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Table S1. BPA, ovarian and oviductal outcomes, and steroidogenesis in experimental studies. 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Adewale et al. 2009 Rat Long-Evans Subcutaneous injection Neonatal exposure: 

PNDO-PND3 
50µg/kg and 

50mg/kg 
PND148 Disrupted ovarian 

development 
Berger et al. 2008 Mouse CF-1 Subcutaneous injection Gestational exposure: 

GD1-GD4 
0.01-300mg/kg GD6 Decreased number of 

implantation sites, decreased 
progesterone 

Berger et al. 2008 Mouse CF-1 Subcutaneous injection Gestational exposure: 
GD0,1, or 2 

200 and 300mg/kg GD6 Decreased number of 
implantation sites, decreased 

progesterone 
Berger et al. 2010 Mouse CF-1 Subcutaneous injection Gestational exposure: 

GD1-GD4 
100, 200, 300mg/kg GD6 Altered estrogen receptor and 

progesterone gene expression 
Brieño-Enriquez et al. 
2011a 

Human NA In vitro; Fetal oocytes 7, 14, 21 days 1, 5, 10, 20, 30µM 18-22 weeks old Oocyte degeneration, 
impaired meiosis 

Brieño-Enriquez et al. 
2011b 

Human NA In vitro; Fetal oocytes 7, 14, 21 days 30µM 18- 22 weeks old Increased oocyte DNA 
double strand break, 

signaling, and repair genes 
Chao et al. 2012 Mouse CD-1 Subcutaneous injection Neonatal exposure: 

PND7-PND14 
20, 40µg/kg PND15 Impaired methylation of 

imprinted genes during 
oogenesis, increases 
primordial follicular 

recruitment 
Chao et al. 2012 Mouse CD-1 Subcutaneous injection Neonatal exposure: 

PND5,10,15,20 
20, 40µg/kg PND21 Impaired methylation of 

imprinted genes during 
oogenesis, increases 
primordial follicular 

recruitment 
Eichenlaub-Ritter et al. 
2008 

Mouse MF1 In vitro; Prepubertal 
oocytes 

16 hours 0.22-43.8µM After culture Impaired meiosis, increased 
meiotic arrest, normal GVBD 

Eichenlaub-Ritter et al. 
2008 

Mouse MF1 Oral gavage Neonatal exposure: 
PND22-PND28 

20, 40, 100ng/g PND28 Impaired meiosis, increased 
meiotic arrest, normal GVBD 
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Source   Animal Strain   Exposure route    Time of exposure   Doses   Age at collection  Outcome  
Fernandez     et al. 2010   Rat Sprague-Dawley   Subcutaneous injection    Neonatal exposure: 

PND1-PND10  
5µg/50µL,  

50µg/50µL,  
500µg/50µL  

 4-5 months old     Increased testosterone and 
estradiol, increased follicular  

cysts, increased infertility  

   Grasseli et al. 2010  Pig  NA      In vitro, granulosa cells 48 hours     0, 0.1, 1, 10µM  NA   Altered steroidogenesis, 
increased VEGF  

   Hunt et al. 2012  Non-
human 
primate  

  Rhesus macaque  Dietary exposure    Gestational exposure: 
GD50-GD100  

400µg/kg  GD100   Impaired meiosis, increased 
 multi-oocyte follicles, 

increased unenclosed and 
non-growing oocytes  

   Hunt et al. 2012  Non-
human 
primate  

 Rhesus macaque  Dietary exposure    Gestational exposure: 
GD100-term  

400µg/kg  PND0   Impaired meiosis, increased 
 multi-oocyte follicles, 

increased unenclosed and 
non-growing oocytes  

   Hunt et al. 2012  Non-
human 
primate  

  Rhesus macaque  Silastic pump    Gestational exposure: 
GD50-GD100  

 2.2-3.3ng/mL serum  
 levels 

GD100   Impaired meiosis, increased 
 multi-oocyte follicles, 

increased unenclosed and 
non-growing oocytes  

   Hunt et al. 2012  Non-
human 
primate  

  Rhesus macaque  Silastic pump    Gestational exposure: 
GD100-term  

 2.2-3.3ng/mL serum  
 levels 

PND0   Impaired meiosis, increased 
 multi-oocyte follicles, 

increased unenclosed and 
non-growing oocytes  

   Kobayashi et al. 2012   Rat Sprague-Dawley   Dietary exposure    Gestational and 
 neonatal exposure: 

GD6-PND21  

   0, 0,33, 3,3, and 33 
ppm  

  5 weeks or 3 months  
old  

    No change in hormones, 
  AGD, lower ovarian weight 

   Lawson et al. 2011  Mouse  C57BL/6   Oral exposure   Gestational exposure: 
GD11-GD14.5  

20ng/g     GD12, 12.5, 13.5, 14.5    Disrupted oogenesis via  
  meiotic gene expression  

alterations  
    Lee SG et al. 2013   Rat Sprague-Dawley    Oral gavage  Postnatal exposure: 90 

days  
0.001 and 0.1mg/kg   21 weeks old    Decreased testosterone and  

estradiol, increased atresia  

Lenie     et al. 2008  Mouse    C57BL/6j x 
CBA/Ca  

   In vitro: Early preantral 
 follicles 

12 days  3nM-30µM  NA   Impaired meiosis, impaired  
  follicle development 

    Li Y et al. 2013   Rat Wistar    Intraperitoneal injection  Neonatal exposure: 7 
days  

  10, 40, 160mg/kg   35 days old    Decreased follicle numbers, 
 increased atretic follicles  
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Machtinger et al. 2013 Human NA In vitro: Adult oocytes 30 hours 20, 200ng/ml, 

20µg/ml 
Immature (GV stage) 

oocytes 
Increased meiotic arrest, 

disrupted spindle formation 
and chromosome alignment, 

increased spontaneous oocyte 
activation 

Mendoza-Rodriquez et 
al. 2011 

Rat Wistar Drinking water Gestational and 
neonatal exposure: 

GD6-PND21 

10mg/L (1.2mg/kg) 7 weeks old Increased uterine epithelial 
and stromal thickness, 

decreased uterine epithelial 
apoptosis, downregulation of 
Esr1 expression in epithelial 

cells 
Newbold et al. 2009 Mouse CD-1 Subcutaneous injection Gestational exposure: 

GD9-GD16 
0, 0.1, 1, 10, 100, 

1000µg/kg 
18 months old Induced ovarian cyst-

adenomas, induced 
progressive proliferative 

oviductal lesions 

Pacchierotti et al. 2008 Mouse C57BL/6 Oral gavage Postnatal exposure: 
Single dose 

0.2 and 20mg/kg 4-11 weeks old No effect on meiotic 
abnormalities 

Pacchierotti et al. 2008 Mouse C57BL/6 Oral gavage Postnatal exposure: 
Single dose 

0.04mg/kg 4-11 weeks old No effect on meiotic 
abnormalities 

Pacchierotti et al. 2008 Mouse C57BL/6 Drinking water Postnatal exposure: 7 
weeks 

0.5mg/L 4-11 weeks old No effect on meiotic 
abnormalities 

Peretz et al. 2012 Mouse CD-1 In vitro:Antral follicles 24-96 hours 4.4-440µM 32-35 day old mice Inhibited follicle growth, 
induced atresia, dysregulated 

cell cycle 

Peretz et al. 2011 Mouse FVB In vitro:Antral follicles 24-120 hours 4.4-440µM 32-35 day old mice Inhibited follicle growth, 
inhibited steroidogenesis 

Rivera et al. 2011 Lamb Hampshire Down Subcutaneous injection Neonatal exposure: 
PND1-PND14 

50µg/kg PND1, 5, 10, 30 Increased primordial 
follicular recruitment, 
increased multi-oocyte 

follicles, increased granulosa 
and theca cell proliferation, 

induced atresia 

Rodríguez et al. 2010 Rat Wistar Subcutaneous injection Neonatal exposure: 
PND1-PND7 

