INTRODUCTION

ATR is an essential PI3-kinase (Brown and Baltimore, 2003).

Mutations in the ATR gene cause the Seckel syndrome

(O’Driscoll et al., 2003), a severe disease, characterized by

mental retardation, dwarfism, and defects in the DNA damage

response. ATR controls several (patho)-physiologically relevant

pathways (Jackson and Bartek, 2009; Matsuoka et al., 2007)

and protects genome integrity by counteracting replication fork

collapse (Sogo et al., 2002), fragile site expression (Casper
et al., 2002; Cha and Kleckner, 2002), aberrant chromatin

condensation events (Cha and Kleckner, 2002; Nghiem et al.,

2001), and nuclear fragmentation (Alderton et al., 2004).

Following DNA damage, replication protein A (RPA)-coated

single-stranded DNA (ssDNA) nucleofilaments activate ATR

(Zou and Elledge, 2003). Chromatin replication, during S phase,

and chromatin condensation, during prophase, generate

torsional stress at the level of the DNA fiber and DNA topoiso-

merases assist the replication and condensation processes

to resolve the topological complexity. Unsolved topological

constrains lead to highly recombinogenic and aberrant DNA

transitions, DNA entangling, and breakage. In mammals, lamin-

associated chromatin imposes topological impediments during

chromatin replication and condensation (Bermejo et al.,

2012a). The nuclear envelope (NE) is connected with the cyto-

skeleton (Martins et al., 2012) and is a hub for heterochromatin

and late replicating chromosomal domains (Comings, 1980;

Dimitrova and Gilbert, 1999; Mekhail and Moazed, 2010; Sheve-

lyov and Nurminsky, 2012; Towbin et al., 2009). The mammalian

NE has two components: the solid-elastic lamina and fluid-like

membranes. The inner nucleus behaves like a compressible

gel (Rowat et al., 2006) and the nucleoskeleton is 5- to 10-fold

stiffer than cytoskeleton (Simon and Wilson, 2011). Being

deformable, the NE is an ideal elastic structure for adsorbing

and/or transducing mechanical stimuli arising inside or outside

the nucleus. Chromatin dynamics generates mechanical forces

that can be transmitted to the NE through the lamin-associated

chromatin domains.

In yeast, when replication forks approach chromatin domains

that are connected to the NE, the Mec1/ATR pathway regulates

key nucleoporins to detach these chromatin regions from theNE,

thus facilitating fork progression (Bermejo et al., 2011). This

event prevents aberrant topological transitions that would other-

wise lead to forks reversal (Sogo et al., 2002) and genome rear-

rangements (Bermejo et al., 2012b). However, it remained

unclear how ATR senses that chromatin must be detached

from the NE when forks are approaching. Moreover, does ATR
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play a similar role in prophase when condensation engages

chromatin domains associated to the NE? Intriguingly, it has

been shown that ATR contains many HEAT repeats (Perry and

Kleckner, 2003) that can behave as elastic connectors (Grinthal

et al., 2010), suggesting that ATR might be influenced by

mechanical forces.

We therefore investigated whether ATR responds to the

mechanical stimuli deriving from chromosomal dynamics. We

found that a fraction of human and mouse ATR localizes at the

NE during S phase, particularly under conditions of enhanced

replication stress, and in prophase of unperturbed cell cycles.

Osmotic stress or mechanical stimulation of the plasma mem-

brane cause relocalization of ATR to the inner and outer nuclear

membranes, independently of the cell-cycle stage and of RPA or

DNA damage. Thus, ATR responds to mechanical forces at the

NE. Our observations suggest that ATR mediates a mechanical

response to membrane stress that could be caused by chro-

matin dynamics and is important for genome integrity.

RESULTS

A Fraction of ATR Localizes at the NE
DNA torsional stress generates mechanical strain and arises

during chromatin condensation, when the DNA packaging rea-

ches the maximal complexity and, transiently, during S phase

(Wang, 2002). Based on our previous findings (Bermejo et al.,

2011), we reasoned that lamin-associated chromatin might

mediate the transfer of mechanical forces resulting from DNA

torsional stress to the NE. Given the data on ATR discussed

above from our laboratories and others’, we tested whether

ATR localizes at the NE. We examined ATR localization by indi-

rect immunofluorescence (IF), using an anti-ATR antibody (Ab),

the specificity of which was validated in HeLa cells depleted

for ATR (Figure S1A available online) and in ATR-defective

human Seckel fibroblasts (Figure S1B). In asynchronous HeLa

cells, ATR localized mostly in the nucleus in interphase and

S phase cells (Figure 1A). In prophase, part of ATR exhibited a

perinuclear distribution, which was lost later in mitosis, following

NE breakdown (NEBD) (Figure 1A). Using structured illumination

super resolution microscopy (SR-SIM), we analyzed ATR and

Nup153 colocalization in prophase cells. Both proteins localized

at the NE (Figure 1B), exhibiting 70% colocalization. Consis-

tently, several nucleoporins, including Nup153, are targeted by

ATR/Chk1 (Blasius et al., 2011; Matsuoka et al., 2007). Notably,

ATR was prominently enriched at NE invaginations (Figure S1C),

which often mediate the mechanical attachment of nucleoli and

spindles (Beaudouin et al., 2002; Bourgeois et al., 1979). The

observations described above were confirmed in primary human

IMR90 and murine NIH 3T3 fibroblasts (Figure S1C). In leptomy-

cin B (a nuclear export inhibitor; Kudo et al., 1998)-treated

prophase cells, ATR intracellular distribution did not change (Fig-

ure S1D), thus arguing against a contribution of nuclear export

to ATR localization. Cellular distribution of ATR was further

analyzed by electron microscopy (EM). Gold ATR immunostain-

ing revealed a nuclear and nonnuclear distribution of ATR parti-

cles (Figure 1C). A fraction of these particles localized at the NE,

particularly in prophase. Indeed, whereas in interphase, among

the ATR particles visible in the nucleus, 90.5% ± 3% were in
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the nucleoplasm and 9.5% ± 3% were at the NE, in prophase

cells, 78.4% ± 3.3% were in the nucleoplasm and 21.6% ±

3.4% were at the NE.

Because ATR and Chk1 have been found associated with cen-

trosomes (Krämer et al., 2004; Zhang et al., 2007a), we costained

prophase cells with Abs against ATR and a-tubulin (Figure 2A).

The ATR fraction associated with centrosomes was lower

compared to the one bound to the NE and partially overlapped

in places in which centrosomes contact NE. Colcemid (a micro-

tubule-depolymerizing drug) treatment, did not affect ATR-

NE association (Figure 2A). Hence, the NE-bound ATR in

prophase unlikely depends on centrosomes and microtubule

polymerization.

