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1. Models of Spatially Modulated Order in Underdoped
Cuprates
The study of the underdoped cuprates has led to proposals of a large
number of density-wave ordered states with nontrivial form factors
(1–33). Here we provide a unified perspective on these orders,
highlighting the key characteristics detected by our observations.
It is useful to begin by considering the following order pa-

rameter at the Cu sites ri and rj (21, 22),

�
c†iαcjα
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"X
k

Pðk;QÞeik · ðri−rjÞ
#
eiQ · ðri+rjÞ=2; [S1.1]

where ciα annihilates an electron with spin α on a site at position ri.
Here the wave vector Q is associated with a modulation in the
average coordinate ðri + rjÞ=2. The form factor describes the depen-
dence on the relative coordinate ri − rj. An advantage of the formu-
lation in Eq. S1.1 is that it provides an efficient characterization of
symmetries. The operator identity <A†> ≡ <A>p requires that

Ppðk;QÞ=Pðk; −QÞ; [S1.2]

whereas

Pðk;QÞ=Pð−k;QÞ [S1.3]

if time-reversal symmetry is preserved.
A number of other studies (1, 4, 16, 17, 19) have made the

closely related, but distinct parameterization
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f ðk;QÞeik · ðri−rjÞ
#
eiQ · ri [S1.4]

and then considered various ansatzes for the function f(k, Q).
These are clearly related to those for P(k, Q) by

f ðk;QÞ=P
�
k+

Q
2
;Q
�
: [S1.5]

It is now clear that the relations [S1.2] and [S1.3] take a more
complex form in terms of f ðk;QÞ. Also, a d-wave form factor for
f ðk;QÞ is not equal to a d-wave form factor for Pðk;QÞ, except
at Q= 0.
We conduct the remainder of the discussion using Pðk;QÞ and

Eq. S1.1. Depending upon the value of Q, various crystalline
symmetries can also place restrictions on Pðk;QÞ, and we illus-
trate this with a few examples.
An early discussion of a state with nontrivial form factors

was the “staggered-flux” state (also called the “d-density wave”
state), which carries spontaneous staggered currents (2–6). This
state has Pðk;QÞ nonzero only for Q = (π,π) and

Pðk;QÞ= Psf
�
sinðkxÞ− sinðkyÞ

�
+P′sf

�
sinð2kxÞ− sinð2kyÞ

�
+⋯;

[S1.6]

where Psf and P′sf are constants. All terms on the right-hand side
are required by symmetry to be odd under time reversal (i.e., odd
in k) and odd under the interchange kx ↔ ky. In the present

notation, therefore, the staggered-flux state is a p-symmetry form
factor density wave. Please note that a d-wave form factor in our
notation refers to a distinct state below, which should not be
confused with the d-density wave of refs. 2–6. With Pðk;QÞ non-
zero only for Q = 0 and odd in k, we obtain states with sponta-
neous uniform currents (7).
Another much-studied state is the electronic nematic (8–10).

This has Pðk;QÞ nonzero only for Q = 0, with

Pðk;QÞ=Pn
�
cosðkxÞ− cosðkyÞ

�
+Pn′

�
cosð2kxÞ− cosð2kyÞ

�
+⋯:

[S1.7]

Now all terms on the right-hand side should be even in k and odd
under the interchange kx ↔ ky. The ansatz in Eq. S1.7 also ap-
plies to “incommensurate nematics” (21–31), which have Pðk;QÞ
nonzero only for Q= ð±Q; ±QÞ: These are density waves with Q
along the diagonals of the square lattice Brillouin zone and a
purely d-wave form factor.
Finally, we turn to the density waves considered in our paper.

These have Pðk;QÞ nonzero only for Q= ð0; ±QÞ and ð±Q; 0Þ.
We assume they preserve time reversal, and then the form factor
has the general form (22)

Pðk;QÞ=PS +PS′
�
cosðkxÞ+ cosðkyÞ

�
+PD

�
cosðkxÞ− cosðkyÞ

�
+⋯:

[S1.8]

For general incommensurate Q, any even function of k is allowed
on the right-hand side. Using arguments based upon instabilities
of metals with local antiferromagnetic correlations, it was ar-
gued in ref. 22 that such a density wave is predominantly d
wave, i.e., jPDj � jPSj and jPDj � jPS′j, so that it is very nearly,
but not exactly, an incommensurate nematic. The d waveness
here is a statement about the physics of the intraunit-cell elec-
tronic correlations and is not fully determined by symmetry.
We now make contact with the local observables considered in SI

Text sections 2 and 3 and as measured by scanning tunneling mi-
croscopy (STM). Via the canonical transformation from the two-
band to the single-band model of the CuO2 layer, we can deduce
the general relationship