0.05 and 20mg/kg PND8 Increased primordial 
follicular recruitment, 

increased granulosa cell 
proliferation 

Signorile et al. 2010 Mouse Balb-c Subcutaneous injection Gestational exposure: 
GD1-PND7 

100 and 1000µg/kg 3 months old Induced endometriosis-like 
phenotype 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Tan et al. 2013 Mouse ICR Oral gavage Gestational exposure: 

E13-E16 
2, 20, 200mg/kg E17 Increased estradiol, 

testosterone, and 
corticotropin releasing 

hormone 
Trapphoff et al. 2013 Mouse C57BL/6x 

CBA/Ca 
In vitro: Pre-antral 

follicles 
12 days 3 and 300nM 12-14 days old Accelerated follicle 

development, disrupted 
genomic imprinting 

Varayoud et al. 2011 Rat Wistar Subcutaneous injection Neonatal exposure: 
PND1, 3, 5, and 7 

0.05 and 20mg/kg F1: GD5 or GD18 Down-regulated estrogen 
receptor and progesterone 

receptor 
Veiga-Lopez et al. 
2013 

Lamb Suffolk Subcutaneous injection Gestational exposure: 
GD30-GD90 

0.5mg/kg GD60 and GD90 Altered steroidogenic and 
miRNA gene expression 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure, F0: 
GD1-PND20 

12, 25, 50mg/kg PND50 Disrupted feedback 
circuits of hypothalamic-

pituitary-gonad axis 
Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure, F1: 

PND21-PND49 
12, 25, 50mg/kg PND50 Disrupted feedback 

circuits of hypothalamic-
pituitary-gonad axis 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure, F1: 
PND21-PND49 

25 and 50mg/kg PND50 Disrupted feedback 
circuits of hypothalamic-

pituitary-gonad axis 

Zhang H et al. 2012 Mouse CD-1 Oral exposure Gestational exposure: 
GD12.5-PND18.5 

0, 0.2, 0.04, 
0.08mg/kg 

GD15.5, 17.5, 19.5 
PND3, 5, 7 

Inhibits meiosis, impairs 
germ cell nest breakdown 

Zhang X et al. 2012 Mouse CD-1 Oral exposure Gestational exposure: 
GD0.5-PND0 

0, 40, 80, 160µg/kg PND0 Altered methylation and 
expression of imprinting 

genes 
Zhou et al. 2008 Rat Sprague-Dawley In vitro: Isolated 

follicular cells 
72 hours 10-4 to 10-7M 30 days old Altered steroidogenic 

enzyme expression and 
steroidogenesis 

Ziv-Gal et al. 2013 Mouse C57BL/6 In vitro: Antral follicles 96 hours 0.004 to 438µM 54-58 days old Inhibited follicle growth, 
inhibited estradiol levels 

AGD=anogenital distance; ESR1=estrogen receptor 1; F1=first filial generation; GD=gestation day; GV=germinal vesicle; GVBD=germinal vesicle breakdown; NA=not 

applicable; PND=postnatal day 
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Table S2. BPA and female human reproductive outcomes. 

Source Study 
design 

Study population Sample size Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Bloom et 
al. 2011a 

Cross-
sectional 

Women undergoing 
IVF (University of 

California-San 
Francisco) 

44 Preconception 
(day of egg 
retrieval) 

Median: 2.53ng/mL 
serum (unconjugated) 

Negative association of 
BPA with peak estradiol 
(β -0.16, 95% CI: -0.32, 
0.01); null association 

with # oocytes retrieved 
(aRR: 0.95, 95% CI: 

0.827, 1.10) 

Small sample size, BPA 
measured once per treatment 

cycle 

Bloom et 
al. 2011b 

Prospective 
cohort 

Couples undergoing 
IVF (University of 

California-San 
Francisco) 

27 couples 
(36 women) 

Preconception 
(day of egg 
retrieval) 

Median: 3.3ng/ml 
(women) 85% detection 

rate vs. 0.48ng/mL 
(men) 53% detection 

rate, serum 
(unconjugated) 

Negative association 
between male BPA and 
embryo quality (aOR: 
0.54, p = 0.009) and 

normal embryo cleavage 
rate (aOR: 0.70, p = 0.07); 
null association of female 
BPA and embryo quality 

Small sample size, BPA 
measured once, larger than 

expected difference in 
median serum BPA in men 

and women 

Buck 
Louis et 
al. 2013 

Matched 
cohort 

Women undergoing 
laparoscopy/laparomy 

495 
individuals 
in operative 
cohort and 
131 women 

in population 
cohort 

At the time of 
laparoscopy/ 
screeing for 

endometriosis 

Geometric mean for 
operative cohort: 1.45 
(1.14-1.84) ng/ml for 

women with 
endometriosis and 1.66 
(1.40-1.97) ng/ml for 

women without 
endometriosis; 

geometric mean for 
population cohort: 4.19 
(2.18-8.03) ng/ml for 

women with 
endometriosis and 1.65 
(1.23-2.23) ng/ml for 

women without 
endometriosis 

Null association between 
BPA exposure and 

endometriosis (aOR: 0.96, 
95% CI: 0.79, 1.19 for 
operative cohort; aOR: 

1.68, 95% CI: 0.96, 2.92 
for population cohort 

Collection of urine samples 
across the menstrual cycle, 
not originally powered to 

examine BPA and 
endometriosis, short interval 

between measurement of 
BPA and diagnosis of 

endometriosis, exploratory 
analysis 

Cobellis et 
al. 2009 

Case-
control 

Women undergoing 
laparoscopy for chronic 

pelvic pain 

69 (58 cases, 
11 controls) 

At the time of 
laparoscopy/ 
diagnosis of 

endometriosis 

Mean± SD: 2.91 ± 1.74 
ng/mL serum (in a 

subset of 15 women) 

Positive association of 
BPA with endometriosis. 

BPA was detectable in 
52% of women with 
endometriosis. No 
detectable BPA in 

controls. 

Small sample size, limited 
information on exposure and 

confounders 
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Source Study 
design 

Study population Sample size Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Ehrlich et 
al 2012a 

Prospective 
cohort 

Women undergoing 
IVF (Massachusetts 
General Hospital) 

137 (180 
IVF cycles) 

Preconception 
(day of egg 

retrieval and start 
of cycle) 

Median: 1.53 ng/mL 
urine (specific gravity-

adjusted) 

Positive linear dose 
response association 
between BPA and 

implantation failure (aOR: 
1.02, 1.60 and 2.11 for 

BPA quartiles 2, 3 and 4 
compared to quartile 1 (p-

trend = 0.06) 

Not adjusted for male BPA 
exposure or semen quality, 
BPA measured twice per 

treatment cycle 

Ehrlich et 
al. 2012b 

Prospective 
cohort 

Women undergoing 
IVF (Massachusetts 
General Hospital) 

174 (237 
IVF cycles) 

Preconception 
(day of egg 

retrieval and start 
of cycle) 

Median: 1.50ng/mL 
urine (specific gravity-

adjusted) 

Negative association of 
female BPA with peak 

estradiol: mean decrease 
of 40, 253 and 471 pg/ml 

(p-trend 0.001); mean 
number of retrieved 
oocytes, mature and 

normally fertilized oocytes 
decreased by 24% to 27% 
respectively for highest vs. 

lowest BPA quartile (p-
trend = 0.002); trend in 

decreased blastocyst 
formation (p-trend = 

0.08) 

Not adjusted for male BPA 
exposure or semen quality, 
BPA measured twice per 

treatment cycle 

Ehrlich et 
al. 2013 

Subset of 
ongoing 

prospective 
cohort 

Women undergoing 
IVF (Massachusetts 
General Hospital) 

61 women 
(76 IVF 
cycles) 

Preconception 
(day of egg 

retrieval and start 
of cycle) 