Next, we examined whether the NE distribution of ATR de-

pended on its kinase activity and whether other checkpoint fac-

tors exhibited a similar localization. We did not observe changes

in the NE distribution of ATR following treatment with an ATR in-

hibitor (ATRi) (Toledo et al., 2011) (Figure 2B). We also found that

a fraction of ATR-interacting protein (ATRIP) was localized at the

NE along with Nup153 (Figure 2C). Under unperturbed condi-

tions, Chk1 is phosphorylated at serine 345 during mitosis, and

this event is essential for viability (Wilsker et al., 2008). We found

a prophase-specific NE localization of p-Chk1 that was inhibited

by ATRi treatment (Figure 2D). The specificity of the anti-

phospho-Ser 345-Chk1 Ab was confirmed in HU-treated cells

(Figure S2). Hence, fractions of ATR, ATRIP, and p-Chk1 localize

at the NE during the cell cycle, under physiological conditions;

ATR association with the NE does not depend on its kinase

activity. We also found that ATR and p-Chk1 distributed around

the NE following aphidicoline- (Figure 2E) and hydroxyurea- (HU)

(data not shown) induced replication stress. Altogether, these re-

sults are consistent with the initial hypothesis that topological

stress accumulating during chromatin condensation in prophase

and during chromatin replication following replication stress

evokes a response at the NE that leads to ATR recruitment and

activation.

Experimentally Induced Mechanical Stress Triggers the
NE ATR Response Independent of DNA Damage
To more specifically address whether the NE ATR response is

triggered by the NE undergoing mechanical stress, we adopted

a variety of cell manipulation assays that are routinely used

to induce mechanical stress at cell membranes, including

osmotic stress, patch-clamp-induced cell stretching, and cell

compression.

Osmotic Stress Leads to ATR Relocalization at the NE
and Chk1 Activation
We first analyzed ATR distribution in response to osmotic stress,

a potent inducer of mechanotransduction at cell membranes

(Martins et al., 2012). Under hyperosmotic conditions, the cell

and the nucleus shrink, causing NE ruffling and chromatin

condensation (Martins et al., 2012). Hypotonic stress causes

cell swelling and induces membrane tension but also alters the

chromatin structure, apparently without causing DNA breaks

(Bakkenist and Kastan, 2003).

Hypertonic and hypotonic conditions caused Chk1 phos-

phorylation in an ATR-dependent manner (Figure 3A). By IF,
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Figure 1. A Fraction of ATR Localizes at the NE during the Cell Cycle

(A) Confocal images of cells stained with anti-ATR Ab (green), DAPI (blue), EdU (red), or p-H3 (red). The graph shows the percent fluorescence intensity in the

cytoplasm (C), nucleus (N), and nuclear envelope (NE) on a set of cells (n = 15).

(B) Superresolution image of a prophase cell stained with anti-ATR (green) and -NUP153 (red) Abs. A magnification is shown.

(C) Left: cryosection-based immuno-EM of an interphase cell stained with gold-tagged ATR Ab. A magnification of the selected area one (rectangle) highlights

sparse ATR staining at the NE. Right: correlative light EM images of a prophase cell stained with gold-tagged ATR Ab. A magnification of the selected area two

(rectangle) highlights the prominent localization of ATR at the NE. The prophase cell used to perform immuno-CLEM is shown in the lower panel, stained with anti-

ATR (green) Ab.

See also Figure S1.
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Figure 2. Checkpoint Proteins Localizing at

the NE

(A) Confocal images of cells in prophase stained

with anti-ATR, -a-tubulin Abs, and DAPI ± colce-

mid (100 nM; 2 hr).

(B) Confocal images of prophase cell stained with

DAPI and anti-ATR, -p-histone H3 (S10) Abs ±

ATRi (2 mM; 2 hr). The graphs show the percent

fluorescence intensity on a set of cells (n = 10).

(C) Prophase cell stained with anti-ATRIP,

-NUP153, -p-histone H3 (S10) Abs, and DAPI. A

magnification of the dotted merged area is shown.

(D) Confocal images of NIH3T3 prophase cells

stained with DAPI and anti-p-Chk1 (S345) ± ATRi

(3 ± mM; 1 hr).

(E) HeLa cells were treated with aphidicholine

(3 mM; 16 hr) and stained with anti-ATR, -p-Chk1

Abs, and DAPI.

See also Figure S2.
we then compared the ATR and chromatin cellular distribution

in cells growing under normal conditions or treated with sorbitol

(Figure 3B). Compared to untreated conditions, hyperosmotic

stress caused a redistribution of ATR at the NE that did

not correlate with changes in chromatin localization (Fig-

ure S3A). We observed ATR redistribution at the NE in

response to sorbitol treatment in U2OS and IMR90 cells as

well (Figure S3B). By time-lapse analysis in HeLa cells, we

found that GFP-ATR relocalized on the NE within 30 seconds

(s) following hypertonic stress (data not shown). By EM, we

further investigated ATR association to the NE in cells treated

with sorbitol. Whereas in isotonic conditions ATR particles

accumulated mostly within the karyoplasm, in response to hy-

pertonic stress, a significant fraction of ATR particles accumu-

lated at the NE (Figure 3C). ATR nanogold particles localize at

both the inner and the outer membranes. ATRIP and p-Chk1

also localized, in part, at the NE in response to sorbitol treat-

ment (Figures 3D and S3C) in an ATR-dependent manner (Fig-

ure 3D). Hence, the NE is a site for ATR activation, following hy-

perosmotic stress. We obtained analogous results in different

cell types, both cancer cell lines and normal diploid cells, and
636 Cell 158, 633–646, July 31, 2014 ª2014 The Authors
using other hyperosmotic conditions

(0.4 M NaCl) (Figures S3B and S3D).

Hypotonic stress relocalized ATR at

certain regions on the NE and in the

nucleoli (visualized by anti-TPR Ab and

by RFP-Nucleophosmin, respectively)

(Figure 3E). Because mechanical signals

at the cytoplasmic level can also be expe-

rienced in the nucleolus (Hu et al., 2005;

Wang et al., 2009), and the nucleolus in-

teracts with the NE (Bourgeois et al.,

1979), ATR relocation at the nucleolus in

response to hypotonic conditions likely

reflects a response to mechanical forces,

perhaps mediated by the NE and cyto-

skeleton (Hu et al., 2005; Maniotis et al.,

1997). Given that ATR responds to DNA
damage, we also determined whether hypertonic conditions

induced DNA damage. We did not observe accumulation of

gH2AX signals in sorbitol-treated cells, compared to untreated

conditions (Figure S3D). However, gH2AX signals increased in

cells treated with high NaCl doses (Figure S3D), consistent

with previous findings showing that high NaCl causes DNA dam-

age (Kültz and Chakravarty, 2001). Leptomycin-B treatment of

cells exposed to hyperosmotic stress did not influence ATR

localization at the NE (Figure S3E).

