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Additional data file 6: Stimulus-appropriate secretion of insulin constitutes the core function of the beta cell. We therefore looked at the genes 
required for glucose uptake and glycolysis (A), stimulus secretion coupling (B) and insulin exocytosis (C) - interconnected processes vital for 
the release of insulin dependent on ambient glucose concentration as summarized schematically in (D) and reviewed in detail elsewhere [1-3]. 
Among the most significantly enriched genes in our data that are involved in beta cell stimulus secretion coupling are the facilitated glucose 
transporter Slc2a2 (a.k.a. Glut2) and glucose-6-phosphate convertase 2 (G6pc2), which are selectively expressed in mouse beta cells [4, 5]. 
G6pc2, which regulates fasting glucose [6-8] and is an autoantigen for type 1 diabetes [9], is the 11th most abundantly expressed gene in 
mouse beta cells (Figure 3C). Ero 1-like beta (Ero1lb), involved in disulphide formation between the insulin amino acid chains, and proprotein 
convertase subtilisin/kexin type 1 (Pcsk1), specifically required for insulin but not glucagon processing, are highly enriched in beta cells as 
expected (Figure 3D). The most significantly enriched in mouse beta cells among the many proteins that coordinate docking and fusion of the 
secretory vesicle with the cell membrane is synaptotagmin-like 4 (Sytl4, a.k.a. granuphilin) (Figure 3E), which in mouse islets is required for 
granule docking to the plasma membrane while preventing vesicle fusion and insulin release [10, 11]. Finally, class B GPCRs such Glp1r, Gipr 
and Crhr1 that can potentiate glucose-stimulated insulin secretion [12, 13], are significantly enriched in beta cells.
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