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ABSTRACT A number of excitable cell types respond to a
constant hormonal stimulus with a periodic oscillation in
intracellular calcium. The frequency of oscillation is often
proportional to the hormonal stimulus, and one says that the
stimulus is frequency encoded. Here we develop a theory of
frequency encoding in excitable systems and apply it to
intracellular calcium oscillations that result from increases in
the intracellular level of inositol 1,4,5-trisphosphate.

Cytoplasmic calcium (Ca hereafter) is a second messenger in
many signal transduction processes. In recent years it has been
found that Ca-based systems show a rich variety of dynamics
in response to constant stimuli, including excitability, oscilla-
tions, and traveling Ca waves (1, 2). In some systems the
response involves spikes whose frequency is proportional to
the input stimulus. In the study of Ca dynamics in hepatocytes,
Woods et al. (3) found that over the range of 200 nM to 1 ,uM
in the concentration of vasopressin, constant stimuli evoke
repetitive spikes in Ca concentration rather than simply ele-
vating the level of Ca. Moreover, they found that as the
hormone concentration was raised, the frequency of spiking
increased but the amplitude remained nearly constant. Thus
the continuously graded (analog) extracellular hormone signal
was converted into a frequency-encoded digital signal (the
number of Ca spikes).
Many types of cells transduce the amplitude of a stimulus

into a frequency of Ca oscillations in response to a variety of
stimulatory signals. For example, the oscillation frequency in
hepatocytes is regulated by phenylephrine, angiotensin II,
endothelin 1, glucagon, and ATP (3-5). Frequency encoding
has also been found in endothelial cells in response to hista-
mine and fluid shear stress (6), in mesangial cells in response
to vasopressin, and in hair cells of the ear in response to
pressure (7). Since similar dynamic behavior has been found in
numerous cell types, it has been suggested that Ca spiking and
frequency encoding may have a physiological role (8).

Consider an excitable system described by equations of the
form

e d =f(x,y,p)
dt

Herex E R, y E R, p E Rk is a parameter vector, and s is a small
positive number. We suppose that f and g are smooth and
defined everywhere in R2 and a specified subset of the param-
eter space Rk. We further suppose thatf = 0 can be solved for
y in the formy = F(x,p), whereF is "cubic-like" inx in the sense
that it has exactly one minimum at x0, one maximum at xl, and

[1]

xo < x1. Finally we suppose thatg = 0 can be solved fory in the
form y = G(x, p), that G is monotone increasing in x, and that
the graph of G intersects f = 0 exactly once (Fig. 1). Many
models of oscillatory or excitable systems that arise in physics,
chemistry, and biology can be written in the form of Eqs. 1 (cf.
ref. 9).
When y = G(x, p) intersects y = F(x, p) at x < xo, the rest

point (xl, y,) is stable, and when it lies sufficiently close to the
minimum iny = F, the system is excitable. On the other hand,
when the rest point lies between the minimum and the
maximum and E is sufficiently small, Eqs. 1 have a periodic
solution. Finally, when g = 0 intersectsf = 0 to the right of the
maximum, the system is overstimulated and the rest point
becomes stable again.
To understand how spiking above a baseline level of Ca

occurs, suppose that the constant stimulus leaves f = 0 fixed
but moves g = 0 so that the rest point lies on the ascending
branch of f = 0. If E is sufficiently small, the oscillations are
composed of a rapid horizontal "upstroke" in x, a slow
decrease of x and increase of y along the right branch off =
0 (the excited state), a rapid horizontal "downstroke" ofx, and
a slow increase in x and decrease of y during the recovery
phase. Such solutions are called relaxation oscillations or
"spikes." Frequency encoding will result if the input simply
multiplies both f and g, which is equivalent to scaling the time
in proportion to the input. An increased frequency of the
periodic solutions to increased stimuli may also result from
scaling the slow dynamics, since the time the system spends in
the upstroke and downstroke is very small. This is the second
mode of frequency encoding. In addition, we may scale only
one portion of the slow dynamics, for example, in the region
of x < xo (Fig. 1) to scale the recovery time. In this case the
overall shape of the spike is not changed, but the time spent in
the recovery phase is reduced. These possibilities will be
analyzed in the following sections.

The Mathematical Aspect of Frequency Encoding

We will call Eqs. 1 the nondegenerate system; the correspond-
ing degenerate system is obtained by setting £ = 0.