D
c†iαcjα + c†jαciα

E
=

8>>>>>>><>>>>>>>:

1
K
ρðrCuÞ for i= j

1
K′

ρðrOxÞ for i; j n:n along x direction
1
K ′

ρ
�
rOy

�
for i; j n:n along y direction:

[S1.9]

Here ρðrÞ is any density-like (i.e., invariant under time-reversal
and spin rotations) observable and K and K′ are proportionality
constants. Combining [S1.1], [S1.8], and [S1.9] we can now write

ρðrCuÞ= 2K   Re

(�X
k

Pðk;QÞ
	
eiQ · rCu

)
= As cosðQ · rCu +ϕsÞ

[S1.10]

ρðrOxÞ= 2K ′  Re

(�X
k

cosðkxÞPðk;QÞ
	
eiQ · rOx

)
= AS′ cosðQ · rOx +ϕS′Þ+AD cosðQ · rOx +ϕDÞ

[S1.11]
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=AS′cos
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Q · rOy +ϕS′
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−AD cos

�
Q · rOy +ϕD

� [S1.12]

with AS = 2K jPSj, AS′;D =K′jPS′;Dj, and ϕS;S′;D = argðPS;S′;DÞ. Our
Fourier transforms of the STM data in Fig. 3 of the main text
yield the prefactors in Eqs. S1.11 and S1.12. The observed change
in sign between the prefactors demonstrates that jPDj � jPS′j as
anticipated in refs. 22–24.

2. Symmetry Decomposition of CuO2 Intraunit-Cell States
Here we present mathematical details behind the angular mo-
mentum form factor organization of density waves on the CuO2
plane. Among the many ways of organizing density waves in the
CuO2 plane, one is to think of them as a wave on the copper
atoms, a wave on the x-axis bond oxygen atoms, and a wave on the
y-axis bond oxygen atoms as presented in Eqs. S1.10–S1.12. The
results presented in the main text, however, present a compelling
case that another organization captures the density wave observed
in a remarkably simple way. This way organizes them by angular
momentum form factors that we call s, s′ (“extended s”), and d.
We can think of the angular momentum form factor orga-

nization as a modulation of Q= 0 “waves” whose point group
symmetry is well defined, as shown in Fig. S1 A–C. The Q= 0 s
wave has a density

ρðrCuÞ= AS; ρðrOxÞ= 0; ρðrOy Þ= 0; [S2.1]

the Q= 0 s′ wave has density

ρðrCuÞ= 0; ρðrOxÞ= AS′; ρðrOy Þ= AS′; [S2.2]

and the Q= 0 d wave has density

ρðrCuÞ= 0; ρðrOxÞ= AD; ρðrOy Þ= −AD: [S2.3]

The Fourier transforms of these intraunit-cell (IUC) states are
shown in Fig. S1 D–F. Modulating these waves, we then obtain

ρSðrÞ=

8><>:
AS cosðQ · r+ϕSÞ; r= rCu;

0; r= rOx ;

0; r= rOy ;

ρS′ðrÞ=

8><>:
0; r= rCu;

AS′ cosðQ · r+ϕS′Þ; r= rOx ;

AS′ cosðQ · r+ϕS′Þ; r= rOy ;

ρDðrÞ=

8><>:
0; r= rCu;

AD cosðQ · r+ϕDÞ; r= rOx ;

−AD cosðQ · r+ϕDÞ; r= rOy ;

[S2.4]

where ϕS;S′;D are the phases of each of the density-wave (DW)
form factor components. A graphical picture corresponding to
these waves is presented in Fig. S2 A–C. The Fourier transforms
of the three different form factor density waves are presented in
Fig. S2 D–F and are considered further in SI Text section 3. If,
for simplicity, we choose ϕS = ϕS′ = ϕD = ϕðrÞ and allow for spa-
tial disorder of the phase, we arrive at the description used in Eq.
1 of the main text.
Consider now the organization by atomic site. We see that the

s-wave form factor is just a wave purely on the copper atoms with
no weight on the oxygen atoms whereas the s′-wave and d-wave
form factors involve purely the oxygen sites. There is also a cu-
rious but practically very important relationship between the s′-wave

and d-wave form factors: In a sense they are like mirror images
of each other. For a purely s′-form factor DW, taking the sum
~ρOx

ðqÞ+ ~ρOy
ðqÞ must recover the Fourier transform of the full

s′-form factor DW. However, taking the difference ~ρOx
ðqÞ− ~ρOy

ðqÞ,
we obtain the Fourier transform of the d-form factor DW (up to
a phase difference ϕS −ϕD). Similarly, for a density wave with
a pure d-symmetry form factor, ~ρOx