Median: 2.59 ug/L for 
early cycle (day 3-9) and 

1.97 ug/L for the 
retrieval day urine 

Possible U-shaped 
association of BPA with 

mean Cyp19 expression: β 
estimate (95% CI) for 
quartiles 2, 3, and 4 
compared to lowest 

quartile: -0.97 (-2.22, 
0.28), -0.97 (-2.18, 0.24), 

and -0.38 (-1.58, 0.82) 

Limited sample size, 
unknown if urinary BPA 

levels reflects BPA levels at 
the ovarian follicle, timing 
of urine sample may not 

reflect relevant biological 
window of exposure 
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Source Study 
design 

Study population Sample size Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Fujimoto 
et al. 2011 

Cohort Women undergoing 
ICSI (University of 

California-San 
Francisco) 

58 infertile 
female and 

37 male 
partners 

undergoing 
IVF 

Preconception 
(day of egg 
retrieval) 

Median: 2.53 ng/mL 
(women); 0.34 ng/mL 

(men) serum 
(unconjugated) 

Null association between 
female BPA and oocyte 
maturation (aRR: 1.01, 

95% CI: 0.98, 1.05). In 9 
Asian women, 

significantly decreased 
oocyte maturation for a 
doubling of BPA (aRR: 

0.91, 95% CI: 0.83, 1.00). 
Negative association of 

female BPA with 
fertilization (aRR: 0.45, 

95% CI 0.21, 0.66) 

Small sample size, single 
serum BPA, timing of male 
exposure not clear, larger 

than expected difference in 
median serum BPA in men 

and women 

Galloway 
et al. 2010 

Cross-
sectional 

Premenopausal women 
(INChianti cohort, 

Italy) 

61 Random day of 
menstrual cycle 

Geometric mean: 3.25 
ng/mL (3.04–3.47) urine 

(creatinine-adjusted) 

Null association of BPA 
with estradiol (β = - 0.026, 

95% CI: -0.066, 0.014), 
null association with total 

testosterone; positive 
association with SHBG (β 
= 0.029, 95% CI: 0.004, 

0.054) 

Small sample size, single 
urine BPA estradiol 

measured at non-specified 
time during menstrual cycle 

Kandaraki 
et al. 2011 

Case-
control 

PCOS clinic cases and 
gynecology controls 

(Greece) 

171 (71 
cases PCOS; 
100 controls) 

At time of 
diagnosis of 

PCOS, follicular 
phase 

Mean ± SD: 1.05±0.56 
ng/mL (PCOS) vs. 
0.72±0.37 ng/mL 

[controls (p 
value<0.001)] serum 

Positive association of 
BPA with PCOS (r = 
0.497, p <0.05) for all 

PCOS cases vs. controls 
and also after stratifying 

by lean and obese 
phenotypes 

Cases and controls matched 
by age and BMI, serum BPA 

by ELISA (sub-optimal) 

Lee SH et 
al. 2013 

Case-
control 

Girls experiencing 
precocious puberty 

114 (82 
cases; 32 
controls) 

Childhood (7-10yr 
at regular 
checkup) 

Mean ± SD: peripheral-
precocious puberty, 8.7 

± 7.6µg/g creatinine; 
central-precocious 

puberty, 8.0 ± 9.9µg/g 
creatinine; controls, 6.6 

± 7.3µg/g creatinine 
urine 

Null association of BPA 
with precocious puberty. 
No differences in steroid 
metabolism between girls 

with and without 
precocious puberty, but 

possible positive 
association between BPA 
levels and testosterone, 

estradiol and 
pregnenolone in all 

subjects. 

Cases and controls matched 
by age, urine BPA by GC-

MS, small sample size 
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Source Study 
design 

Study population Sample size Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Mok-Lin 
et al. 2010 

Prospective 
cohort 

Women undergoing 
IVF (Massachusetts 
General Hospital) 

84 (112 IVF 
cycles) 

Preconception 
(day of egg 

retrieval and start 
of cycle) 

Median: 2.53ng/mL 
urine (specific gravity-

adjusted) 

Negative association of 
BPA with peak estradiol 

and oocyte yield with 
213pg/ml (p = 0.03) 

decrease in estradiol, and 
12% (p = 0.007) decrease 

in number of oocytes 
retrieved per log unit 

increase in BPA 

Small sample size, no 
adjustment for male 

exposure or semen quality, 
BPA measured twice per 

treatment cycle 

Qiao et al. 
2010 

Case-
control 

Girls with and without 
precocious puberty 

110 girls 
with 

precocious 
puberty and 

100 girls 
without 

precocious 
puberty 

At time of 
estradiol, ovary, 

and uterine 
measurements 

Detected in 40.9% of 
precocious girls and 2% 

of controls 

Positive association with 
volume of the uterus (r = 

0.557, p < 0.05) and 
volume of the ovary (r = 

0.469, p < 0.01) in 
precocious girls 

Small sample size, no 
longitudinal data 

Wolff et 
al. 2008a 

Cross-
sectional 

9 year old girls (inner 
city New York city 

1996-1997) 

192 At time of pubertal 
assessment in 

childhood 

Geometric mean: 0.24 
vs. 0.11µg/g creatinine 
for breast stage 1 vs. 2; 

0.19 vs. 0.10 µg/g 
creatinine for pubic hair 

stage 1 vs. 2 

Null association of BPA 
with breast development 
(PR: 0.96, 95% CI: 0.92, 

1.01) and pubic hair 
growth (PR: 0.98, 95% CI: 

0.89, 1.08) 

Cross-sectional study 

Wolff et 
al. 2008b 

Prospective 
cohort 

Mother-infant pairs 404 Mainly third 
trimester of 

pregnancy (25% 
of samples 

collected between 
25-30 weeks, 45% 

Range : 0.7-35.2 µL Null association of BPA 
with birth weight, birth 

length, head 
circumference, and 

gestational age 

One measure of BPA during 
third trimester 

between 31-35 
weeks, and 

remainder between 
36-40 weeks) 

Wolff et 
al. 2010 

Prospective 
cohort 

6-8 year old girls 
(multicenter: NYC, 

Cincinnati, California, 
2004-2007) 

1151 Childhood (6-8yr 
at baseline visit) 

Median : 2.0 ng/
mL urine 

(creatinine-
adjusted) 

Null association of BPA 
with early onset of 

pubertal development (p-
trend = 0.53) 

One measure of BPA at 
baseline –1 year before 
reassessment of puberty 

development 
aOR=adjusted odds ratio; aRR=adjusted relative risk; CI=confidence interval; ELISA=enzyme-linked immunoabsorbant assay; GC-MS=gas chromatography-mass spectrometry; 

ICSI= intracytoplasmic sperm injection; IVF=in vitro fertilization; PCOS=polycystic ovarian syndrome 
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Table S3. BPA and uterine outcomes in experimental studies. 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Aghajanova et 
al. 2011 

Human NA In vitro: Endometrial stromal 
fibroblasts 

48 hours 5-100µmol/L NA Decreased steroidogenic 
gene expression 

Aldad et al. 
2011 

Non-
human 
primate 

African green 
monkey 

Alzet minipump Postnatal exposure: 28 
days 

50µg/kg Adult Decreased progesterone 
receptor expression 

Aldad et al. 
2011 

Non-
human 
primate 

African green 
monkey 

In vitro: Ishikawa cells 24 hours 1µM Adult Decreased progesterone 
receptor expression 

An et al. 2013 Rat Sprague-Dawley Subcutaneous injection Neonatal exposure: 
PND17-PND19 

10, 100, 500mg/kg PND20 Decreased contractile 
activity 

Benachour and 
Aris 2009 

Human NA In vitro: Cytotrophoblasts 24 hours 0.0002- 200µg/mL After 24h of culture Increased apoptosis and 
necrosis, induced AK 
activity and Tnfα gene 
and protein expression 