ATR activation by DNA damage is influenced by RPA-ssDNA

nucleofilaments (Zou and Elledge, 2003). We compared ATR

and RPA localization, in cells treated with or without sorbitol.

RPA32 and ATR exhibited intranuclear staining (Figure 4A).

Certain cells undergoing DNA replication (visualized by EdU) ex-

hibited a perinuclear staining of RPA32 (Dimitrova et al., 1999;

Vassin et al., 2009), but not of ATR. In sorbitol-treated cells,

whereas ATR relocalized at the NE, RPA32 remained intranu-

clear. A small subset of Sphasecells showedperinuclear staining

of RPA32 (Figure S4A). To firmly address whether the NE translo-

cation of ATR under hypertonic stress was RPA independent, we

examined ATR and p-Chk1 localization in RPA70-depleted cells



(Figures 4B and 4C). Although RPA70 depletion affected Chk1

phosphorylation in response to HU treatment (data not shown;

(Zou and Elledge, 2003), under hyperosmotic stress it neither

influencedChk1phosphorylation (data not shown) nor influenced

ATR and p-Chk1 levels at the NE (Figures 4B and 4C). Analo-

gously, Rad17 and TopBP1, which have also been implicated in

ATR activation in response to DNA damage (Duursma et al.,

2013; Wang et al., 2006), were dispensable for ATR and p-Chk1

localization to the NE, in response to hyperosmotic stress (Fig-

ures S4B–S4D; data not shown). Hence, hyperosmotic stress-

induced ATR relocalization and activation on the NE is RPA,

Rad17, Tobp1, and DNA damage independent.

Whole-Cell Mechanostimulation Targets ATR to the NE
We then used an alternative method to inducemechanical stimu-

lation at cell membranes. In this case, a patch-clamp-automa-

tized platform was employed to stretch the cell using two glass

pipettes placed on the plasma membrane at opposite poles

in cell-attached configuration (Figure 5A). We reasoned that

plasma membrane stretching propagates the mechanical stimu-

lation to the NE promoting structural rearrangements within the

nucleus (Wang et al., 2009). By moving the pipettes apart, we

induced in HeLa cells a mechanical stretch of the plasma mem-

brane and followed the distribution of GFP-ATR (Figure 5A;Movie

S1). ATR rapidly redistributed at perinuclear regions overlapping

with the lamin A signal. ATR perinuclear localization initiated at

the focal points of the mechanical tension and progressively

distributed along adjacent NE areas. We observed an accum-

ulation of GFP-ATR in the nucleolus as well (Figure 5A). We

addressed whether the pipette-mediated cell deformation

caused chromatin condensation as in the case of nuclear defor-

mation (Shivashankar, 2011) (Figure 5B). We will refer to this

phenomenon as force-induced chromatin compaction, to distin-

guish it from the chromatin condensation process taking place

in prophase. Concomitantly with the accumulation of GFP-ATR

in thenucleolus, 30safter pipettemechanostimulation, chromatin

compactionwas evident, as shownby them-cherryH2Bdistribu-

tion. Subsequently, GFP-ATR localizes at the nuclear periphery.

We consistently observed that mechano-induced GFP-ATR

redistribution at the nucleolus and/or at the NE paralleled chro-

matincompactionand that theassociationofATRto thenucleolus

anticipated theATR localizationat theNE (data not shown). Again,

by comparing the distribution of ATR and chromatin following cell

stretching,weobservedno spatial correlationbetweenchromatin

movement and ATR relocalization (Figure 5B). Mechanical forces

can be transferred by transmembrane receptors that convert

mechanical stimuli into biochemical signals to modulate various

intracellular functions (Mammoto et al., 2012). In particular, cal-

cium ions are the most rapid mediators of mechanical stimuli.

However, in the case of ATR, extra/intracellular calcium chelation

using BAPTA did not affect GFP-ATR cellular redistribution

following mechanical stress (data not shown). Mechanostimula-

tion by pipettes did not cause accumulation of DNA damage as

assessed by examining g-H2AX foci (Figure S5A).

The procedure described above has some limitations because

it is based on glass pipette-attached cell stretching and does not

allow us to study the recovery from the mechanostimulation.

Therefore, to determine whether the mechanical forces inducing
ATR redistribution are within the physiological range of forces

experienced by cells in soft tissues and whether the ATR

mechanical response is reversible, we used the compressive-

load system (CLS) (to exert forces in the approximate range of

1 to 1,000 nN (Figure 5C). Using CLS, which is based on weights

that impose deformations on cells by axial compression, it is

possible to approximately estimate the magnitude of the forces

applied to induce the ATR response and to study the recovery

from compression, after unloading the weights. When we

applied CLS on HeLa cells cotransfected with GFP-ATR and

m-cherry H2B (Figure 5C), GFP-ATR redistributed at perinuclear

regions and in the nucleolus. The ATR localization in the nucle-

olus anticipated the perinuclear redistribution of ATR. Approxi-

mately 15–30 nN forces were needed to visualize ATR relocation.

When we unloaded the weights, both the nucleolus and the

nuclear envelope rapidly lost the GFP-ATR signal, and ATR

assumed the typical distribution of unstressed cells (Figure S5B).

Recovery of ATR distribution paralleled chromatin decompac-

tion (Figure S5B). Hence, ATR responds to mechanical stimula-

tion of the plasmamembrane and to cell compression. Following

mechanical stress, the ATR redistribution to the nucleolus pre-

cedes the ATR localization to the nuclear envelope. This perhaps

reflects a differential viscoelastic response of these two cellular

compartments. The ATR response to mechanical stress occurs

at physiological range of forces and is fully reversible. Moreover,

the changes in ATR cellular distribution, following activation and

recovery upon mechanical stress, parallels chromatin compac-

tion and decompaction, respectively.