ðqÞ− ~ρOy
ðqÞ will look like the

Fourier transform of a DW with a pure s′-symmetry form factor.
Finally, given the above understanding of how the overall

electronic structure image [e.g., R(r)] is built up from its com-
ponents, there is another possible approach to determining the
form factor of any density wave. Phase-resolved Fourier analysis
of such an electronic structure image that has not been decom-
posed into its constituent parts Cu(r), Ox(r), and Oy(r) but re-
mains intact should still reveal the relative magnitude of the
three form factors. However, one can show that this is possible
only if the three independent DW peaks at Q, Q′ = (1,0) ± Q
and Q′′ = (0,1) ± Q are well resolved.

3. Predicted Fourier Transform STM Signatures of a d-Form
Factor DW
As discussed in SI Text sections 1 and 2, the projection of a DW into
s-, s′-, and d-form factor components is conceptually appealing.
However, for the purposes of this section we keep in mind the
exigencies of the experimental technique and work in terms of
the segregated oxygen sublattice images Ox;yðrÞ. In terms of the
segregated sublattices, a d-form factor DW is one for which the
DW on the Ox sites is in antiphase with that on the Oy sites. For
Q ≠ 0 ordering the form factor does not uniquely determine the
point group symmetry of the DW and hence in general s-, s′-, and
d-form factors are free to mix. This section predicts the con-
sequences of a primarily d-form factor density wave for ~Ox;yðqÞ
and shows its consistency with the data presented in the main text.
To deduce the logical consequences of a d-form factor DW for

the Fourier transforms of the segregated oxygen site images one
can start by constructing the dual real and momentum-space
representation of the sublattices:

LCuðrÞ=
X
i; j

δ
�
r−Ri;j

�
⇔ ~LCuðqÞ=

X
h;k

δ
�
q−Gh;k� [S3.1]

LOxðrÞ=LCu

�
r−

a0x̂
2

�
⇔ ~LOxðqÞ= eiq · a0 x̂=2~LCuðqÞ [S3.2]

LOyðrÞ=LCu

�
r−

a0ŷ
2

�
⇔ ~LOyðqÞ= eiq · a0 ŷ=2~LCuðqÞ: [S3.3]

The fRi;jg are the set of direct lattice vectors of the square lattice
with lattice constant a0 and the fGh;kg are the reciprocal lattice
vectors. The displacement of the oxygen sublattices from the
copper sublattice has the effect of modulating the phase of their
Bragg peaks along the direction of displacement with periodicity
4π=a0 in reciprocal space. This is depicted in Fig. S3A.
Using the convolution theorem, a d-form factor modulation of

the oxygen site density takes on the dual description

OxðrÞ=LOxðrÞ ·AOxðrÞ⇔ ~OxðqÞ= ~LOxðqÞ p ~AOxðqÞ [S3.4]

OyðrÞ=LOyðrÞ ·AOyðrÞ⇔ ~OyðqÞ= ~LOyðqÞ p ~AOyðqÞ [S3.5]

AOxðrÞ=−AOyðrÞ=AðrÞ⇔ ~AOxðqÞ=−~AOyðqÞ=AðqÞ: [S3.6]

The functions Ox;yðrÞ are the segregated oxygen sublattice im-
ages. The AOx;yðrÞ are continuous functions that when multiplied
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by the sublattice functions yield density waves in antiphase on
the separate oxygen sublattices (Fig. S3B). Fig. S3C shows their
Fourier transforms ~AOx;yðqÞ. Note that AðrÞ may contain arbitrary
amplitude and overall phase disorder but remain d wave as long
as the relative phase relation in Eq. S3.6 is maintained.
As shown in Fig. S4A, the convolutions in Eqs. S3.4 and S3.5

create an image of ~AOx;yðqÞ at each reciprocal lattice vector that
sums to form the total convolution. Labeling the convolution
image due to the reciprocal lattice vector (h,k) in the x sublattice
~O
h;k
x ðqÞ,

~OxðqÞ=
X
h;k

~O
h;k
x ðqÞ=

X
h;k

eiG
h;k · a0 x̂=2~AOx

�
q−Gh;k�: [S3.7]

In creating the (h,k) convolution image, the phase of the sub-
lattice Bragg peak at Gh;k and that of the form factor ~AOxðqÞmust
be added:

arg
n
~O
h;k
x ðqÞ

o
= arg



~AOx

�
q−Gh;k��+ arg

�
eiG

h;k · a0 x̂=2

: [S3.8]

Thus, it follows immediately that

~O
0;0
x = ~AðqÞ; ~O

0;0
y = −~AðqÞ [S3.9]