Berger et al. 
2008 

Mouse CF-1 Subcutaneous injection Gestational exposure: 
GD1-GD4 

0.01-300mg/kg GD6 Decreased number of 
implantation sites, 

decreased progesterone 
Berger et al. 
2008 

Mouse CF-1 Subcutaneous injection Gestational exposure: 
GD0,1, or 2 

200 and 300mg/kg GD6 Decreased number of 
implantation sites, 

decreased progesterone 
Berger et al. 
2010 

Mouse CF-1 Subcutaneous injection Gestational exposure: 
GD1-GD4 

100, 200, 300mg/kg GD6 Increased luminal 
epithelial cell height, 

altered estrogen receptor 
and progesterone receptor 

gene expression 
Bosquiazzo et 
al. 2010 

Rat Wistar Subcutaneous injection Neonatal exposure: 
PND1,3,5,7 

0.05 and 20mg/kg PND94 Decreased endometrial 
proliferation, decreased 

Vegf expression 
Bredhult et al. 
2009 

Human In vitro: Endometrial epithelial 
cells 

24 hours 50µM After 24h of culture Decreased endometrial 
epithelial cell 
proliferation 

Bromer et al. 
2010 

Mouse CD-1 Intraperitoneal injection Gestational exposure: 
GD9-GD16 

5mg/kg 2 or 6 weeks old Decreased methylation of 
Hoxa10 promoter 

10 



 
  

             
   

 
    

 
         

 
 

   
 

   
 

      
 

 

       
  

 
  

   
 

         
 

  
 

 
   

 
     

 
     

 
    

   

   
 

      
 

 

       

   
   
 

      
  

 
 

      
  
 

 

   
 

      
 

    
 

   
 

      
    

     
   

  
          

 
       

 
 
  

      
  

   
   

 

  

 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Hiyama et al. 
2011 

mouse ICR Subcutanous injection Gestational exposure: 
GD12-GD16 

100-1000mg/kg F1 and F2: 8 weeks Increased uterine luminal 
space. decreased uterine 
epithelium, decreased 

methylation of Hoxa10 
intron 

Mendoza-
Rodriquez et al. 
2011 

Rat Wistar Drinking water Gestational and 
neonatal exposure: 

GD6-PND21 

10mg/L (1.2mg/kg) 7 weeks old Increased uterine stroma 
and epithelium thickness, 

decreased uterine 
epithelial apoptosis 

Morice et al. 
2011 

Human NA In vitro: JEG-3 trophoblast cells 24-72h 10-5M to 10-10M 4-8 week placental 
cells 

Decreased cell 
proliferation. Increased 

apoptosis 
Newbold et al. 
2009 

Mouse CD-1 Subcutaneous injection Gestational exposure : 
GD9-16 

0, 0.1, 1, 10, 100, 
1000µg/kg 

18months old Increased uterine 
abnormalities 

Salian et al. 
2009a 

Rat Holtzman Subcutaneous injection Neonatal exposure 
(males only): PND1-

PND5 

100-1600µg/kg PND15, 30, 45, 90 Increased fetal resorption, 
increased pre-

implantation loss, 
decreased litter size 

Salian et al. 
2009b 

Rat Holtzman Oral gavage Gestational and 
neonatal exposure 

(males only): GD12-
PND21 

1.2 and 2.4µg/kg GD20 or PND125 Increased fetal resorption, 
decreased litter size, 
increased hormone 

imbalances 

Signorile et al. 
2010 

Mouse Balb-c Subcutaneous injection Gestational exposure : 
GD1-PND7 

100 and 1000µg/kg 3 months old Increased endometriosis-
like structures 

Susiarjo et al. 
2013 

Mouse C57BL/6 Cast7 Dietary exposure Gestational exposure: 
Prebreed to GD9.5 

10µg/kg and 
10mg/kg 

F1: GD9.5 Disrupted imprinted gene 
expression in embryos 

and placenta 
Tan et al. 2013 Mouse ICR Oral gavage Gestational exposure : 

GD13-GD16 
2, 20, 200mg/kg GD17 Activated protein kinase 

C signaling 
Tiwari and 
Vanage 2013 

Rat Holtzman Oral gavage Postnatal exposure 
(males only): 6 days 

5 and 10µg/kg GD15 (untreated 
female mated to 

treated male) 

Decreased implantation 
sites, increased resorption 

sites 

11 



 
  

             
   

 
     

      
      

  
  

   
  

   
 

      
     

       
 

 
  

         
 

     
 

   
  

 
  

  
              

 

  
 

                

  

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Varayoud et al. 
2008 

Rat Wistar Subcutaneous injection Neonatal exposure: 
PND 1, 3, 5, and 7 

0.5 and 20mg/kg PND8 or PND94 Decreased steroid 
hormone responsiveness 

of uterine stroma, 
decreased Hoxa10 and 

Hoxa11 expression 
Varayoud et al. Rat Wistar Subcutaneous injection Neonatal exposure: 0.05 and 20mg/kg F1: GD5 or GD18 Decreased implantation 
2011 PND1, 3, 5, and 7 sites, decreased 

implantation-regulating 
gene expression 

Xiao et al. 2011 Mouse C57BL/6 Subcutaneous injection Gestational exposure: 0, 0.025, 0.5, 10, 40, GD4.5 or GD5.5 Ablated implantation, 
GD0.5-GD3.5 100mg/kg decreased embryo 

transport 
Yigit and 
Daglioglu 2010 

Chicken White Leghorn In ovo injection Incubation day 4 67 and 134µg/g 21 weeks old Decreased hatching 
proportion, uterine 

tubular glandular density, 
and thickness of tunica 

mucosa 
AK=adenylate kinase; GD=gestation day; HOXA=homeobox A; GD=gestation day; PND=postnatal day; Tnfa=tumor necrosis factor alpha; vegf=vascular endothelial factor 

12 



 
  

   

  
 

 
 

 
 

   
 

  
   

  

  

   
 

 
  

 
 

 
 

  
 

 

 
 

  
  

 

  
    

  
  

  

   
   

     
  

    
 

   
  

 
  

 

      
  

  
 

    
    
     

   
     
   
    

    

    
  

   
 

 
 

  
 

 
 

 

       
   

  
 

   
  

  
 

 
 

   
   

  
    
  

   
 

 
 

 
  

 

      
 

  

 
    
    

   
   

   
     

    
  

  
 

   
 

 
 

 

  

 
 
 

    
   

 
  
    

 

   
   

  
    

  
  
   

 
 

   
      

    
   

     
  
    

 

  
 

   
   

  
  
  
   

  
    
  

 

 

Table S4. BPA and human pregnancy and birth outcomes. 

Source Study 
design 

Study 
population 

Sample 
Size 

Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Cantowine et al. Nested case- Pregnant 60 Third trimester Geometric mean: Borderline positive BPA Pilot study, small sample 
2010 control in a women (12(20%) archived spot urine 1.45ng/mL for all women; association with preterm size 

prospective Mexico city preterm samples 1.94ng/mL for women birth, (OR 1.91, 95% CI: 
cohort (ELEMENT births) delivering preterm. Urine 0.93, 3.91) 

cohort) (SG- adjusted) 
Chou et al. Cross- Taiwanese 97 At delivery Geometric mean: 2.5ng/mL Positive association of BPA Small sample size, cross 
2011 sectional mothers and 

infants 
(maternal serum); 

0.5ng/mL (neonatal cord 
blood) 

with low birth weight (OR 
2.42, 95% CI: 1.72, 3.36); 
small for gestational age 
(OR 2.01, 95% CI: 1.39, 

3.01); high leptin (OR 1.67, 
95% CI: 1.12, 2.25); and 

low adiponectin (OR 1.25, 
95% CI: 1.52, 3.97) 

sectional design 

Fenichel et al. 
2012 

Matched 
case-control 

Boys with 
cryptorchidism 

(France) 

152 (46 
cases; 
106 

controls) 

Cord blood at birth Median: 0.86ng/mL in 
controls); 0.92ng/mL in 

cases serum 
(unconjugated) 

Null association of BPA 
with cryptorchidism. 
However, significant 

positive correlation with 
testosterone and inhibin B 

levels 

Exposure assessment of 
maternal BPA during 

pregnancy is important 
given the short half -life 

of BPA 

Lee BE et al. Multi-center Korean 757 Third trimester Geometric mean: 1.29µg/L Positive association between Urine levels of BPA may 
2013 birth cohort mothers and 

children 
(1.87µg/g creatinine) 
during late pregnancy 

BPA levels and birth 
weight; second tertile of 
maternal BPA exposure 
exhibited an increase in 

birth weight relative to the 
first tertile (p = 0.04) 

not reflect circulating 
levels, used spot urines. 
BPA values normalized 

to creatinine only 

Miao et al. Occupational Children of 587 Exposure history and Geometric mean: Exposed Negative association of 30-50% of women had 
2011a cohort 

retrospective 
occupationally 

exposed 
Chinese 
parents 

personal air sampling, 
job/exposure matrix; 

current urine in a 
subgroup, but not for 

index pregnancy 

mothers (direct exposure): 
15.98µg/g Cr (N=50). 

