Supporting Information

Chi et al. 10.1073/pnas.1402819111

Fig. S1. Knockdown of Toll-like receptor 4 (TLR4) suppressed the intraocular pressure (IOP)-induced activation of NLRP1 (A and B), NLRP3 (C and D), and Apoptosis-associated speck-like protein containing CARD (ASC) (E) (n = 12, all). Representative images are shown.

Fig. 52. TLR4–caspase-8–inflammasome pathway was activated in rat models of acute glaucoma. Expression levels of TLR4 (*A*), caspase-8 (*B*), NLRP1 (*D*), NLRP3 (*E*), ASC (*F*), and IL-1 β (*G*) (*n* = 9, all) were up-regulated as early as 6 h in the development of acute glaucoma in rats. (*C*) However, the level of caspase-3 mRNA was only elevated 72 h after IOP elevation in rat models (*n* = 9). Representative images are shown. Data are presented as mean \pm SD; **P* < 0.05, ***P* < 0.001.

Fig. S3. Caspase-8 was necessary for processing of IL-1 β via caspase-1–dependent NLRP1 and NLRP3 inflammasome activation and the caspase-1–independent pathway in rats. Inhibition of caspase-8 by intravitreous injection of Z-IETD-fmk (20 μ M) significantly suppressed IOP-induced NLRP1 (*A*) (*n* = 9) and NLRP3 (*B*) (*n* = 9) activation in rat acute glaucoma models. (*C*) Inhibition of caspase-8 completely suppressed the processing of IL-1 β (*n* = 9). (*D*) Intravitreous injection of caspase-1 inhibitor, Z-YVAD-fmk (20 μ M), only partially reduced the processing of IL-1 β (*n* = 9). Representative images are shown. Data are presented as mean \pm SD; **P* < 0.05, ***P* < 0.001.

Table S1.	Mouse prime	r sequences	including	annealing	temperature	and	product	size

Gene	Primer sequence (forward primer, reverse primer) (5'-3')	Annealing temperature, °C	Product size, bp
TLR4	GAGCCGTTGGTGTATCTTTGA	55	166
	CTCCCATTCCAGGTAGGTGTT		
Caspase-8	CTCCGAAAAATGAAGGACAGA	59	193
	CGTGGGATAGGATACAGCAGA		
Caspase-3	AAGGAGCAGCTTTGTGTGTGT	59	144
	AAGAGTTTCGGCTTTCCAGTC		
NLRP1	GCCAAAGAGGCTCAGAAAACT	59	474
	CAAGTAAACTGCCCAGCAGAG		
NLRP3	GGTCCTCTTTACCATGTGCTTC	59	365
	AAGTCATGTGGCTGAAGCTGTA		
IL-1β	TGAAATGCCACCTTTTGACAG	60	185
	CCACAGCCACAATGAGTGATAC		
GAPDH	AGGTCATCCCAGAGCTGAACG	55	269
	CACCCTGTTGCTGTAGCCGTAT		

Gene	Primer sequence (forward primer, reverse primer) (5'-3')	Annealing temperature, °C	Product size, bp
TLR4	CAGGGAATTAGGCTCCATGA	58	164
	TCCATGACAGAACGGTCAAA		
Caspase-8	CTGGGAAGGATCGACGATTA	54	100
	TGGTCACCTCATCCAAAACA		
Caspase-3	GAAACCTCCGTGGATTCAAA	56	124
	AGCCCATTTCAGGGTAATCC		
NLRP1	TTGACATCAAGGCTGAGCAC	59	142
	CTTGCTGGCGTTTCTAGGAC		
NLRP3	GGGACTCAAGCTCCTCTGTG	56	133
	GAGGCTCTGGTTATGGGTCA		
ASC	TGGCTACTGCAACCAGTGTC	57	124
	CCATACAGAGCATCCAGCAA		
IL-1β	CAGGAAGGCAGTGTCACTCA	60	100
	AAAGAAGGTGCTTGGGTCCT		
GAPDH	TGCCACTCAGAAGACTGTGG	56	292
	GTCCTCAGTGTAGCCCAGGA		

Table S2. Rat primer sequences including annealing temperature and product size

PNAS PNAS