ATR Influences the Coordination between Chromatin
Condensation and NEBD
The above data show that mechanical stress induces an ATR NE

response, suggesting a role for ATR in coordinating chromatin

dynamics and NE metabolism in response to mechanical stimu-

lations. To address this intriguing concept in a physiological sce-

nario, we next monitored the kinetics of chromatin condensation

and NEBD in HeLa cells, cotransfected with GFP-H2B and RFP-

Lamin A, prearrested in G2 with a CDK1 inhibitor, and released

into mitosis with or without active ATR (Figure 6A). In cells

released into mitosis with a functional ATR, chromatin conden-

sation began at 20 min, was nearly completed by 30 min, and

reached the typical metaphase configuration at 70 min. At

20 min a fraction of lamin A was still tethered to the partially

condensed chromatin. By 30 min, NEBD was completed and

lamin A was totally dissolved. In cells entering mitosis with phar-

macologically inactived ATR, the onset and the completion of

chromatin condensation were significantly delayed: it started

at 75 min and completed around 115 min. A fraction of lamin A

was still visible and attached to the condensed chromatin until

85 min. NEBD and lamin A disintegration were observed, but

after 115 min. To rule out that the uncoordinated chromatin

condensation and NEBD observed in ATR-inhibited cells was

due to DNA damage left unresolved because of the absence of

ATR activity, we analyzed g-H2AX foci by IF (Figure S6). We

observed comparable g-H2AX foci numbers in control and

ATR-inhibited cells in mitosis. To further confirm the above ob-

servations, we used human primary fibroblasts from Seckel

patients, who carry hypomorphic mutations in the ATR gene
Cell 158, 633–646, July 31, 2014 ª2014 The Authors 637
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Figure 3. Osmotic Stress Induces ATR Relocalization at the NE

(A) HeLa cells were incubated with DMSO or ATRi (3 mM; 2 hr) and treated with HU (10 mM; 1 hr) and then hypertonic media (40 min) or hypotonic media (40 min),

respectively. Cells were examined by western blot using anti-p-Chk1 and Chk1 Abs.

(B) HeLa cells were exposed to mock or hypertonic medium (0.5 M sorbitol; 20 min) and stained with anti-ATR Ab (green) and DAPI (blue). The graphs show the

percent fluorescence intensity on a set of cells (n = 50).

(C) Immuno-cryo-EM images of HeLa cells stained with gold-tagged anti-ATR Ab under normal or hypertonic conditions. White arrows highlight ATR gold

particles. The graph represents the percentage of ATR-related nanogold particles in isotonic or hypertonic conditions in the nucleoplasm or at the nuclear

envelope.

(legend continued on next page)
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Figure 4. ATR Activation at the NEDoes Not

Depend on RPA

(A) Confocal images of HeLa cells exposed to

normal or hypertonic medium (0.5 M sorbitol;

20 min). Samples were stained with anti-ATR

(green), -RPA32 (red) Abs, and DAPI.

(B) HeLa cells were transfected with empty vector

or RPA70 shRNA and selected with 3 mg/ml

puromycin (72 hr). Cells were incubated with

hypertonic medium containing 0.5 M sorbitol for

20 min and stained with anti-ATR (green), -RPA70

(magenta) Abs, S-phase-specific EdU (red), and

DAPI (blue). RPA70 protein levels were analyzed

by western blot using anti-RPA70 Ab and anti-

tubulin as a loading control (lower panel). The

graph shows the percent ATR fluorescence in-

tensity in different cellular compartments on a set

of cells (n = 20).

(C) Puromycin-selected RPA70 shRNA-trans-

fected HeLa cells were incubated with hypertonic

medium containing 0.5 M sorbitol for 30 min and

stained with p-Chk1 (green) and DAPI (blue).

Graphs show the integrated p-Chk1 fluorescence

intensity on a set of cells (n = 20). Quantitative

analysis of P-Chk1 levels is shown.

See also Figure S4.
(O’Driscoll et al., 2003) (Figure 6B). As above, control and

Seckel cells were prearrested with a CDK1 inhibitor and released

into mitosis. In control cells, chromatin condensation and

NEBD were evident already at 15 min and completed by

30 min; metaphase cells were observed at 75 min. In contrast,

in Seckel cells, chromatin condensation and NEBD were

delayed; at 30 min, intact NEs were still observed; at 45 min,

cells exhibiting condensed chromatin attached to large por-

tions of lamin A were detected; and complete NEBD and

chromatin condensation were visualized only at 75 min. Analo-

gously, when we used mouse embryonic fibroblasts derived

from humanized ATR hypomorphic Seckel mice (Murga et al.,

2009), under the same experimental conditions, we observed a

30 min delay in chromatin condensation and NEBD (data not

shown).

Thus, in ATR-defective cells, the initiation and completion of

chromatin condensation and NEBD are delayed; moreover,

portions of lamin A remain associated with condensed chro-

matin even after the NEBD, suggesting a defect in detaching

condensed chromatin from the NE. Similar defects were also

observed in Seckel cells (Alderton et al., 2004).
(D) HeLa cells were incubated with DMSO or ATRi (ATRi), followed by treatment with hypertonic medium (0.5 M

Ab (green) or DAPI (blue). The graphs show the mean fluorescence intensity on a set of cells (n = 10).

(E) Top: HeLa cells were incubated in hypotonic medium and stained with anti-ATR Ab (green), anti-TPR Ab (re

ATR, TPR, and DAPI is shown. Bottom: RFP-NPM-transfected cells were treated as in the top panel and sta

See also Figure S3.
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DISCUSSION

In this study, we showed that in human

and mouse cells grown under unper-

turbed conditions, a fraction of ATR,
ATRIP, and pChk1, key components of the ATR signaling

cascade, accumulate at the NE. Our working model is that

ATR responds to chromatin dynamics in S phase (particularly un-

der replication stress) and prophase, when chromatin replication

and condensation generate topological stress that is converted

into mechanical stimuli. Whereas our previous findings in yeast

indicated replication stress as a major cause of mechanical

stress on the nuclear membrane (Bermejo et al., 2011), our cur-

rent data in mammalian cells may suggest that ATR plays a more

prominent role at the NE in prophase when chromatin condensa-

tion occurs. This might reflect the magnitude of forces acting

during chromatin condensation/decondensation (Mazumder

et al., 2008), which is greater than the forces acting during

DNA synthesis and/or important differences between chromatin

condensation and chromatin replication from the topological

point of view. During prophase chromatin condensation causes

torsional stress, whereas during an unperturbed S phase, mov-

ing replication forks are assisted by DNA topoisomerases that

travel with the forks (Bermejo et al., 2007) and prevent the accu-

mulation of torsional stress. However, given our previous results

during S phase in yeast, it is possible that transient mechanical
sorbitol; 20–30 min) and stained with anti-p-Chk1

d), and DAPI (blue). A magnification of the merged

ined with anti-ATR Ab and DAPI.
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Figure 5. ATR Responds to Mechanical Forces Acting on Membranes

(A) Schematic representation of two-patch-clamp pipettes positioned on the two opposite sides of the plasmamembrane. The correspondingmicroscope image

is on the left. The white arrows indicate the points of focal tension induced by the mechanical stretching. Two patch pipettes were attached to the plasma

membrane of a HeLa cell coexpressing GFP-ATR (green) and RFP-Lamin A (red) and stretched to induce mechanical stress on the membranes. The intracellular

changes in GFP-ATR localization was examined in real time with a gap of 30 s.