0 =f(x,y,p)
dy

=K g(x,y,p).-
[21

By hypothesis the first equation in Eqs. 2 defines a curve F in
the R2 plane, and we assume that (fy(x, y, p))2 + J(X, y, p))2
> 0 on F. A point is called regular if fx(x, y, p) # 0 and
otherwise it is a nonregular point. We assume that the non-
regular points on r are isolated and that for any nonregular
point f,,,(x, y, p) 0 0. In case a point is regular, we can locally

Abbreviations: IP3, inositol 1,4,5-trisphosphate; ER, endoplasmic re-
ticulum.
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FIG. 1. Schematic of the isoclines f = 0 and g =
excitable system.
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express the curve as x = X(y, p). If a branch of V is composed
of only regular points and fx(x, y, p) < 0, this branch is called
stable. Discontinuous solutions of Eqs. 2 can be constructed by
patching together instantaneous jumps between stable
branches and slow motion along the stable branches. The
transition between stable branches occurs at the junction points
where fx(xo(y, p), y, p) = 0 (see ref. 10). If a discontinuous
solution forms a closed orbit Z0 in the (x, y) plane, then Zo is
called a discontinuous periodic solution of Eqs. 2. The period
of this periodic solution is T(0) = fz0 dy/g(x, y, p).
THEOREM 1. Suppose that Eqs. 2 have a closed orbit Zo and

the above-mentioned regularity conditions are satisfied. Then for
sufficiently small 6, the nondegenerate system (Eqs. 1) has a
unique and stable limit cycle Z8, which uniformly approaches Zo
as s -O 0. In addition, the period of ZE is T(E) = T(O) + ae2/3
+ o(E2/3), where a is a constant.
A proof of this theorem is given in ref. 10. The approxima-

tion of the periodic solution to Zo is of order s on the stable
branches away from junction points and of order ea for the fast
motion part, where a . 2/3. In a neighborhood of the junction
points, the approximation is of order ea for a . 0. This
approximation is called the zeroth approximation. Theorem 1
can be extended to the case in which x and y are both vector
variables, provided some additional regularity assumptions are
met (10). From this theorem, we have the following corollary.
COROLLARY 1. Let si and £2 be small and cM = max(el, 62).

If the degenerate system (Eqs. 2) has a closed orbit ZO and the
conditions in Theorem 1 are satisfied, then (i) the nondegenerate
system (Eqs. 1) has periodic solutions (4(t, si) with period T(si),
(i = 1, 2); (ii) I4(t, s1) - 4(t, 82)1 = o(1) for 0 c t c T, where
T > 0 is fixed; and (iii) T(ci) - T(82) =.O&M)2J3).

Exact frequency encoding results when the input multiplies
both f and g, since then it corresponds to a simple scaling of
time with no change in the amplitude. In approximate fre-
quency encoding, the amplitude changes little with the input,
and the frequency is approximately proportional to the input.
The fact that T(0) is the dominant contribution to the period
when s > 0 is sufficiently small suggests that approximate
frequency encoding will exist if the input scales the slow
dynamics. To make this precise, suppose that h can be taken
out ofg(x,y,p) as a multiplicative factor-i.e., g(x,y,p) =
y, p). All other parameters are assumed to be fixed, and we
suppose that h does not appear in f(x, y, p). In this case
Corollary 1 implies the following result.
THEOREM 2. Suppose that the conditions in Theorem 1 are

satisfied and suppose that Eqs. 2 have a periodic solution #(t, ho,
s) ofperiod T(ho, e)for h = ho and s > 0. Further, suppose that
r = h/ho is C(1) and let EM = max(sh, sho). Then for sufficiently
small sM > 0, (i) Eqs. I have aperiodic solution 4(t, h, E) = 4P(rt,
ho, re) with period T(h, s) = T(rho, E), (ii) I' (t/r, h, s) - 00,
hO, s)I = o(1)for 0 s t C max(rT(h, E), T(ho, E)), and (iii) rt(h,
E) - T(ho, E) - 0(2/3).

Finally, there are two other types of approximate frequency
encoding, which are more difficult to quantify, but which may

be the most important ones from an experimental standpoint.
In many systems described by equations like Eqs. 1, the
periodic solutions are characterized by a short time spent in the
excited state and a long time spent in the recovery state, due
to a large difference in the speed on the right and left branch
of f = 0 (see Fig. 1). If the input modulates the speed of
recovery, then one can obtain approximate frequency encod-
ing. Alternatively, approximate frequency encoding results if
the speed of recovery is unchanged, but the length of the
recovery period is decreased by shortening the left branch of
f = 0. This alters the baseline level of the recovery variable, but
the shape of the spikes is approximately unchanged, as in the
above cases. Since the information is carried by the spikes, the
end result of signal transduction is not affected. This type of
approximate frequency encoding will be illustrated later in the
context of the model for Ca oscillations.

