Filter Algorithms

Filter for \tilde{G}^L

The filter algorithm below is designed to prevent the propagation of FP edges in any $\underline{G}_{\{i\}}$ to the lower bound \tilde{G}^L . The pseudocode for the union with filter \bigcup is given below:

$$\begin{aligned} Adj\left(\tilde{G}^{L}\right) &= Adj\left(\underline{\tilde{G}}_{\emptyset}\right) \\ A &= Acc(\overline{\tilde{G}}_{\emptyset}) \\ \text{FOR every k} \\ A_{test} &= \sum_{i \in V_{KO}^{k}} A_{i} \otimes A^{i} \\ Adj\left(\overline{G}^{L}\right) &= Adj\left(\overline{G}^{L}\right) + A_{test} \odot Adj\left(\underline{G}_{V_{KO}^{k}}\right) \\ \text{END FOR} \end{aligned}$$

where \otimes denotes the outer product and \odot denotes the Hadamard multiplication (element wise multiplication). Note that the elements of the matrices are either 0 or 1, and the addition operation + denotes a Boolean sum.

Filter for \tilde{G}^U

The following filter is created to avoid propagating FN edges in any $\bar{G}_{\{i\}}$ to \tilde{G}^U . The pseudocode for the intersection with filter $\dot{\bigcap}$ is given below:

$$\begin{aligned} Adj\left(\bar{G}^{U}\right) &= Acc(\bar{G}_{\emptyset})\\ A &= Acc(\overline{\tilde{G}_{\emptyset}})\\ \text{FOR every } k\\ A_{test} &= \sum_{i \in V_{KO}^{k}} A_{i} \otimes A^{i}\\ Adj\left(\tilde{G}^{U}\right) &= Adj\left(\tilde{G}^{U}\right) \odot A_{test} \odot Adj\left(\bar{G}_{V_{KO}^{k}}\right)\\ \text{END FOR} \end{aligned}$$