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1. Ising model inference

1.1 Data preparation

We downloaded multiple sequence alignments (MSA) for the HIV-1 clade B Gag proteins p17
and p24 from the Los Alamos National Laboratory HIV database (http://www.hiv.lanl.gov).
To obtain a represenative sample of the population we selected only one sequence per patient
and sequences labeled by the database as “problematic” were excluded, yielding a total of
4389 sequences for p17 and 4003 sequences for p24. After downloading, the MSA data
was processed to remove insertions relative to the HXB2 reference sequence (Leitner et al.,
2005). The nucleotide sequences were then translated into sequences of amino acids, with
ambiguous codons translated as blanks.

We determined the most common amino acid at each position in the proteins, which we refer
to as the “wild-type” amino acid. We then translated each sequence in the MSA into a binary
form by assigning a 0 to each position where the amino acid matched the wild-type, and a
1 to each position where there was a mismatch. For example, if the wild-type amino acid
sequence for a protein segment is MGARAS, a sequence MGAIAS would be written in binary
form as 000100. Both p17 and p24 are, on average, highly conserved: the consensus amino
acid was observed in a super-majority (�80%) of the sequence data at 84% of positions for
p17 and 94% of positions for p24. We thus expect that a binary representation of the data
will be su�cient to capture useful information about correlated mutations in these proteins.

The binarized MSA data consists of B sequences s(k), k = 1, . . . , B, with B = 4389 for p17
and B = 4003 for p24. We write each sequence s

(k) = {s(k)
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total length of the protein (N = 132 for p17 and N = 231 for p24), and s
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2 {0, 1} is a
binary variable which specifies whether there is a zero or a one at position i in sequence k.
The one- and two-point correlations we obtain from the data are then
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The one-point correlations p

⇤
i

measure the frequency of mutations at each position i, and
the two-point correlations p⇤

ij

measure the frequency of pairs of mutations occuring simulta-
neously at two positions i, j.

1.2 Maximum entropy model for viral fitness

A suitable model for viral fitness should be able to capture the pattern of correlated mutations
observed in the MSA. It has been argued for statistical inference that, in the absence of
information which would lead us to select a particular model, the maximum entropy model
consistent with the data should be favored because it is the least constrained model which
is capable of describing the system (Jaynes, 1982).

The maximum entropy probabilistic model capable of reproducing the correlations (Eqn. 1)
is the Ising model. In this framework, the probability of observing a particular sequence s

is given by

P (s) =
e
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Z

, (2)
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where E(s) is the energy of s,
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and Z, the partition function, is a normalizing constant which ensures that the probability
of observing all possible sequences adds up to one,

Z =
X

s

e

�E(s)

. (4)

Here the sum over s represents a sum over all the 2N possible binary sequences of length
N . Following the conventions of statistical physics, we refer to the N parameters {h

i

} in
(Eqn. 3) as fields, and the N(N � 1)/2 parameters {J

ij

} as couplings.

Note that the probability measure (Eqn. 2) places greater weight on sequences with low
energies. Thus, the lower the energy of a given sequence, the higher its predicted fitness.

1.3 The inverse Ising problem

In order to fit an Ising model to the MSA data, we must solve the inverse Ising problem: we
must determine the fields {h

i

} and couplings {J
ij

} appearing in (Eqn. 3) such that the one-
and two-point correlations obtained from the Ising model
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match the empirical correlations from the MSA (Eqn. 1). We use h·i in (Eqn. 5) to denote
an average with respect to the probability measure (Eqn. 2). Note that this average depends
upon the value of the {h

i

} and {J
ij

}.
Maximum likelihood estimation, a fundamental method of statistical inference, provides one
method of solution of the inverse problem. The approach is as follows. We can compute via
(Eqn. 2) the probability or likelihood of observing the collection of MSA data {s(k)} as a
function of the parameters {h

i

}, {J
ij

}:
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For convenience, we will use the logarithm of the likelihood, divided by the number of
sequences B,
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The fields and couplings {h
i

}, {J
ij

} which maximize the likelihood (or equivalently, the
average log-likelihood (Eqn. 7)) then satisfy
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Thus we see that the {h
i

} = {h⇤
i

}, {J
ij

} = {J⇤
ij

} which maximize the likelihood of the exper-
imental data, (if they exist and are finite, see (Barton and Cocco, 2013)), also reproduce the
experimentally measured one- and two-point correlations. While maximization of (Eqn. 7)
provides a method by which the desired {h⇤

i

}, {J⇤
ij

} may be obtained, this equation has no
analytical solution for N > 3, and, because the number of terms in the partition function
scales exponentially with the system size, direct numerical maximization is precluded for
systems with N & 20.