Spouses of exposed men 
(indirect): 2.22µg/g Cr 

(N=93). Unexposed 
mothers: 0.56µg/g Cr 

(N=444) urine (cr-
adjusted) 

BPA with birth weight (β = 
-168g, p = 0.02) for directly 

exposed fetus (maternal 
exposure); (β = -91g, p = 

0.10) for indirectly exposed 
fetus (father exposed during 

pregnancy) 

their index pregnancy 
over 15 years prior to 

enrollment to the study, 
exposure was partly 

estimated using exposure 
history of occupational 
exposure, self-report of 

baby’s birth weight. 
possible recall bias exists 

due elapsed time 

13 



 
  

  
 

 
 

 
 

   
 

  
   

  

  

   
 

 
  

 

  

 
  

 

 
 
 

   
   

  
   

  
   

 
 

 

   
   

  
    

  
  

   
  

   
    

    
    

 
    

     
    

  
 

    
    

 
     

 
 

  
 

 
    

 
 

 
 

 

       
  

 

   
    

  
  

    
     

     
    

 
 

   
 

  
   

   

   
 

  
   

 

      
  

   
   

  
     

    

   
  

    

    
   

 

   
 

 
  

 
  

     
 

   
  

   
     

 
  

   
   

   
  

   
  

    
 

   
 

   
  

Source Study 
design 

Study 
population 

Sample 
Size 

Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Miao et al. 
2011b 

Occupational 
cohort study 
retrospective 

Children of 
occupationally 

exposed 
parents (age 0-

17 years) 

153 (106 
controls, 
46 cases) 

Personal air sampling 
at time of index 

pregnancy, current 
urine for different 

categories of exposure 
as defined using 

occupational history 
and job/exposure 

matrix 

Geometric mean: Exposed 
mothers (direct exposure): 

16.0 µg/g Cr (N=18). 
Spouses of exposed men 

(indirect): 2.2µg/g Cr 
(N=38). Unexposed 

mothers: 0.6µg/g Cr(N=97) 
Urine (cr-adjusted) 

Positive linear dose 
response association of BPA 
with shortened AGD in boys 
by level of exposure, p-trend 
= 0.008; in boys of exposed 
mothers, decrease in AGD 
of 8.11mm (p = 0.003) and 
2.87mm (p = 0.15) in boys 
of exposed fathers during 

index pregnancy 

Wide age range of 
children at time of AGD 

measurement. Almost 
20% of boys were older 
than 10 years. Uncertain 

generalizability to the 
environmentally exposed 

population 

Padmanabhan 
et al. 2008 

Cross-
sectional 

Southeastern 
Michigan 
mothers 

40 At delivery Mean (SEM): 5.9 (0.94) 
ng/mL serum 

(unconjugated) 

Null association of BPA 
with birth weight and 

gestational length. Mothers 
with maternal BPA 

concentrations less than or 
equal to 5ng/ml had babies 
with similar birth weight to 
mothers with maternal BPA 

concentrations above 
5ng/mL 

Small sample size, 
limited information on 

exposure by birthweight 
(cut-off of 5ng/mL used 
in analyses), single spot 

serum at delivery 

Philippat et al. 
2012 

Nested case-
control 

Mother-infant 
male pairs 
(France) 

191 6-30 weeks gestation Median: 3.1ng/mL (in 
mother) urine 

Suggestive inverted U-shape 
association between BPA 
and birth weight in tertile 

analysis 169g (95% CI: 14, 
324); 85g (-62, 233) for 

tertile 2 and 3, respectively. 
Increase in head 

circumference by 0.3cm 
(95% CI: 0.0, 0.7) 

Single spot urine sample 
at one time point during 

pregnancy 

Snijder et al. 
2013 

Prospective 
cohort study 

Pregnant 
Dutch women 

219 Early, mid, and late 
pregnancy 

Geometric mean (SEM): 
3.2 (2.3) µg/g creatinine 

Negative association of 
BPA with fetal growth and 

head circumference. Among 
80 women with three BPA 

measurements, women with 
BPA levels above 4.22µg/g 
creatinine had lower fetal 
growth rates and fetuses 

with smaller head 
circumference than women 
with BPA levels less than 

1.54µg/g creatinine. 

Small sample size, 
difficult to obtain solid 

estimate of first trimester 
fetal growth 

14 



 
  

  
 

 
 

 
 

   
 

  
   

  

  

   
 

 
  

    
   

 
 

 
   

 

      
    

   

   
 

             

  

 

Source Study 
design 

Study 
population 

Sample 
Size 

Timing of BPA 
measurement 

BPA concentration 
(mean, geometric mean 

or median) 

Outcome Comments/limitations 

Wolff et al. 
2008b 

Prospective 
cohort 

Mother-infant 
pairs 

404 Mainly third trimester 
of pregnancy (25% of 

samples collected 
between 25-30 weeks, 
45% between 31-35 

Range : 0.7-35.2µL Null association of BPA 
with birth weight, birth 

length, head circumference, 
and gestational age 

One measure of BPA 
during third trimester 

weeks, and remainder 
between 36-40 weeks) 

AGD=anogenital distance; CI=confidence interval; Cr=creatinine; OR=odds ratio; SEM=standard error of the mean; SG=specific gravity 
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Table S5. BPA and pregnancy outcomes in experimental studies. 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Cabaton et al. 
2011 

Mouse CD-1 Alzet pump Gestational exposure: 
GD8-PND16 

25ng, 250ng, 25µg/kg 2-8months old Decreased number of 
pregnancies, decreased 

number of pups 

Howdeshell et 
al. 2008 

Rat Long-Evans Oral gavage Gestational exposure: 
GD7-PND18 

2, 20, 200µg/kg PND150 No adverse effects on 
pregnancy outcomes 

Kobayashi et 
al. 2010 

Mouse C57BL/6 Dietary exposure Gestational, neonatal, 
and postnatal exposure: 

F1: GD6-PND22; 
postnatal until sacrifice 

0.05, 0.5, 5.0mg/kg F1: 13 weeks No adverse effects on 
pregnancy outcomes 

Kobayashi et 
al. 2010 

Mouse C57BL/6 Dietary exposure Gestational, neonatal, 
and postnatal exposure: 

F2: GD6-PND22; 
postnatal until sacrifice 

0.05, 0.5, 5.0mg/kg F2:15 weeks No adverse effects on 
pregnancy outcomes 

Kobayashi et 
al. 2012 

Rat Sprague-Dawley Dietary exposure Gestational and neonatal 
exposure: GD6-PND21 