(legend continued on next page)
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Figure 6. ATR Coordinates Chromatin Condensation and NEBD

(A) RFP-Lamin-A-transfected GFP-H2B HeLa cells were arrested in G2 with the R3306 Cdk1 inhibitor (10 mM, 16 hr), followed by incubation with DMSO or ATRi

(3 mM, 1 hr). Later, the cells were released into mitosis ± ATRi, and cells entry into prophase and metaphase was examined. A representative image of n = 10 is

shown.

(B) Same as in (A), IMR90 and ATRs/s human fibroblasts were arrested in G2 with Cdk1 inhibitor R3306 (10 mM, 16 hr), followed by release in mitosis. Cells were

fixed and stained for anti-Lamin A (red) and DAPI (blue) at represented time intervals postrelease.

See also Figure S6.
signals are generated when forks approach LADs. Although we

did not observe association of ATR to the NE during unperturbed

S phase in mammalian cells, there might be a transient relocali-

zation spread over the several hours that normal S phase lasts.

Perturbing S phase with, aphidicolin- or HU-induced replication

stress, which would stall replication forks and generate a persis-

tent mechanical signal at the NE, did indeed trigger accumula-

tion of ATR at the NE.

Further work will be required to determine howmechanosens-

ing influencing ATR localization occurs. NE portions connecting
(B) Same as in (A), two patch pipettes were attached to the plasma membrane

stretched to induce mechanical stress on the membranes. The intracellular chan

real time. The graphs illustrate the quantification in arbitrary units (a.u.) of the distrib

panels.

(C) Schematic representation of the setup used to perform compressive load e

compressed with 30 nN forces using weights, and the intracellular changes in GFP

real time with a gap of 10 min. A representative image of n = 10 is shown.

See also Figure S5 and Movie S1.
two adjacent LADs may act as mechanosensors of local chro-

mosomal forces and undergo changes in membrane fluidity

and/or curvature. Changes in membrane fluidity might muffle

mechanical stress and eventually transduce the signal to ATR.

This is consistent with the observations that membrane fluidity

is modulated in response to a variety of stress conditions (Aguilar

and de Mendoza, 2006; Vigh et al., 2007), including HU treat-

ment (Fujikawa-Yamamoto and Odashima, 1989). The relative

abundance of polyunsaturated fatty acids influences nuclear

membrane fluidity and ATR activation (Zhang et al., 2007b).
of a HeLa cell coexpressing GFP-ATR (green) and m-cherry H2B (red) and

ges in GFP-ATR and chromatin-associated H2B localization were examined in

ution of GFP-ATR andm-cherry-H2B by IF along the lines shown in themerged

xperiments (left panel). GFP-ATR and m-cherry-H2B-transfected cells were

-ATR localization and chromatin architecture (m-cherry H2B) were examined in
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Figure 7. A Model Describing ATR-Mediated Events in S Phase and

Prophase at the Nuclear Envelope

The model integrates the observations deriving from yeast studies (Bermejo

et al., 2011) focused on the S phase function of the ATR pathway, with the

findings described in this paper. The nuclear envelope is shown in green;

the chromosomes are shown in black; and the replicons are shown in yellow.

The red bars at the envelope indicate the nuclear membrane areas exposed to

mechanical stress. Briefly, nuclear envelope-associated chromatin transfers

the mechanical forces arising from the topological transitions of replicating or

condensing chromosomes to the nuclear envelope. Local nuclear membrane

stress recruits ATR. The ATR response then coordinates chromosome repli-

cation and condensation with the nuclear envelope by modulating chromatin

and nuclear envelope association. In ATR-defective cells, the inability to

coordinate replication with the nuclear envelope at those chromatin regions

associated to the lamin, causes fork collapse. The partially replicated chro-

matin remains in part associated to the NE when condensation begins, thus

leading to progressive chromatin fragmentation and mitotic catastrophe.
Membrane fluidity can influence its curvature (McMahon and

Gallop, 2005). Notably, we observed that ATR is enriched at

NE invaginations, structures that are known to arise in response

to mechanical forces (Beaudouin et al., 2002).

ATR recruitment to the NE in response to membrane stress

does not require its kinase activity. We speculate that, in

response tomechanical stimuli, ATR is part of a multistep activa-

tion process involving (1) changes in nuclear membrane fluidity

and/or curvature, (2) ATRIP and ATR recruitment at the NE,

and (3) ATR kinase activation in an unorthodox manner indepen-

dent of RPA and DNA damage. The observation that the N termi-

nus of ATR exhibits elastic properties (Grinthal et al., 2010; Perry

and Kleckner, 2003), whereas the kinase domain represents a

small portion of the C terminus, makes ATR an ideal module to

respond to mechanical stimuli, perhaps through a mechanism

mediated by its elastic domain. Interestingly, TORC2 has been

implicated in the cellular response to membrane stress (Berch-

told et al., 2012) and shares homology with ATR (Perry and

Kleckner, 2003).

Based on our present data inmammalian cells and on previous

findings implicating the yeast ATR ortholog Mec1 in detaching
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chromatin from the NE in S phase (Bermejo et al., 2011), we pro-