A Four-State Model for Intracellular Ca Dynamics

A four-state model for the IP3-sensitive Ca channel connecting
the endoplasmic reticulum (ER) and the cytoplasm was pro-
posed in ref. 1. The transitions between the different states
occur according to the following scheme:

k,I k2C k3C

R - RI - RIC+ A RIC+C-.
k- X k-2 k_3

[3]

Here R denotes the bare receptor for the IP3-sensitive Ca
channel, I denotes IP3, C denotes the cytoplasmic Ca, RI
denotes the receptor-IP3 complex, and RIC+ (RIC+C-) de-
notesRlwith Ca bound at the activating site (the activating and
inhibitory sites).

Let Ci be the dimensional Ca concentration in the cyto-
plasm, and let xi, i = 2, ... , 5, denote the fractions in states
R, RI, RIC+, and RIC+C-, respectively. We assume that there
is no exchange of Ca between the extracellular medium and the
cytoplasm, which is a good approximation where Ca influx into
the cell is small. We further assume that the conductivity of the
IP3-sensitive channel is a linear function of the fraction of
channels open, and we suppose that the rate for the pump that
reloads the ER is described by a Hill function with coefficient
2. Then the governing equations for Ca and the channel
fractions are as follows (cf. ref. 1):

dCi PiCi
dt = (1 + vX)9go +g9X4)(CM - C) - vrC2 +pz

= -k11x2 + k1x3dtX =-k1IX2 + k_jx3

dt = -(k-1 + k2Ci)x3 + k1Ix2 + k-2x4 [4]

d= -(k-2 + k3Ci)x4 + k2Cix3 + k-3x5
dt5

-= k3Cix4- k-3x5.dt

Here vr is the ratio of the ER volume to the cytoplasmic
volume, and CM is the volumetric average Ca concentration.
The parameter values used are listed in Table 1. This set of
parameters differs from the set estimated in ref. 1, but the rates
used here are consistent with the known equilibrium data and
they lead to a sharper separation between the slow and fast
dynamics in the system.
We introduce new dimensionless variables T = t-k-3, y = X5,

and x = Ci/CM and use the fact that 12L2xi = 1 to reduce Eqs.
4 to

Proc. Natl. Acad. Sci. USA 92 (1995)



Proc. Natl. Acad. Sci. USA 92 (1995) 7871

Table 1. Dimensional parameters and their values

Constant Definition Value

V, ER volume/cytoplasmic volume 0.185
g0 Leakage coefficient 0.025 s-1
gi Channel conductance 36.0 s-1
Pi Maximum pump rate 54.0 ,uMs-1
P2 Michaelis constant 0.03 ,uM
CM Average Ca concentration 1.56 ,uM
ki IP3 on rate 120.0 jiM-1s-1
k2 On rate for activation 150.0 gM-' s-'
k3 On rate for inhibition 0.18 ipM-1s1
k-1 IP3 off rate 96.0 s-1
k-2 Off rate for activation 18.0 s-1
k-3 Off rate for inhibition 0.018 s-1

Table 2. Definition of the dimensionless parameters and
their values

Parameter Definition Value

1.88 x 10-4

6

a3

dx x
E = (a,1 + at2X4)(1-X) - 2 +2dT x~~~.~+ a3

dy
= 32x(1 -x2 - X3 -y) -y

dx2 X2 [5]
81 -=-s +X3dT (1) 1)3

dX3 ( X2 X3X
SdT =-33 1o(,), pi_

where the definitions of dimensionless parameters and their
values are listed in Table 2. The binding and release of IP3 at
the IP3 site and the binding and release of Ca at the activating
site on the channel are rapid compared with the binding and
release of Ca at the inhibitory site. Thus El and 62 are small and
we may formally set them to zero to obtain

1o(I)1j(1 - y)
X2 + '1(i + PO(I))

1-(1 -y)

X3 x + 03i(1 + 1O(i)) [6]

x(l -y)
4X + 91(i + PO())

1o(,)