0.05, 0.5, 5.0mg/kg 5weeks; 3 months No adverse effects on 
pregnancy outcomes 

Nah et al. 2011 Mouse ICR Subcutaneous injection Neonatal exposure: 
PND8 

0.1, 1, 10, 100mg/kg PND20-PND29; 
PND25, 30, 70 

Decreased pup weight 

Nanjappa et al. 
2012 

Rat Long-Evans Oral gavage Gestational exposure: 
GD12-PND21 

2.5 and 25µg/kg PND90 No adverse effects on 
pregnancy outcomes 

Ryan BC et al. 
2010 

Rat Long-Evans Oral gavage Gestational and neonatal 
exposure: GD7-PND18 

2, 20, 200µg/kg No adverse effects on 
pregnancy outcomes 

Salian et al. 
2009a 

Rat Holtzman Subcutaneous injection Neonatal exposure 
(males only): PND1-5 

100-1600µg/kg PND15, 30, 45, 90 Decreased number of 
pups 

Salian et al. 
2009b 

Rat Holtzman Oral gavage Gestational exposure 
(males only): GD12-

PND21 

1.2 and 2.4µg/kg Males: PND125 
Females: GD20 

Decreased number of 
pups 

Tan et al. 2013 Mouse ICR Oral gavage Gestational exposure: 
GD13-GD16 

2, 20, 200mg/kg GD17 Placenta gene changes 
that could cause pre-term 

birth 

Thuillier et al. 
2009 

Rat Sprague-Dawley Oral gavage Gestational exposure: 
GD14-PND0 

0.1 to 200mg/kg PND 3, 21, 60 No adverse effects on 
pregnancy outcomes 

Tyl et al. 2008 Mouse CD-1 Dietary exposure Gestational exposure: F0 
8 weeks pre-breed, 

GD1-GD14 

0.003, 0.03, 0.3, 5, 50, 
600mg/kg 

PND1/birth Increased pup weight 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Tyl et al. 2008 Mouse CD-1 Dietary exposure Postnatal exposure: F1:8 

weeks pre-breed 
0.003, 0.03, 0.3, 5, 50, 

600mg/kg 
PND1/birth Increased pup weight 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure: F0: 
GD1-PND20 

12, 25, 50mg/kg PND50 No adverse effects on 
pregnancy outcomes 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure: F1: 
PND21-PND49 

12, 25, 50mg/kg PND50 No adverse effects on 
pregnancy outcomes 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure: F1: 
PND21-49 

12, 25, 50mg/kg PND50 No adverse effects on 
pregnancy outcomes 

Yigit and 
Daglioglu 2010 

Chicken White Leghorn In ovo injection Incubation day 4 67 and 134µg/g 21 weeks old Decreased hatching 

F0=parental generation; F1=first filial generation; GD=gestation day; PND=postnatal day 

17 



 
  

  

  
 

 
 

 
 

   
 

  
 

   

  

 
    

  

  
 

   
  

 

  
  

 
 

     

  
  

 

   
   

  
   

   
  

 
  

   
 

        

 
   

   
 

     
    
      

     
     

     
       

  
  

  

   
 

 
  

 
 

 

      
 

   
  

 

    
       

         
   

   
     

   
 

 
  

    
    

 

 
 

  
   

   
   

 
 

 
 
 

     
  

  
  

  
   
 

 

  
  

 

    
     

    
     

    
     

   

   
    

     
     

   
   

 
 

 

 

 
 

Table S6. BPA and male human reproductive outcomes. 

Source Study 
design 

Study 
population 

Sample 
Size 

Timing of BPA 
measurement 

BPA concentration 
(mean, geometric 
mean or median) 

Outcome Comments/limitations 

Galloway 
et al. 2010 

Cross-
sectional 

Italian adults 
between 20-74 

years of age 
(INChianti) 

715 Adulthood, same 
day as testosterone 

measure 

Geometric mean: 
4.02ng/mL (3.76–4.31) 

urine (creatinine-
adjusted) 

Positive association of BPA with 
total testosterone (β = 0.05, 95% CI: 
0.02, 0.08), no association with sex 
hormone binding globulin and free 

testosterone 

Relatively high BPA 
concentration for general 

population, cross-sectional study 
design, spot urine sample 

Li DK et al. 
2010 

Cross-
sectional 

Occupationally 
exposed men 

from 4 regions of 
China 

427 Pre and post shift Median : 53.7µg/g 
creatinine 

(occupationally 
exposed) and 1.2µg/g 
Cr (unexposed) urine 
(creatinine-adjusted) 

Positive association of BPA with 
sexual dysfunction, decreased sexual 
desire (β = 0.016, p < 0.001), erectile 
dysfunction (β = 0.022, p < 0.001), 
orgasmic function (β = -0.017, p < 

0.001), and overall satisfaction with 
sex life (β = -0.010, p = 0.003) 

Self-reported sexual dysfunction, 
low participation rate, possible 

current co-exposures 

Li DK et al. 
2011 

Prospective 
cohort study 

Occupationally 
exposed Chinese 

men 

218 Pre and post shift Median: 38.7ng/mL 
(occupationally 

exposed) and 1.4ng/mL 
(unexposed) urine 

(creatinine-adjusted) 

Negative linear association of BPA 
with sperm concentration (β = 15.6, p 
< 0.001); sperm count (β = -42.1, p = 

0.004) and increased odds of 
decreased sperm motility (OR: 2.3, 

95% CI: 1.0, 5.1). Associations 
stronger after excluding 

occupationally exposed men. 

Only two semen samples 
collected at 1-3 week intervals, 

small sample size for sub-
analysis on men not 

occupationally exposed to BPA 
(N=88), uncertain 

generalizability to men exposed 
to environmentally relevant BPA 

concentrations 
Meeker et 
al. 2010a 

Cross-
sectional 

Male partners of 
couples seeking 

treatment for 
subfertility 

(Massachusetts 
General 

Hospital) 

190 Same day as semen 
sample collection 
(additional urine 

samples for a 
subgroup collected 
weeks to months 
prior to semen 

sample) 

Median: 1.3ng/mL 
urine (specific gravity-

adjusted) 

Negative association of BPA with 
sperm concentration: -23% (95% CI: 

-40%, -0.3%), morphology: -13% 
(95% CI: -26%, -0.1%), suggestive 
decrease in sperm motility: -7.5% 

(95% CI: -17%, 1.5%), and increase 
in sperm DNA damage: 10% (95% 

CI: 0.03%, 19%) 

Associations only observed 
when semen parameters were 

modeled on a continuous scale, 
but not when modeled as binary 

outcome, uncertain 
generalizability of results to 
men from general population 

18 



 
  

  
 

 
 

 
 

   
 

  
 

   

  

  
   

   
  

 
 

 
 
 

     
  

 
 

   

  

  
  

 

     
     

    
     

        
    

   

   
  

 
    

    
     

 
    

   
  

   
  

  
 

 
   

 

 

 
 

   
  

  
 

   
  

 

      
 

     
    

      
    

      
    

   

   

       

  

 
 

 
 

 

 

Source Study 
design 

Study 
population 

Sample 
Size 

Timing of BPA 
measurement 

BPA concentration 
(mean, geometric 
mean or median) 

Outcome Comments/limitations 

Meeker et 
al. 2010b 

Cross-
sectional 

Male partners of 
couples seeking 

treatment for 
subfertility 

(Massachusetts 
General 

Hospital) 

167 Same day as blood 
sample for 
hormone 

measurements. 
Repeat samples in 
75 men up to 2.5 

months later 

Median: 1.3ng/mL 
urine (specific gravity-

adjusted) 

Negative association of BPA with 
estradiol:testosterone ratio (β = 0.86, 
p = 0.01) and free androgen index (β 

= 0.89, p = 0.02), and positively 
associated with FSH (β = 1.18, p = 
0.01) and FSH:inhibin B ratio (β = 

1.28, p = 0.05) 

Cross sectional study design, 
megative association with 

estradiol:testosterone ratio was 
consistent when modeling repeat 

urine BPA concentrations, but 
only a limited number of repeat 

samples were available, 
generalizability to men of 

general population is uncertain 
Mendiola et 
al. 2010 

Cross-
sectional 

Fertile male 
partners of 

pregnant women 
(Multicenter: 

Study for Future 
Families) 

302 men 
(hormones) 

317 men 
(semen 
quality) 

Same day as 
hormone profile 

and semen 
collection 

Median: 1.7 ng/mL 
urine (unadjusted) 
creatinine-adjusted 

Positive association of BPA with sex 
hormone binding globulin (β = 0.07, 

95% CI: 0.007, 0.13). Negative 
association with free androgen index 

(β = -0.01, 95% CI: -0.09, -0.004) 
and free androgen index: luteinizing 
hormone ratio (β = -0.11, 95% CI: -
0.18, -0.03). Null associations with 

semen quality parameters. 