~O
1;0
x =−~AðqÞ; ~O

1;0
y =−~AðqÞ [S3.10]

~O
0;1
x = ~AðqÞ; ~O

0;1
y = ~AðqÞ [S3.11]

and hence

~O
0;0
x + ~O

0;0
y = 0; ~O

0;0
x − ~O

0;0
y = 2~AðqÞ [S3.12]

~O
1;0
x + ~O

1;0
y =−2 ~AðqÞ; ~O

1;0
x − ~O

1;0
y = 0 [S3.13]

~O
0;1
x + ~O

0;1
y = 2 ~AðqÞ; ~O

0;1
x − ~O

0;1
y = 0: [S3.14]

A direct consequence of a d-form factor is that in ~OxðqÞ+ ~OyðqÞ
the amplitude of the convolution image at (0,0) is canceled ex-
actly whereas those at the (±1, 0) and (0, ±1) points are en-
hanced as illustrated in Fig. S4 B and C. The converse is true for
~OxðqÞ− ~OyðqÞ. This holds for any d-wave modulation in the pres-
ence of arbitrary amplitude and overall phase disorder.
Fig. S2 D–F shows Fourier transforms of different form factor

density waves in the CuO2 plane. A d-form factor density wave
has modulations only on the oxygen sites and hence its contri-
bution to the full Fourier transform is contained entirely within
~OxðqÞ+ ~OyðqÞ. From Eqs. S3.12–S3.14 we must conclude that for
density waves with principal wave vectors that lie within the first
Brillouin zone, ~ρDðqÞ (Fig. S2F) will exhibit an absence of peaks
at these wave vectors in the first Brillouin zone. For ~ρSðqÞ (Fig.
S2D) and ~ρS′ðqÞ (Fig. S2E) we may conclude that they will be
present, using similar arguments.
Empirically (main text Figs. 3 and 4), our data contain mod-

ulations at two wave vectors Qx = (Q,0) and Qy = (0,Q) with
Q ∼ 1/4 but with a great deal of fluctuation in the spatial phase
of the DW (34). However, it would be improper to conclude
from this that we observe a bidirectional d-form factor DW,
often termed the “checkerboard” modulation. The strong dis-
order of the density modulations in Bi2Sr2CaCu2O8+x (BSCCO)
and Ca2−xNaxCuO2Cl2 (NaCCOC) is apparent in the real-space
images presented in Fig. 2 of the main text and SI Text section 5.

Random charge disorder can have the effect of taking a clean
system with an instability toward unidirectional (“stripe”) or-
dering and produce domains of unidirectional order that align
with the local anisotropy. Conversely, a clean system with an
instability toward bidirectional (checkerboard) ordering may
have local anisotropy imbued upon it by disorder.
Although the wave vector(s) of the underlying instability of the

copper oxide plane toDWordering are of theoretical interest, any
d-form factor DW containing two wave vectors Qx and Qy can be
described by

AðrÞ=Re
�
eiQx · r ·HxðrÞ

�
+Re

�
eiQy · r ·HyðrÞ

�
[S3.15]

~AðqÞ= 1
2

h
~Hxðq−QxÞ+ ~H

p

x ðq+QxÞ+ ~Hy
�
q−Qy

�
+ ~H

p

y ðq+QyÞ
i
:

[S3.16]

The complex valued functions Hx; yðrÞ locally modulate the am-
plitude and phase of the density wave and hence encode its
disorder. The problem now reduces to performing the convolu-
tions contained in Eqs. S3.4–S3.6.
For the specific example of Qx ≈ ð1=4; 0Þ and Qy ≈ ð0; 1=4Þ

considered in our study the primarily d-wave form factor requires
that the peaks at ±Qx and ±Qy present in both ~OxðqÞ and ~OyðqÞ
must cancel exactly in ~OxðqÞ+ ~OyðqÞ and be enhanced in ~OxðqÞ−
~OyðqÞ. Conversely the peaks at Q′ = (1,0) ± Qx, y and Q′′ = (0,1) ±
Qx, y will be enhanced in ~OxðqÞ+ ~OyðqÞ but will cancel exactly in
~OxðqÞ− ~OyðqÞ. These are necessary consequences of a DW with
a primarily d-wave form factor. This is discussed in the main text
and in accord with the observations in Figs. 2–4 of the main text.