pose that, during unperturbed cell cycles, the recruitment of

ATRIP-ATR at the NE contributes to coordinate chromatin and

NE dynamics, in S phase, as well as in prophase (Figure 7). Chro-

mosome replication and condensation, besides being topologi-

cally complex, are influenced by the NE. However, there are key

evolutionary differences between Saccharomyces cerevisiae

and higher eukaryotes that may explain certain species-specific

aspects of the ATR pathway. In yeast, the NE does not break-

down and chromatin condensation never reaches the level of

complexity seen in mammalian cells. In fact, the yeast Mec1/

ATR pathway is prominently involved in the coordination of

S phase events through Rad53, whereas Chk1 plays a minor

role. However, certain mec1 alleles exhibit the typical features

of ATR-deficient cells (Cha and Kleckner, 2002). In human cells,

chromatin condensation begins slowly at 30 min before NEBD

and proceeds more rapidly following the envelope breakdown

(Beaudouin et al., 2002). Thus, in mammals, the coordination be-

tween chromatin condensation and NE breakdown likely plays a

key role in preventing aberrant chromosomal dynamics. Accord-

ingly, Chk1 plays a pivotal function in human cells, and inactiva-

tion of ATR causes aberrant chromatin condensation and NEBD

(Nghiem et al., 2001). Hence, whereas inmammals ATRmight be

mainly involved in coordinating the topological complexity of

chromatin condensationwith NE dynamics (while still performing

important functions in S phase, particularly under enhanced

replication stress), in yeast it might be primarily required to

deal with the topological problems arising at perinuclear chro-

matin in S phase (Bermejo et al., 2011). The fact that chromatin

condensation starts at a low rate, while the NE is still intact,

may reflect the topological complexity of condensing the chro-

matin fiber, where there are still chromatin regions bound to

the envelope and that may be the reason why, following

NEBD, condensation is faster. We propose that ATR responds

to the topological tension when condensation begins, binds

the NE, and facilitates the condensation process by progres-

sively resolving the LADs. This is consistent with our finding

that ATR-inhibited/mutated cells are delayed in the processes,

leading to chromatin condensation and NEBD (Figure 6) and

with the observation that Seckel cells exhibit nuclear fragmenta-

tion, while the chromatin is still attached to the NE (Alderton

et al., 2004). Moreover, ATR has been implicated in the phos-

phorylation of condensin subunits, as well as of NE proteins

(Matsuoka et al., 2007). According to the scenario we propose,

the inability to regulate the association between the chromatin

and the NE in response to mechanical stimuli arising from topo-

logical transitions might have the following consequences: in S

phase cells, the chromatin fiber would remain in part attached

to the envelope, thus causing fork collapse. Attempts to conden-

sate a partially replicated chromatin, still bound to the NE, would

generate DNA breaks and aberrant condensation events (Fig-

ure 7). Indeed, ATR-deficient cells exhibit some of these defects

(Brown and Baltimore, 2003; Cha and Kleckner, 2002; Nghiem

et al., 2001). Intriguingly, recent observations showed that fragile

site expression inmec1mutants is mediated by condensins and

DNA topoisomerase II (Hashash et al., 2012). The nuclear frag-

mentation phenotype of Seckel cells (Alderton et al., 2004;

O’Driscoll et al., 2003) can be expressed only if cells have



previously undergone fork collapse and occurs when the NE is

still intact. In our experimental conditions (Figure 6), we did not

observe nuclear fragmentation as cells passaged through the

preceding S phase with a functional ATR.

One intriguing aspect of our present data set is the result that

the classical DNA damage-induced ATR activation pathway,

which is influenced by RPA, TopBP1, and the 9-1-1 complex,

is genetically uncoupled from the ATR response to mechanical

stress. Given the large number of nuclear and nonnuclear targets

modulated by ATR, it is reasonable to think that ATR might be

engaged in at least partly different pathways in response to

different stimuli. One possibility is that the RPA-ssDNA-medi-

ated signaling generates the context for engaging ATR when

cells experience genotoxic insults, whereas the membrane-

dependent checkpoint activation may be more confined to a

physiological context to sense subtle chromatin dynamics. How-

ever, certain insults, such as replication stress, might trigger both

ATR responses, by accumulating single stranded DNA at forks

(Toledo et al., 2013) and topological stress at perinuclear chro-

matin (Bermejo et al., 2011).

Given that partially condensed silenced chromatin has a ten-

dency to localize at the nuclear periphery (Shevelyov and Nur-

minsky, 2012), an ATR response regulating chromatin-lamin

association in response to membrane stress might have impor-

tant epigenetic implications.

During S phase and prophase, the ATR relocation at the NE

likely reflects a physiological response triggered by the topolog-

ical stress arising from chromatin dynamics and transmitted to

the NE through LADs. Conversely, osmotic stress and mechan-

ical stimuli may lead to more dramatic cell deformation, mem-

brane stress, and chromatin rearrangements. Under osmotic

stress conditions, the response is likely triggered by membrane

stress directly. The pipette-induced mechanical stimulation of

the plasma membrane might be instead transduced to the NE

by the cytoskeleton (Wang et al., 2009). Finally, CLS-induced

cell deformation mimics the context of interstitial migration in

which the nucleus has to squeeze through pores. CLS and inter-

stitial migration cause mechanical stress at the NE and chro-

matin condensation (Friedl et al., 2011; Gerlitz and Bustin,

2010; Wolf and Friedl, 2009).

Altogether, our observations suggest that ATR is needed to

protect the perinuclear chromatin from mechanical insults

induced by a variety of mechanical stimuli. This might be

achieved by controlling the association of chromatin to the lamin

but also by controlling cytoskeleton organization as also sug-

gested by recent observations (Enserink et al., 2006; Kremer

et al., 2007). The ATR pathway may therefore rapidly connect

external signals with epigenetic modifications in the nucleus,

thereby contributing to coordination of membrane signaling

with gene expression, and protecting the chromatin and genome

integrity.
EXPERIMENTAL PROCEDURES

Reagents and cDNAs

ATR, p-CHK1 (S345), RPA70, and p-histone H3 (Ser10) antibodies were ob-

tained from Cell Signaling; ATRIP, NUP153, and RPA32 were obtained from

Abcam; TPR, gH2AX (S139), and lamin A Abs were obtained from Sigma
and Millipore; and Chk1 was obtained from Leica. EdU (click-IT), RPA70-,

TopBP1-, and RAD17-small hairpin RNAs (shRNAs) were obtained from

Invitrogen and Origene Technologies, respectively. ATR-specific inhibitor

and ATR shRNA were from Dr. Oscar Capetillo (Centro Nacional de Oncologia

[CNIO]) (Toledo et al., 2011); the GFP-ATR plasmid was from Dr. Randal

Tibbetts (Tibbetts et al., 2000); RFP-Lamin was from Prof. Howard J. Worman

(Columbia University) (Ostlund et al., 2006); and RFP-Nucleophosmin was a

gift by Dr. Michelle Hill (University of Queensland). GFP-H2B and m-cherry-

H2B were from IFOM. Colchicine, a-tubulin Ab, Leptomycin B, Hydroxy

Urea, sorbitol, Aphidicholine, and R3306 CDK1-specific inhibitor were ob-

tained from Sigma.

Cell Culture, Transfection, Treatments, and Cell Lysis

HeLa, U2OS, NIH 3T3, and mouse embryonic fibroblasts cells were main-

tained in complete medium as described (Kumar et al., 2006). Media were

supplemented with 0.5 M sorbitol (or 0.4 M NaCl) for hypertonic conditions

or diluted 1:5 with MQ water for hypotonic conditions. IMR90 and Human

Seckel cells (Coriell Cell Repository) were grown in Eagle’s minimum essen-

tial medium (MEM; GIBCO-BRL), supplemented with nonessential amino

acids, 10% (vol/vol) fetal bovine serum (not activated), 2 mM glutamine,

10 mM HEPES, 100 U/ml penicillin, and 100 mg/ml streptomycin in a

humidified atmosphere (5% CO2, 37�C). We used lipofectamine 2000

(Invitrogen) for transfection. Cells transfected with ATR shRNA or RPA70

shRNA were selected for 72 hr in medium plus 3 mg/ml puromycin. For hy-

perosmotic stress experiments, exponentially growing cells were seeded

on dishes and after 24 hr, the medium was replaced with hypertonic medium

and incubated for 20–30 min for ATR and for 30–40 min for p-Chk1 ex-

periments, before harvesting or fixing the cells. For hypotonic stress con-

ditions, cells were exposed to hypertonic medium for 2–5 min before

fixation. Total cell lysates were prepared in RIPA lysis buffer (Marqués

et al., 2009). To arrest cells in G2 phase, GFP-H2B and RFP-Lamin-A-

transfected HeLa cells were treated with 10 mM R3306 for 16 hr and were

later washed three times with complete medium followed by release in

mitosis ± ATR inhibitor.