Cross sectional study design 

CI=confidence interval; Cr= creatinine; FSH=follicle-stimulating hormone; OR=odds ratio 
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Table S7. BPA and male reproductive outcomes in experimental studies. 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Arase et al. 2011 Mouse C57BL/6 Oral gavage Gestational exposure: 

GD13-GD16 
20µg/kg GD17 to PND1 Increased estradiol levels, 

increased steroidogenic 
enzyme expression in 

urogenital sinus 
Anjum et al. 
2013 

Mouse Swiss albino Oral exposure Postnatal exposure: adult 10mg/kg body weight Adult, exact age 
unknown, after 14 

days of dosing 

Increased oxidative stress in 
testes 

Castro et al. 
2013 

Rat Wistar Subcutaneous injection Postnatal exposure: adult (4 
days) 

25, 50, 300, and 
600µg/kg 

Adult (exact age not 
reported, 30 min 

after last injection) 

Decreased testosterone, 
increased estradiol 

D'Cruz et al. 
2012a 

Rat Wistar Oral gavage Postnatal exposure: 90-135 
days old (45 days) 

0.005, 0.5, 50, 
500µg/kg 

136 days old Decreased expression of 
glucose transporters, 

increased reactive oxygen 
species production 

D'Cruz et al. 
2012b 

Rat Wistar Oral gavage Postnatal exposure: 90-135 
days old (45 days) 

0.005, 0.5, 50, 
500µg/kg 

136 days old Decreased insulin signaling, 
decreased glucose transport, 

decreased steroidogenic 
enzymes. decreased 

testosterone 
De Flora et al. 
2011 

Rat Sprague-Dawley Drinking water Postnatal exposure: adult 
(10 days) 

200mg/kg Adult (exact age not 
reported, 24h after 
last exposure day) 

Increased sperm DNA 
fragmentation, increased 
DNA adducts in prostate, 

increased clusterin 
expression 

Dobrzynska and 
Radzikowska 
2013 

Mouse Pzh:SFIS Drinking water Postnatal exposure: 8-10 
weeks (14 days) 

5, 10, 20, 40mg/kg 10 weeks old Decreased sperm count and 
motility, increased abnormal 

morphology of sperm, 
induced sperm DNA strand 

breaks 
El-Beshbishy et 
al. 2012 

Rat Albino Oral exposure Postnatal exposure: adult 
(14 days) 

10mg/kg Adults (exact age 
not reported, after 
last exposure day) 

Decreased testes weight and 
protein content, decreased 

antioxidant enzymes, 
decreased glutathione 

content, increased lipid 
peroxidation, decreased 

testosterone 
Fang et al 2013 Mouse Kunming Oral gavage Postnatal exposure: 4-5 

weeks 
0.5mg/kg body weight 3 weeks after last 

dose 
Increased oxidative stress, 
decreased testes weight, 
decreased testosterone 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Horstman et al. 
2012 

Rat Sprague-Dawley Subcutanous exposure Gestational exposure: 
GD11-GD20 

0.02, 0.5, 400mg/kg F1: GD16, 18, or 20 Decreased Star expression 
and protein levels 

Howdeshell et 
al. 2008 

Rat Long-Evans Oral gavage Gestational and postnatal 
exposure: GD7-PND18 

2, 20, and 200µg/kg PND150 No change in reproductive 
organ weight, no effect on 

AGD 
Jin et al. 2013 Rat Sprague-Dawley Oral gavage Postnatal exposure: 12-14 

weeks (14 weeks ) 
2 µg/kg 14 weeks old Decreased hormone 

production, decreased sperm 
and germ cell count, no 
change in testis weight, 

increased apoptosis 
Kobayashi et al. 
2010 

Mouse C57BL/6 Dietary exposure Gestational, neonatal, and 
postnatal exposure: GD6-

PND22; postnatal until 
sacrifice 

0.05, 0.5, 5.0mg/kg 13 or 15 weeks old Reduced sperm motility, no 
change in sperm count, 

AGD, or reproductive organ 
weight 

Kobayashi et al. 
2012 

Rat Sprague-Dawley Dietary exposure Gestational and neonatal 
exposure: GD6-PND21 

0.017, 0.17, 1.7mg/kg 5 weeks or 3 months 
old 

No change in hormones, 
sperm count/motility, AGD, 

testis, or prostate weight 
LaRocca et al. 
2011 

Mouse C57BL/6 Oral gavage Gestational exposure: 
GD10-GD16 

50 and 1000µg/kg PND56 No effect on 
spermatogenesis, Sertoli cell 

gene expression, serum 
testosterone levels, or AGD 

Li Y et al. 2009 Mouse Kunming Oral gavage Postnatal exposure: PND31-
PND44 

160, 480, 960mg/kg/d PND 45, 60, 90 Increased germ cell 
apoptosis, Leydig cell 
apoptosis, decreased 

spermatogenesis, increased 
FasL signaling 

Liu et al. 2013 Rat Wistar Oral gavage Postnatal exposure: 9-18 
weeks old (60 days) 

2, 20, 200µg/kg 18 weeks old Decreased sperm counts, 
inhibited spermiation, 

persistent meiotic DNA 
strand breaks, increased 

germ cell apoptosis 
Minamiyama et 
al. 2010 

Rat Wistar Drinking water Postnatal exposure: 8-16 
weeks old (56 days) 

1.0 or 10mg/L 16 weeks old No change in sperm count, 
reduced sperm motility, 
increased production of 

ROS in sperm 
Minamiyama et 
al. 2010 

Rat Wistar Drinking water Postnatal exposure: 12 
weeks old (7 days) 

1.0mg/L 12 weeks old No change in sperm count, 
reduced sperm motility, 
increased production of 

ROS in sperm 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Nakamura et al. 
2010 

Rat Wistar/st Subcutaneous injection Postnatal exposure: 4-9 
weeks old (4 days a week 

for 6 weeks) 

20, 100, 200mg/kg 
(11.4, 57.1, 114.2 

mg/kg/day) 

9 weeks old Decreased serum and 
intratesticular testosterone, 

decreased steroidogenic 
enzyme expression, 

decreased Esr1 expression, 
decreased Leydig cell 
number, decreased LH 

Nanjappa et al. 
2012 

Rat Long-Evans Oral gavage Gestational and neonatal 
exposure: GD12-PND21 

2.5 and 25µg/kg PND 21.35, 90 Increased Leydig cell 
number, decreased Leydig 

cell testosterone production, 
increased LHR, ESR1, AR 

N’Tumba-Byn et 
al. 2012 

Human NA In vitro: Fetal testes 3 days 10pM-10µM 6.5-10.5 gestational 
weeks 

Reduced testosterone and 
INSL3 mRNA levels 

N’Tumba-Byn et 
al. 2012 

Rat Wistar In vitro: Fetal testes 3 days 10pM-10µM 14.5 DPC Reduced testosterone in 
rodent testes 

N’Tumba-Byn et 
al. 2012 

Mouse C57BL/6 In vitro: Fetal testes 3 days 10pM-10µM 12.5 DPC Reduced testosterone in 
rodent testes 

Okada and Kai 
2008 

Mouse ICR Silastic capsule Gestational and neonatal 
exposure: Pre-breed through 

PND28 

1.2 and 60µg/day PND 28 Reduced mature spermatids 
number, no change in 

testosterone 
Prins et al. 2011 Rat Sprague-Dawley Subcutaneous injection Neonatal exposure: PND1, 

3, and 5 
10µg/kg 28 weeks old Increased prostate 

intraepithelial neoplasia 
incidence 

Prins et al. 2011 Rat Sprague-Dawley Oral exposure Neonatal exposure: PND1, 
3, and 5 