4. Sublattice Phase Definition: Lawler–Fujita Algorithm
Consider an atomically resolved STM topograph, T(r), with te-
tragonal symmetry where two orthogonal wave vectors generate
the atomic corrugations. These are centered at the first re-
ciprocal unit-cell Bragg wave vectors Qa = ðQax;QayÞ and Qb =
ðQbx;QbyÞ with a and b being the unit-cell vectors. Schemati-
cally, the ideal topographic image can be written as

TðrÞ=T0½cosðQa · rÞ+ cosðQb · rÞ�: [S4.1]

In spectroscopic imaging STM, the T(r) and its simultaneously
measured spectroscopic current map, Iðr;V Þ, and differential
conductance map, gðr;V Þ, are specified by measurements on
a square array of pixels with coordinates labeled r= ðx; yÞ. The
power spectral-density (PSD) Fourier transform of T(r),
j~TðqÞj2, where ~TðqÞ=Re~TðqÞ+ iIm~TðqÞ, then exhibits two dis-
tinct peaks at q=Qa and Qb.
In an actual experiment, T(r) suffers picometer-scale distor-

tions from the ideal representation in [S4.1] according to a slowly
varying “displacement field,” uðrÞ. The same distortion is also
found in the spectroscopic data. Thus, a topographic image, in-
cluding distortions, is schematically written as

TðrÞ=T0½cosðQa · ðr+ uðrÞÞÞ+ cosðQb · ðr+ uðrÞÞÞ�: [S4.2]

Then, to remove the effects of uðrÞ requires an affine transfor-
mation at each point in space.
To begin, define the local phase of the atomic cosine com-

ponents, at a given point r, as

φaðrÞ=Qa · r+ θaðrÞ
φbðrÞ=Qb · r+ θbðrÞ; [S4.3]
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which recasts Eq. S4.2 as

TðrÞ=T0½cosðφaðrÞÞ+ cosðφbðrÞÞ�; [S4.4]

where θiðrÞ=Qi · uðrÞ is additional phase generated by the dis-
placement field. If there were no distortions and the T(r) image
were perfectly periodic, then θiðrÞ would be constant. From this
perspective, the two-dimensional lattice in [S4.4] is a function of
phase alone. For example, the apex of every atom in the topo-
graphic image has the same phase, 0 ðmod 2πÞ regardless of
where it is in the image. When viewed in the r coordinates, the
distance between such points of equal phase in the “perfect”
lattice and the distorted lattice is not the same. The problem
of correcting T(r) then reduces to finding a transformation to
map the distorted lattice onto the perfect one, using the phase
information φiðrÞ. This is equivalent to finding a set of local
transformations that makes θaðrÞ and θbðrÞ constant over all
space; call them θa and θb, respectively.
Let r be a point on the unprocessed T(r) and let ~r be the point

of equal phase on the perfect lattice periodic image, which needs
to be determined. This produces a set of equivalency relations

Qa · r+ θaðrÞ= Qa ·~r+ θa
Qb · r+ θbðrÞ= Qb ·~r+ θb:

[S4.5]

Solving for ~r= ð~x;~yÞ and then assigning the values of the topo-
graphic image at r= ðx; yÞ, TðrÞ, to ~r produces the perfect lattice.
To solve for ~r rewrite [S4.5] in matrix form

Q
�
~x
~y

�
=Q
�
x
y

�
−
�
θa − θaðrÞ
θb − θbðrÞ

�
; [S4.6]

where

Q=
�
Qax Qay

Qbx Qby

�
: [S4.7]

Because Qa and Qb are orthogonal, Q is invertible, allowing
one to solve for the displacement field uðrÞ that maps r to ~r:

uðrÞ=Q−1
�
θa − θaðrÞ
θb − θbðrÞ

�
: [S4.8]

In practice, we use the convention θi = 0, which generates a per-
fect lattice with an atomic peak centered at the origin. This is
equivalent to setting to zero the imaginary component of the
Bragg peaks in the Fourier transform.
Of course, to use the transformation in [S4.6] one must first

extract θiðrÞ from the topographic data. This is accomplished by
using a computational lock-in technique in which the topograph,
TðrÞ, is multiplied by reference sine and cosine functions with
periodicity set by Qa and Qb. The resulting four images are fil-
tered to retain only the q-space regions within a radius δq= 1=λ
of the four Bragg peaks; the magnitude of λ is chosen to capture
only the relevant image distortions. This procedure results in
retaining the local phase information θaðrÞ; θbðrÞ that quantifies
the local displacements from perfect periodicity:

YiðrÞ= sin θiðrÞ; XiðrÞ= cos θiðrÞ: [S4.9]

Dividing the appropriate pair of images allows one to extract
θiðrÞ:

θiðrÞ= tan−1
YiðrÞ
XiðrÞ: [S4.10]