Immunofluorescence

For IF assays, cells were processed as previously described (Kumar et al.,

2010, 2011). In brief, cells were fixed with 4% formaldehyde (10 min),

blocked, and permeabilized with 0.3% TX-100 PBS (20 min) and incubated

with primary antibodies (ATR and p-Chk1 1:50, TPR, p-histone H3 and

NUP153 1:500, p-H2AX, RPA32, ATRIP, and RPA70 1:200, and lamin A/C

1:200) in blocking buffer (1 hr, room temperature [RT]), followed by three

washes. Species-specific secondary antibodies were added to samples

and incubated (1 hr, RT), followed by three washes with blocking buffer.

Samples were mounted on coverslips with mounting medium containing

DAPI (VectaShield); cells were then visualized and captured using Leica

TCS SP2 confocal scanning microscope, equipped with a 633/1.4 NA objec-

tive. Single optical sections of the images were used to represent the staining

with different antibodies, and images were processed using ImageJ and

smoothed to reduce the background noise. For SR-SIM superresolution

microscopy, cells were grown on glass coverslips and fixed with 4% formal-

dehyde (10 min.). IF staining was performed as described above, with pri-

mary antibodies (NUP153 1:500, ATR 1:50) incubated for 16 hr at 4�C.
Samples were mounted by mounting medium with DAPI (VectaShiled) and

covered by coverslips. Images were acquired using Zeiss Axioimager Z.1

platform equipped with the Elyra PS.1 superresolution system for SR SIM

using Zeiss objectives Alpha Plan Apochromat 633/1.40 NA oil objective

(total magnification 1,0083) and Plan Apochromat 1003/1.46 NA oil objec-

tive (total magnification 1,6003) with appropriate oil (Immersol 518F). Images

were captured with an EM-CCD camera (Andor iXON EM+; 1004 3 1002 px,

cooled at �64�C, 16-bit) at typical exposure times varying between

80–200 ms and with gain values between 20–25. SR-SIM setup included

five rotations and five phases of the grated pattern for each image layer.

The z stacks were acquired in 110 nm sections for 633/1.40 NA, 101 nm

for 1003/1.46 NA objectives. All acquisitions, SIM calculations and measure-

ments of colocalization were performed in the Zeiss Zen software (v. 11) (Zen

Blue version, Carl Zeiss Microscopy).
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Fluorescence Intensity Quantification

We used ImageJ to quantify the integrated fluorescence intensity (FI) of the

8-bit images. A cell was divided in three compartments: nucleus, nuclear

envelope (including inner and outer nuclear membranes), and cytoplasm.

The nuclear area was defined using NUP153 as nucleus boundary. The

NUP153-stained region was considered the nuclear envelope. We calculated

the integrated intensity of the whole cell, the nucleus (N), and nucleus including

out nuclear envelope (NIO). The nuclear envelope-associated fluorescence

was determined by subtracting the FI in nucleus from FI in NIO. To measure

the cytoplasm-linked FI, NIO-associated FI was subtracted from the whole-

cell FI. The percent FI in each compartment was calculated as a fraction of

whole-cell FI. To compare the movement (redistribution) of ATR and chro-

matin, following isotonic/hypertonic stress or cell stretching, a line was drawn

across the cell in a region of interest (where significant ATR localization was

evident) and the relative fluorescence signals (ATR and DAPI or GFP-ATR

and m-cherry H2B) were measured along the lines using plot profile (ImageJ).

The graphswere plotted as the percent ofmaximal intensity of the correspond-

ing fluorescence signals along the region of interest.

Electrophysiology

The two-electrode patch-clamp technique has been used to mechanically and

electrically manipulate the cell. Glass patch pipettes were prepared using a

Flaming/Brown P-97 micropipette puller (Sutter Instrument) and fire polished

to a tip diameter of 1–2 mM in diameter. The electrodes were filled with a

solution containing (in mM) 140 KCl, 10 NaCl, 2.5 CaCl2, 1 MgCl2, 10 HEPES,

10 Glucose (pH 7.4). Current and voltage were monitored using a 700B Axon

amplifier (Molecular Device) and elaborated with PClamp 10 software (Molec-

ular Device). Cells were approached using two motorized micromanipulators

(Luigs and Neumann) mounted on the microscope stage. Immediately after in-

duction of mechanical stretch, repeated images (we acquired z stacks time-

lapses in most cases, and not single plane time-lapses) of the same field

were acquired on a UltraVIEW VoX spinning-disc confocal unit (PerkinElmer),

equipped with an Eclipse Ti invertedmicroscope (Nikon) and a C9100-50 elec-

tron-multiplying CCD (charge-coupled device) camera (Hamamatsu). We used

a Nikon objective Plan Fluor 403/1.30 NA. All components were controlled by

Volocity software (PerkinElmer). Time-lapses were recorded with a time frame

of 30 s per z stack for double patch experiments. The images were processed

using ImageJ and smoothed to reduce the background noise.

Electron Microscope Imaging

Routine electron microscopic examination and immuno-EM labeling based on

pre-embeding, cryosectioning, and correlative light-electronmicroscopy were

performed as previously described (Kweon et al., 2004; Mironov and Beznous-

senko, 2009, 2012; Polishchuk et al., 1999). Cells (5–8) were counted for esti-

mating the number of ATR-tagged gold particles in different compartments of

the nuclei including nuclear envelope. Percentage of labeling on the nuclear

envelope and nucleoplasm was estimated in the following way: gold particles

localized within 20 nm from the nuclear envelope were considered as being on

the nuclear envelope. All other particles were considered as localized within

the nucleoplasm.

Compressive Load System

To apply quantitative forces on cells, different weights (2–4 g) were put on the

coverslip mounted on the cells. The approximate magnitude of force/cell was

calculated considering the total area of the coverslip, number of cells seeded,

and the weight applied on the coverslip.