10µg/kg 28 weeks old Increased prostate 
intraepithelial neoplasia 

incidence 
Qiu et al. 2013 Rat Sprague-Dawley Oral gavage Postnatal exposure: 9-16 

weeks old (56 days) 
0.0005, 0.5, 5mg/kg 16 weeks old Altered steroidogenic 

enzyme expression, 
decreased sperm count 

Rashid et al. 
2013 

Mouse Swiss albino Oral exposure Postnatal exposure: adult 10 mg/kg body weight Adult, exact age 
unknown, after 14 

days of dosing 

Increased oxidative stress 

Salian et al. 
2009a 

Rat Holtzman Subcutaneous injection Neonatal exposure: PND1-
PND5 

100-1600µg/kg PND15, 30, 45, 90, 
125 

Decreased sperm count, 
altered hormone production 

Salian et al. 
2009b 

Rat Holtzman Oral gavage Gestational and neonatal 
exposure: GD12-PND21 

1.2 and 2.4µg/kg PND125 Decreased steroid receptors 
in F1, F2, F3 

Sánchez et al. 
2013 

Rat Wistar Subcutaneous injection Postnatal exposure: adult (4 
days) 

25 and 300µg/kg 30 min after last 
treatment 

Decreased DHT levels, no 
effect on testosterone levels, 

decreased expression of 
5αR1 and 5αR2 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Tainaka et al. 
2012 

Mouse ICR Subcutaneous injection Gestational exposure: GD7 
and GD14 

5 and 50mg/kg F1: 6 weeks old Decreased sperm count, 
gene expression mediating 

spermatozoa, altered Sertoli 
cell number and 

morphology, decreased 
genes mediating Sertoli cell 

function and androgen 
signaling 

Tang et al. 2012 Rat Sprague-Dawley Subcutaneous injection Neonatal exposure: PND1, 
3, and 5 

10µg/kg PND10, 90, 200 Altered methylation and 
expression of genes and 

transcriptional proteins in 
prostate 

Thuillier et al. 
2009 

Rat Sprague-Dawley Oral gavage Gestational exposure: 
GD14-PND0 

0.1-200mg/kg PND 3, 21, 60 Transient alterations in the 
MAPK signaling pathway 

Tiwari and 
Vanage 2013 

Rat Holtzman Oral gavage Postnatal exposure: Adults 
(6 days) 

5 and 10µg/kg End of mating cycle 
(treated males; 1 to 8 

weeks) 

Impaired mid-spermatids 
and spermatocytes, 

decreased sperm production 
and motility, increased 
sperm DNA damage 

Tyl et al. 2008 Mouse CD-1 Dietary exposure Gestational exposure: F0: 8 
weeks pre-breed, GD1-

GD14 

0.003, 0.03, 0.3, 5, 50, 
600mg/kg 

PND1/birth Decreased absolute AGD 
and delayed preputial 

separation, no effect on 
sperm, organ weight, or 

reproductive organ structure 
Tyl et al. 2008 Mouse CD-1 Dietary exposure Postnatal exposure: F1: 8 

weeks pre-breed 
0.003, 0.03, 0.3, 5, 50, 

600mg/kg 
PND1/birth Decreased absolute AGD 

and delayed preputial 
separation, no effect on 
sperm, organ weight, or 

reproductive organ structure 
Wang Q et al. 
2010 

Mouse CD-1 Oral gavage Postnatal exposure: PND35-
PND49 

160 and 480mg/kg PND50 Increase germ cell apoptosis, 
increased FasL signaling 

pathway, increased 
mitochondrial apoptotic 

signaling pathway 
Wu et al. 2013 Rat Sprague-Dawley Oral gavage Postnatal exposure: 8-10 

weeks old (10 days) 
200mg/kg 10 weeks old (24h 

after treatment) 
Induced DNA damage, 
induced oxidative stress 

Wu et al. 2011 Rat Sprague-Dawley Intragastric injection Postnatal exposure: Adult (4 
weeks) 

10, 30, 90µg/kg 12 weeks old Decreased testosterone 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Xi et al. 2011 Mouse CD-1 Oral gavage Gestational and neonatal 

exposure: F0: GD1-PND20 
12, 25, 50mg/kg PND50 Decreased steroidogenic 

enzyme expression, 
decreased testosterone 

Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure: F1: 
PND21-PND49 

12, 25, 50mg/kg PND50 Decreased steroidogenic 
enzyme expression, 

decreased testosterone 
Xi et al. 2011 Mouse CD-1 Oral gavage Postnatal exposure: F1: 

PND21-PND49 
12, 25, 50mg/kg PND50 Decreased steroidogenic 

enzyme expression, 
decreased testosterone 

AGD=anogenital distance;AR=androgen receptor; DPC=days post coitum; F0=parental generation; F1=first filial generation; F2=second filial generation; F3=third filial 

generation; GD=gestation day; Esr1=estrogen receptor 1;Fasl=Fas ligand;  INSL=insulin like factor; LH=luteinizing hormone; MAPK=mitogen activated protein kinase; 

PND=postnatal day; Star=steroidogenic acute regulatory protein 
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Table S8. BPA and sexual function outcomes in experimental studies. 

Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Adewale et al. 
2009 

Rat Long-Evans Subcutaneous injection Neonatal exposure: 
PNDO-PND3 

50µg/kg and 50mg/kg PND148 Accelerated vaginal 
opening 

DeCatanzaro et 
al. 2013 

Mouse CF-1 Dietary exposure Postnatal exposure: 
GD10-PND9 

0.175, 1.75, 17.5µg PND60 or PND90 Increased latency to 
insemination, decreased 

intromissions with 
females, decreased 

ejaculations 

DeCatanzaro et 
al. 2013 

Mouse CF-1 Dietary exposure Postnatal exposure: 
GD10-PND9 

17.5, 175, 1750µg PND85-PND105 Increased latency to 
insemination, decreased 

intromissions with 
females, decreased 

ejaculations 

Fernandez et al. 
2009 

Rat Sprague-Dawley Subcutaneous injection Gestational exposure: 
PND1-10 

5µg/50µL, 50µg/50µL, 
500µg/50µL 

PND12; adults Accelerated puberty 
onset and estrous 

cyclicity, decreased 
gonadotropin releasing 

hormone and luteinizing 
hormone function 

Nah et al. 2011 Mouse ICR Subcutaneous injection Neonatal exposure: 
PND8 

0.1, 1, 10, 100mg/kg PND20-PND29; 
PND25, 30, 70 

Accelerated vaginal 
onset, decreased estrous 

cyclicity 

Ryan et al. 
2010 

Rat Long-Evans Oral gavage Gestational and neonatal 
exposure: GD7-PND18 

2, 20, 200µg/kg NA No adverse sexual 
function effects 

Salian et al. 
2009a 

Rat Holtzman Subcutaneous injection Neonatal exposure 
(males only): PND1-5 

100-1600µg/kg PND15, 30, 45, 90 Increased time taken for 
copulation, decreased 

copulation index 

Salian et al. 
2009b 

Rat Holtzman Oral gavage Gestational exposure 
(males only): GD12-

PND21 

1.2 and 2.4µg/kg males: PND125 
females: GD20 

Increased time taken for 
copulation in F1, F2, F3 
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Source Animal Strain Exposure route Time of exposure Doses Age at collection Outcome 
Tyl et al. 2008 Mouse CD-1 Dietary exposure Gestational exposure: 0.003, 0.03, 0.3, 5, 50, PND1/birth No adverse sexual 

F0: 8 weeks pre-breed, 600mg/kg function effects 
GD1-GD14 

Tyl et al. 2008 Mouse CD-1 Dietary exposure Postnatal exposure: F1: 8 
weeks pre-breed 

0.003, 0.03, 0.3, 5, 50, 
600mg/kg 

PND1/birth No adverse sexual 
function effects 

F1=first filial generation; F2=second filial generation; F3=third filial generation; GD=gestation day; PND=postnatal day 
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