132

f3

k_3
k-2
k-3CM
Vrp 1

(1 + vr)CMgO
Vrp 1

(1 + Vr)CAMgi
Vrp 1

P2
CM
k-1
kil
k-2
k2CM
k3CM
k_3

1.0 X 10-3

2.81 x 10-3

4.63 x 10-3

6.66

0.019

0.8/I

0.077

15.625

5.33

tration lies in a suitable range. The recovery of excitability is
due to the recovery of the channel from the inhibited state,
rather than to restoration of Ca. The Ca oscillations have the
property of frequency encoding as the IP3 concentration is
varied, which will be investigated in the following section.
When the IP3 concentration exceeds a certain level, the
periodic solutions disappear and the system remains at a
sustained high level of cytoplasmic Ca. The transitions from
excitable responses to oscillations and from oscillations to a
high level of cytoplasmic Ca can be easily understood by
studying the null clines in the phase plane. As the IP3 level
increases, the steady-state solution at the intersection of the
null clines goes from stable, to unstable, and to stable again as
IP3 increases. A computer simulation of several types of
behavior of this system is shown in Fig. 4. This simulation
matches the experimental data obtained from endothelial cells
well (6).

The remaining differential equations are

dx x(l - Y) x2
£ d = al(l -x) + a2 X)x±+1(1+ 20(I)) x2+cy

dy _ f32x2(1 - Y)
dT x + P3M(l + }3o(I))

[7]

Thus the system for intracellular Ca dynamics with an IP3-
sensitive channel has the same form as Eqs. 1. Moreover, the
nullclines are similar to those for a typical excitable system
shown in Fig. 1 (compare with Fig. 2). Also shown in Fig. 2 is
a periodic solution, and the time course of the Ca component
for this solution is shown in Fig. 3.

This simple system not only reproduces all the experimen-
tally observed phenomena qualitatively but it can also simulate
most of these results quantitatively. For example, the steady-
state fraction of open channels as a function of pCa is a
bell-shaped curve, and the parameter values used here predict
the experimental results very well. When a step change in Ca
is applied to the channel equations, the fraction of channels in
the open state (X4) shows partial adaptation (11). The complete
model simulates the excitability to pulses of Ca or IP3 at low
IP3 levels and results in Ca oscillations when the IP3 concen-

Frequency Encoding in the Model System

As we remarked earlier, we get exact frequency encoding if the
input scales the time, and this would occur in the present model
if IP3 scaled the off rate k3. However, this is not the case, nor

1.2

1.0

0.8

0
b 0.6

0.4

0.2

0.0
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Dimensionless Ca

FIG. 2. Null clines (solid lines) and a periodic solution (dashed
line) of Eqs. 1 for IP3 = 0.5 ,tM.
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FIG. 3. The time course of the Ca component of the periodic
solution shown in Fig. 2.

is there a scaling for which this is true. We can obtain
approximate frequency encoding by introducing a multiplica-
tive factor h on the right hand side of Eqs. 7. According to
Theorem 2, if we scale h by a factor of r, the period of the
oscillations will change by a factor of approximately llr. This
is illustrated in Fig. 5. By comparing Figs. 3 and 5, we see that
as h increases the period decreases. The width of the Ca spike
changes as well, since the time scale is altered in both the
excited and the recovery phase.
Although we are able to obtain frequency encoding through

changes in h, h is an artificially introduced factor and there is
no uniform multiplicative factor for the slow dynamics that is
modulated by IP3 directly. Yet we see from Fig. 4 that the
model exhibits frequency encoding, and to determine how well
it does, we have computed the solution over the entire
oscillatory range. In Fig. 6 we display the Ca concentration and
the period of the oscillations as a function of IP3 concentration.
We see that the amplitude only changes by 20% over a wide
range of IP3 concentrations, whereas the period changes
10-fold. This indicates that frequency encoding arises via the
third mode identified earlier-namely, via modulation of the
dynamics in the recovery phase. In principle such modulation
could occur either via a change in the speed on the slow branch
or by changing the length of the slow branch, or both. To
understand which occurs in this system, we display the null
clines as a function of IP3 in Fig. 7. We see that the length of
the slow branch changes dramatically with the change in IP3,
whereas a multiplicative factor on the slow dynamics would not
alter the null clines. We can also see here that the peak of
cytoplasmic Ca will decrease slightly and the basal level will
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0.4
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0.0

0 2 4 6 8 10 12 14
Time (min)