Force=cell=Pressure under coverslip

3Total area of cells N=Total number of cells under coverslip

Pressure=Weight applied3 9:8 N=m
2
=Area of coverslip

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one movie and can be

found with this article online at http://dx.doi.org/10.1016/j.cell.2014.05.046.
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Figure S1. Prophase-Specific Nuclear Envelope Localization of ATR during the Cell Cycle, Related to Figure 1

(A) HeLa cells were transfected with vector or ATRshRNA, and selected with 3 mg/ml puromycin (94h) posttransfection, and processed for immunofluorescence

using anti-ATR (green), DAPI (blue). Graphs show the mean fluorescence intensity on a representative set of cells (n = 20).

(B) IMR90 or human primary Seckel cells containing hypomorphic mutation in ATR, were fixed and processed for IF using anti-ATR (green), DAPI (blue). Graphs

show the mean fluorescence intensity on a representative set of cells (n = 20); (lower right panel) western blot analysis of cell lysates from IMR90 and Seckel cells

using ATR ab. Ponceu staining was used as loading control.

(C) IMR90 and NIH 3T3 cells in prophase were stained for ATR (green) and DAPI (blue).

(D) HeLa cells were either treated mock or with nuclear export inhibitor Laptomycin B (10 nM) for 2hrs. and processed for immunofluorescence using anti-ATR

(green), DAPI (blue). The images depict prophase cell stained with ATR in presence or absence of Leptomycin B (Lept. B). Graphs show%- fluorescence intensity

on a representative set of cells (n = 10). IF images show single optical sections of cells stained with ATR Ab.

Cell 158, 633–646, July 31, 2014 ª2014 The Authors S1



 p-Chk1

 p-Chk1

DAPI

DAPI

EdU

EdU

Merge

Merge

UH+rotibihni
RTA

UH+

Figure S2. Specificity of Chk1-phospho-S345 Ab, Related to Figure 2

HeLa cells were incubated with or without ATR specific inhibitor (2 mM; 2hr) followed by addition of Hydroxyurea (5 mM; 1h) to induce replication stress and

stained with anti-p-Chk1 Ab and DAPI. A representative image of n = 20 is shown.
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Figure S3. Osmotic Stress Induces ATR Activation and Nuclear Envelope Relocalization, Related to Figure 3

(A) Redistribution of ATR and chromatin in response to osmotic stress. The analysis was carried out on the merged images in Figure 3B. The graphs illustrate the

quantification in arbitrary units (AU) of the distribution of ATR and DAPI by IF along the lines (highlighted by numbers) shown in the merged panels.

(B) U2OS and IMR90 cells were treatedwith hypertonicmediumand after 20min. cells were processed for immuno-fluorescence using anti-ATR (green) andDAPI

(blue).

(C) Exponentially growing HeLa cells were treated with hypertonic medium (0.5 M Sorbitol; 20-30 min.) and stained with ATRIP (green), DAPI (blue) and nu-

cleoporin TPR.

(D) HeLa cells were maintained in isotonic medium, hypertonic medium containing either 0.5 M sorbitol or 0.4MNaCl for 20min. Cells were stained with anti-ATR

(green), DAPI (blue) and gH2AX to visualize DNA damage. IF images show single optical sections of cells stained with corresponding Ab. Graphs show the number

of foci with signal intensity higher than the basal g�H2AX levels observed (bottom panel) on a representative set of cells (n > 75).

(E) HeLa cells were either mock treated or with nuclear export inhibitor Laptomycin B (10 nM; 2hrs.) followed by treatment with hypertonic medium (0.5M Sorbitol;

20-30 min.) and stained with ATR (green), DAPI (blue). The samples were processed for immunofluorescence using anti-ATR (green), DAPI (blue).
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Figure S4. ATR Nuclear Envelope Translocation and Activation following Osmotic Stress Is TOPBP1 and RAD17 Independent, Related to

Figure 4

(A) Images of exponentially growing HeLa cells maintained in either normal or hypertonic medium (0.5 M Sorbitol; 20 min.). Cells were stained with anti-ATR

(green), S-phase specific EdU (red), RPA32 (magenta) and DAPI (blue).

(B and C) HeLa cells were transfected with empty-vector, TOPBP1 shRNA or RAD17 shRNA and selected with 3 mg/ml puromycin (72h). HeLa cells were

incubated with hypertonic medium containing 0.5 M sorbitol for 20 min and stained with ATR/p-Chk1 (green), and DAPI (blue). TOPBP1 and RAD17 protein levels

were analyzed by western blot using anti-TOPBP1 Ab or anti-RAD17 Ab and anti-tubulin as loading control (lower panel). Graphs show the % ATR fluorescence

intensity in different cell compartments on a representative set of cells (n = 15) and p-Chk1 fluorescence intensity on a representative set of cells (n = 20)

respectively.

(D)Western blots showing RAD17, TOPBP1 protein levels, following transfection of HeLa cells with empy-vector, TOPBP1 shRNA orRAD17 shRNA, respectively,

and selection with 3mg/ml puromycin (72h) posttransfection. Anti- tubulin Ab was used as loading control.
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Figure S5. The ATR Response to Cells Stretching and Compression Is DNA Damage Independent and Reversible, Related to Figure 5

(A) Schematic representation of two-patch clamp pipettes positioned on the two opposite sides of the plasmamembrane. The corresponding microscope image

is on the right. The white arrows indicate the points of focal tension induced by the mechanical stretching. Two patch pipettes were attached to the plasma

membrane of a HeLa cell expressing GFP-ATR (green) and stretched to induce mechanical stress on the membranes. The intracellular changes in GFP-ATR

localization was examined in real-time with a gap of 30 s. The cells were fixed using 4% formadehyde and later stained for gH2X to examine the DNA damage

state in the cell of interest.

(B) HeLa cells coexpressing GFP-ATR (green), mCherry-H2B (red) were compressed with 30nN force using weights and the intracellular changes in GFP-ATR

localization and chromatin architecture (m-cherry H2B) was examinedwith a gap of 10min. Later theweights were removed to withdraw the forces exerted on the

cells and again intracellular changes in GFP-ATR localization and chromatin architecture (m-cherry H2B) were recorded (after 7min of weight removal) to examine

the reversal in the ATR response and chromatin state.
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Figure S6. ATR Inhibition in G2/M Does Not Cause Accumulation of g-H2AX, Related to Figure 6

R3306 Cdk1 inhibitor (10 mM, 16 hr.) was used to arrest HeLa cells in G2, followed by incubation with DMSO or ATR inhibitor (3 mM, 1hr). The cells were then

released into mitosis (for 60 min) ± ATRi. Cells were stained with anti-TPR (green), g-H2AX (red) to visualize DNA damage, and DAPI (blue). Quantification of

g-H2AX is shown.
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