Text S2. Parameter estimation

The model parameters were estimated using Bayesian inference [1]. The posterior

distribution for the parameters is given by Bayes’ formula

W(a7 /87 p? 5|D)O<P(D|a7 /67 p7 5)71—(O{7 /87 p7 6)7

where D represents the data, 7 (o, 3, p, 0) is the joint prior distribution for the parameters
(reflecting our knowledge prior to experimental observation), and P (D|a, 3, p, d) is the
likelihood (the probability of the data given the parameters).

The likelihood can be written down explicitly in the case of uncensored data, D"¢,
when the times of all epidemiological transitions are known (i.e. the time of infec-
tion t¥ and the time to symptoms t! for each host, i). The "uncensored” likelihood,
P(D"™¢|a, 8, p, d), is the product of three types of contributions; from trees that at the
time of the final survey (tena = 82 months) are (i) infectious, denoted by I(tenq); (ii)

infected but not infectious, E(tena); and (iii) still susceptible, S(tena)

P (D™a, B, p, 6) = H ¢Z(tf) exp (— /5 i gbz(u)du) pexp (_P (tz] - tzE))
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Here, ¢;(t) = 8 c1) K (dij, a) is the hazard function for tree i at time ¢ (cf. Equation
5 in the main text).

In our case, however, the exact transition times are unknown, and the likelihood is



obtained from (1) by integrating out the unobserved times

P (Dla, B, p, §) = / P (D"™|a, B, p, 0) dt®dt!,

T

where the integral is carried out on the space T spanned by the unobserved times con-
sistent with the observational data. This integral is not analytically tractable, and was
instead calculated numerically within an MCMC routine using data augmentation. The
unobserved times {tF}, {t/} were therefore treated as nuisance parameters to be estimated
in parallel with the model parameters of interest (i.e. «, 3, p, §) [2,3].

The joint posterior distribution for the augmented set of parameters was estimated
using the Metropolis-Hastings algorithm [1]. Independent prior distributions were used for
all parameters: uniform priors were used for a (with support [0,10%] m), 8 (with support
[0,10%] m? month™"), and ¢ (with support [0,26] month, corresponding to the period for
which no symptomatic hosts were observed). For the inverse incubation period, p, we used
a weakly-informative exponential prior with mean 1/12 month™!, informed by previous
estimates [4]. Prior distributions for all augmented times of individual transitions were
uniform over the support consistent with the observational data.

Each Monte Carlo chain was run for 5 x 10° iterations and was monitored for con-
vergence, with an initial burn-in period of 5 x 10* iterations discarded from the analysis.
Different initial values of the parameters were used, in order to check that the final dis-

tribution was not sensitive to the initial conditions.
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