5. Data Analysis
In Fig. S5 we show the power spectral-density Fourier transform
analysis jfCuðqÞj2 and jð~OxðqÞ+ ~OyðqÞÞ=2j2, yielding the s-form
factor magnitude S and the s′-form factor magnitude S′, respec-
tively. These are the equivalent result for jð~OxðqÞ− ~OyðqÞÞ=2j2,
which is shown in Fig. 4A of the main text. The measured values
S and S′ are plotted along the dashed lines through Q together
with the value D in Fig. 4B of the main text.
In Fig. 4D of the main text, we show the 2D histogram of the

amplitude difference and the phase difference between Ox(r)
and Oy(r). To construct this, first, the magnitude and the phase
associated only with Qx ∼ (1/4,0) and Qy ∼ (0,1/4) are calculated
by using the Fourier filtration in Ox(r) and Oy(r),

~Oαðr; qÞ=
Z

dROαðRÞeiq ·Re−ðjr−Rj2=2Λ2Þ 1
2π  Λ2; [S5.1]

where α, β = x, y, and Λ is the averaging length, ∼30 Å.
For q=Qβ, amplitudes and phases are given by

j~Oα

�
r;Qβ

�j= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Re~Oα

�
r;Qβ

��2 + �Im~Oα

�
r;Qβ

��2q
; [S5.2]

arg
�
~Oα

�
r;Qβ

��
= tan−1

 
Im~Oα

�
r;Qβ

�
Re~Oα

�
r;Qβ

�!: [S5.3]

Next, the normalized amplitude difference and the phase differ-
ence are then defined by

j~Ox
�
r;Qβ

�j− j~Oy
�
r;Qβ

�j
j~Ox
�
r;Qβ

�j+ j~Oy
�
r;Qβ

�j; [S5.4]

jarg�~Ox
�
r;Qβ

��
− arg

�
~Oy
�
r;Qβ

��j: [S5.5]

Finally, using [S5.4] and [S5.5] we obtain a 2D histogram for
both Qx and Qy, independently, and then take the sum of them
to construct a single distribution containing the information for
both Qx and Qy.
In Fig. S6 we show the measured RðrÞ (subset of main text Fig.

2A is presented because the original field of view is so large that
the DW is no longer visible clearly) and its segregation into three
site-specific images Cu(r), Ox(r), and Oy(r) as described in the main
text. With the origin set at a Cu site, Fig. S7 then shows the three
complex valued Fourier transform images derived from Fig. 2A:fCuðqÞ≡RefCuðqÞ+ iImfCuðqÞ, ~OxðqÞ≡Re~OxðqÞ+ iIm~OxðqÞ, and
~OyðqÞ≡Re~OyðqÞ+ iIm~OyðqÞ. This type of sublattice-phase–resolved
Fourier analysis that we introduce in this paper provides the
capability to measure the relative phase of different sites with
each CuO2 unit cell. Fig. S6A, Inset shows the difference between
the real component of Bragg intensity for (1,0) and (0,1) peaks in
the Fourier transforms of the electronic structure images before
sublattice segregation. It is this difference that was originally
used to determine the d-form factor of the intraunit-cell nematic
state. Figs. S8 and S9 present the corresponding data and anal-
ysis for NaCCOC.
Fig. S10 compares the analysis of Z(r,jEj) = g(r,E)/g(r,−E)

(E = 150 meV) between BSCCO (Fig. S10 A–D) and NaCCOC
(Fig. S10 E–H). Both Z(r,jEj) are segregated into three site-
specific images Cu(r), Ox(r), and Oy(r) first. The analysis is then
presented in terms of their complex Fourier transforms Re~OxðqÞ
and Re~OyðqÞ as described in the main text. One can see directly
that the phenomena are extremely similar for both compounds, in
terms of Re~OxðqÞ, Re~OyðqÞ, and Re~OxðqÞ ± Re~OyðqÞ. Moreover,
they are in excellent agreement with expectations for a d-form
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factor DW (dFF-DW) in Fig. S4 B and C. Thus, in the main text,
we present analysis of Z(r,E = 150 meV) on an equivalent basis to

R(r,E = 150 meV) when deriving ~OxðqÞ≡Re~OxðqÞ+ iIm~OxðqÞ and
~OyðqÞ≡Re~OyðqÞ+ iIm~OyðqÞ for Fig. 3 E–H of the main text.
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A B C