16

FIG. 4. Simulation of the response to a time-dependent level of IP3.
The IP3 concentration was held at 0.5 ALM for t E (0, 5), at 2 ,uM for
t E (5, 10), and at IP3 = 1.0 yM thereafter.

increase slightly in this mode of frequency encoding. The latter
fact is what is observed experimentally in ref. 12.
We can qualitatively understand why the slow branch

changes as follows. As the IP3 level increases, the number of
channels in the RI and RIC+ state increases in the recovery
phase, which leads to a higher basal level of cytoplasmic Ca.
This increased basal level means that less additional RIC+ is
needed to trigger the positive feedback loop that produces the
Ca increase and that Ca can increase (f> 0) at a larger value
of RIC+C-. These two aspects are reflected in the null cline
of dx/dt = 0 in Fig. 7 as (i) a rightward shift of the minimum;
and (i) the upward shifting of the minimum, as the IP3 level
increases. This upward shift decreases the recovery time and
leads to frequency encoding.

Discussion

We have shown that there are three distinct modes by which
frequency encoding can arise in excitable systems. The last
two, which are the important ones, are based on modulating
the slow dynamics of the system. The second mode is via a

uniform modulation of the speed of the slow dynamics in both
the excited and the recovery phase, while the third only
involves a modulation of the time spent in the recovery phase.
In the third mode the amplitude and width of the spike is
essentially unchanged. In each case, the frequency modulation
is accomplished by changing a single parameter in the system.

In the model for Ca dynamics analyzed here, frequency
encoding in IP3-regulated Ca oscillations is of the third type.
Only one branch of the null cline for the fast dynamics is
shortened significantly by a change in the frequency encoding
parameter, the IP3 concentraeion; the other branch is affected
very little. As a result, the time course of the excited phase is
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FIG. 5. Frequency encoding due to changes in the scale factor h for
fixed IP3 = 0.5 ,LM. (A) h = 0.5. (B) h = 2.0.
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FIG. 6. Ca concentration (A) and period (B) as a function of IP3

concentration (,uM). A solid (dashed) line denotes a stable (unstable)
steady state, and a solid (open) circle denotes a stable (unstable)
periodic solution. In A the maximum Ca value on the orbit is shown
for periodic solutions.

essentially unaltered and the recovery phase is compressed
with increasing IP3. The minimum Ca concentration reached
is raised as the IP3 level increases in this case. This differs from
the first two modes of frequency encoding, in which the
minimum level of Ca is unaltered by changes in the input
parameter.

1.2

1.0

0.8

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dimensionless Ca

FIG. 7. Null clines of Eqs. 7 for different values of IP3. For thef =
0 null cline, the solid line corresponds to IP3 = 0.5,uM, and the dashed
lines correspond to IP3 = 1.0 AiM (upper curve) and IP3 = 0.42,iM
(lower curve). For the curve g = 0, only IP3 = 0.5,uM is shown; the
other two curves (IP3 = 0.42,uM, IP3 = 1.0,uM) are very close to this
one.

Ca dynamics in hepatocytes has served as a model system for
experimental studies on frequency encoding (3, 13, 14). As a
stimulus is increased, the frequency of oscillation can increase
more than 20-fold, while the change in amplitude is minimal.
A typical duration of the Ca spike in response to agonists is
about 7 sec (3), despite the fact that the period may vary from
210 sec to 10 sec (15). Furthermore, for certain hormones the
time course of an individual spike is essentially unchanged over
wide ranges of the stimulus (16, 17). In addition, there is an
increase in the basal Ca level as the oscillation frequency
increases (12). These observations demonstrate that frequency
encoding in hepatocytes in response to certain agonists is of
the third type of frequency encoding identified in this paper.
The simplified model represents the above-mentioned phe-
nomena very well.

Experiments show that there may be two types of Ca stores
in hepatocytes, one 1P3-sensitive and possibly a ryanodine-
sensitive one (18, 19). Different hormones may interact with
either one or both Ca stores to mediate intracellular Ca
variations (5). The exact nature of the interaction between the
two stores is unclear. This restricts the application of our model
to study frequency modulations if both the IP3-sensitive and
the ryanodine-sensitive Ca stores are involved. However, the
model is appropriate, at least for the cases when only the
IP3-sensitive Ca store is involved. The Ca oscillations in
response to phenylephrine is one such case, since the dynamics
are not affected by ryanodine in this case (16).
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