D E F

Fig. S1. Intraunit-cell electronic structure symmetry in the CuO2 plane. (A) Schematic of uniform density on the Cu atoms (s symmetry). The inactive O sites are
now indicated by black dots. (B) Schematic of uniform density on the O atoms (also an s symmetry referred to here as extended-s or s′ symmetry). The inactive
Cu sites are indicated by black dots. (C) Schematic pattern with opposite-sign density on Ox and Oy (d symmetry). The inactive Cu sites are indicated by black
dots. (D) Real component of Fourier transform of the s-symmetry IUC patterns derived only from Cu sublattice in A and with no DW modulation. The Bragg
peaks have the same sign, indicating the IUC states have s symmetry. (E) Real component of Fourier transform of the s′-symmetry IUC patterns derived only
from Ox and Oy sublattices in B and with no DW. The Bragg peaks are no longer within the CuO2 reciprocal unit cell (RUC). (F) Real component of Fourier
transform of the d-symmetry IUC patterns derived only from Ox and Oy sublattices as shown in C and with no DW modulation. The Bragg peaks now have the
opposite sign, indicating the IUC states have d symmetry.
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Fig. S2. Types of CuO2 intraunit-cell density waves. (A) Spatial modulation with wave vector Q = (Q,0) of the s-symmetry IUC patterns in Fig. S1A is described
by ρSðrÞ= SðrÞcosðQ · rÞ; only Cu sites are active. The inactive O sites are indicated by black dots. (B) Spatial modulation with wave vector Q of the patterns in Fig.
S1B described by ρS′ðrÞ= S′ðrÞcosðQ · rÞ; only Ox and Oy sites are active but they are always equivalent within each unit cell. The inactive Cu sites are indicated by
black dots. (C) Spatial modulation with wave vector Q of the patterns in Fig. S1C described by ρDðrÞ=DðrÞcosðQ · rÞ; only Ox and Oy sites are relevant but now
they are always inequivalent and indeed π out of phase. (D) Re~ρSðqÞ, the real component of Fourier transform of the pattern in A. For this s-form factor DW, the
DW satellites of inequivalent Bragg peaks Q′ and Q′′ exhibit the same sign. (E) Re~ρS′ðqÞ, the real component of Fourier transform of the pattern in B. For this
s-form factor DW, the peaks at Q are clear and the actual Bragg peaks of B are outside the RUC of CuO2. (F) Re~ρDðqÞ, the real component of Fourier transform
of the pattern in C. For this d-form factor DW, the DW Bragg-satellite peaks at Q′ and Q′′ exhibit opposite sign. More profoundly, because they are out of
phase by π the contributions of Ox and Oy sites in each unit cell cancel, resulting in the disappearance of the DW modulation peaks Q within the Brillouin zone
(BZ) (dashed box).
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Fig. S3. Sublattice decomposition of d-form factor DW. (A) Fourier transforms of the x-bond and y-bond oxygen sublattices without a DW modulation. Gray
orbitals signify those in the sublattice under consideration and black those in the other sublattice. (B) Schematic of continuous functions AOx,y ðrÞ that when
multiplied by the sublattice functions LOx,y ðrÞ yield density waves in antiphase on the two sublattices with a modulation along the x direction. (C) Fourier
transforms of the functions AOx,y ðrÞ exhibiting a relative phase of π as required for a d-form factor density wave.
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Fig. S4. Fourier analysis of DW using the convolution theorem. (A) Schematic of the segregated sublattice images Ox,yðrÞ and their Fourier transforms ~Ox,yðqÞ
that can be obtained from Fig. S3 by application of the convolution theorem. (B) Sum and difference of Re~OxðqÞ and Re~OyðqÞ for a d-form factor density wave
with modulation along the x direction at Q = (Q,0). Note that the origin of coordinates in real space has been chosen such that the Fourier transforms are
purely real. (C) Sum and difference of Re~OxðqÞ and Re~OyðqÞ for a d-form factor density wave with modulations along the x and y directions at Q = (Q,0),(0,Q).
The key signature of the d-form factor is the absence of the peaks at (Q,0),(0,Q) in Re~OxðqÞ+Re~OyðqÞ and their presence in Re~OxðqÞ−Re~OyðqÞ; the converse is
true for the DW peaks surrounding (±1, 0) and (0, ±1).

Fig. S5. Measurement of s-symmetry and s′-symmetry form factors. (A) PSD Fourier transform of R(r) measured only at Cu sites, yielding jfCuðqÞj2. This provides
the measure of relative strength of the s-form factor in the DW. (B) PSD Fourier transform of R(r) measured only at Ox/Oy sites, yielding jð~OxðqÞ+ ~OyðqÞÞ=2j2.
This provides the measure of relative strength of the s′-form factor in the DW.

Fujita et al. www.pnas.org/cgi/content/short/1406297111 9 of 14

www.pnas.org/cgi/content/short/1406297111


Fig. S6. Sublattice segregation for BSCCO. (A) Measured R(r) for BSCCO sample with p ∼ 8 ± 1%. These data are a subset of Fig. 2A in the main text re-
produced here for clarity. Inset demonstrates an inequivalence between the real component of Bragg intensity for (1,0) and (0,1) peaks in the Fourier
transforms of the electronic structure image before sublattice segregation, signaling a Q = 0 nematic state. (B) Copper site segregated image, Cu(r), in which
the spatial average is subtracted, with copper sites selected from A. (C) x-bond oxygen-site segregated image, OxðrÞ, in which the spatial average is subtracted,
with x-oxygen sites selected from A. (D) y-bond oxygen-site segregated image, OyðrÞ, in which the spatial average is subtracted, with y-oxygen sites selected
from A.
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Fig. S7. Sublattice phase-resolved Fourier analysis for BSCCO. (A) Measured RefCuðqÞ for BSCCO sample in Fig. 2A of the main text. No DW peaks are dis-
cernable at Q = (Q,0),(0,Q) or at Bragg satellites surrounding (±1, 0) and (0, ±1). This indicates a very small s-wave component for the density wave form factor.
(B) Measured ImfCuðqÞ that also indicates a very small s-wave component. (C) Measured Re~OxðqÞ showing DW peaks at Q = (Q,0),(0,Q) and corresponding Bragg
satellites. (D) Measured Im~OxðqÞ that exhibits the same structure as C. The strong overall phase disorder is apparent in the color variation within the DW peaks.
(E) Measured Re~Oy ðqÞ that also shows DW peaks at Q = (Q,0),(0,Q) along with Bragg satellites. (F) Measured Im~OyðqÞ that exhibits the same structure as E.
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Fig. S8. Sublattice segregation for NaCCOC. (A) Measured Z(r,E = 150 mV) for NaCCOC sample with p ∼ 12 ± 1%. Inset demonstrates an inequivalence be-
tween the real component of Bragg intensity for (1,0) and (0,1) peaks in the Fourier transforms of the electronic structure image before sublattice segregation
signaling a Q = 0 nematic state, as in Fig. S6A. (B) Copper site segregated image, Cu(r), in which spatial average is subtracted, with copper sites selected from A.
(C) x-bond oxygen-site segregated image, OxðrÞ, in which the spatial average is subtracted, with x-oxygen sites selected from A. (D) y-bond oxygen-site
segregated image, OyðrÞ, in which the spatial average is subtracted, with y-oxygen sites selected from A.
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Fig. S9. Sublattice phase-resolved Fourier analysis for NaCCOC. (A) Measured RefCuðqÞ for NaCCOC sample with p ∼ 12 ± 1%. No DW peaks are discernable at
Q = (Q,0),(0,Q) or at Bragg satellites surrounding (±1, 0) and (0, ±1). This indicates that the DW in NaCCOC has, like BSCCO, a very small s-wave component in its
form factor. (B) Measured ImfCuðqÞ that also indicates a very small s-wave component. (C) Measured Re~OxðqÞ showing DW peaks at Q = (Q,0),(0,Q) and cor-
responding Bragg satellites. (D) Measured Im~OxðqÞ that exhibits the same structure as C. The color variation within the DW peaks is smaller for NaCCOC than
for BSCCO, indicating a less disordered DW. (E) Measured Re~OyðqÞ that also shows DW peaks at Q = (Q,0),(0,Q) along with Bragg satellites. (F) Measured
Im~OyðqÞ that exhibits the same structure as E.
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Fig. S10. Comparison of Z(r,E = 150 meV) between BSCCO and NaCCOC. (A) Measured ~OxðqÞ for BSCCO sample with p ∼ 8 ± 1% obtained using Z(r,jEj) = g(r,E)/
g(r,−E), E = 150 meV. (B) Measured ~OyðqÞ for BSCCO sample using the same analysis as in A. (C) Measured Re~OxðqÞ+Re~OyðqÞ from A and B. The absence of the
four DW peaks at Q is characteristic of a d-form factor DW. (D) Measured Re~OxðqÞ−Re~OyðqÞ from A and B. The presence of the four DW peaks at Q and
absence of the Bragg satellite peaks are another expectation for a d-form factor DW. (E) Measured ~OxðqÞ for NaCCOC sample with p ∼ 12 ± 1% obtained using
Z(r,jEj) = g(r,E)/g(r,−E), E = 150 meV. (F) Measured ~Oy ðqÞ for NaCCOC sample using the same analysis as in E. (G) Measured Re~OxðqÞ+Re~OyðqÞ from E and F. The
same key signature of a d-form factor DW is present in this measurement of NaCCOC as is present in that for BSCCO in C. (H) Measured Re~OxðqÞ−Re~OyðqÞ from
E and F. The signatures of a d-form factor DW are once again seen for NaCCOC in this image and should be compared with that for BSCCO in D.
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