For practical purposes, to control the e↵ects of undersampling and noise in the data, we also
add a regularization term
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to (Eqn. 7) which penalizes large couplings in the inference. Here � is a variable that controls
the strength of the regularization. The addition of this term to (Eqn. 7) can be interpreted
in a Bayesian sense as assuming a Gaussian prior distribution for the couplings {J

ij

}. The
regularization introduces a compromise between structure, in the form of couplings between
sites, and predictive power, the agreement between the inferred correlations and those ob-
tained from data. Regularization is also helpful from a numerical perspective as it accelerates
the fitting of model parameters.

1.4 Solution of the inverse Ising problem

To solve the inverse Ising problem, we used the method of selective cluster expansion (SCE)
(Cocco and Monasson, 2011, 2012; Barton and Cocco, 2013), which constructs an estimate
for the {h⇤

i

}, {J⇤
ij

} by directly solving (Eqn. 7), including the regularization term (Eqn. 9),
for small subsets of the full system and combining the results. For thorough reviews of this
method, see (Cocco and Monasson, 2012; Barton and Cocco, 2013).

In some cases, the SCE algorithm became too computationally expensive (when the number
or size of clusters in the expansion becomes too large) to continue running e↵ectively and was
stopped before convergence. To find acceptable values for the {h

i

}, {J
ij

} we then employed a
simple gradient descent learning algorithm (Nocedal and Wright, 1999), using the couplings
and fields obtained from the SCE as a starting point. The learning algorithm consists of
iterative rounds of Monte Carlo simulation of the Ising model to determine the one- and
two-point correlations, followed by an update to the fields and couplings
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The multiplier ↵ was chosen adaptively at each step in the algorithm. The �-dependent term
in (Eqn. 10) for the couplings {J

ij

} enforces the regularization in the same way as (Eqn. 9).

The quality of the fit of the inferred Ising model to data was measured by errors on the one-
point correlations {p
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The denominators in (Eqn. 11) measure the typical fluctuations of the data expected due to
finite sampling (Cocco and Monasson, 2011),
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The inferred Ising model is considered to fit the data well when ✏

p

, ✏

c

/ 1. This condition
implies that the correlations of the inferred Ising model match those in the MSA to within
the uncertainty of the MSA correlations due to finite sample size. If while running the SCE
algorithm or the learning algorithm a set of {h

i

}, {J
ij

} satisfying ✏

p

, ✏

c

/ 1 was found, the
fields and couplings were recorded and the algorithm terminated.

1.5 Model selection

For both p17 and p24 we tested 100 di↵erent values of the regularization strength, chosen
over two orders of magnitude in equally-spaced logarithmic steps around an initial guess of
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which was shown to give good results in similar problems (Cocco and Monasson, 2011). By
construction, the inferred Ising models obtained using di↵erent values of the regularization
strength typically fit the one- and two-point correlations {p⇤

i

}, {p⇤
ij

} quite well (otherwise it
would not be possible to achieve ✏

p

, ✏

c

/ 1).

To choose between many Ising models inferred with di↵erent values of the regularization
strength �, all of which fit the one- and two-point correlations well, we made a comparison
with higher order statistics. Unlike the {p

i

} and {p
ij

}, higher order statistics, such as three-
point correlations or the probability P (n) of observing sequences with n mutations with
respect to the wild-type sequence, are not constrained in the inference problem. A good fit
to these higher order statistics is thus a measure of the predictive power of the inferred Ising
model. Because mutations in the p17 and p24 proteins are rare at most sites (p̄⇤ = 0.09 for
p17 and p̄

⇤ = 0.03 for p24), typical three-point correlations are small, and thus more sensitive
to noise due to finite sampling. To choose a “best” model for making fitness predictions, we
selected the inferred Ising model which obtained the best fit to the P (n) mutations curve,
which is less sensitive undersampling issues.
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2. Numerical inference of multiclade Potts viral fitness landscapes 
 
2.1 HIV-1 clade B p17 and p24 sequence data for model parameterization 
 
Multiple sequence alignments of the HIV-1 p17 and p24 proteins comprising 2474 and 
2136 DNA sequences, respectively, were downloaded from the Los Alamos National 
Laboratory HIV database (http://www.hiv.lanl.gov). Sequences were restricted to HIV-
1 subtype B, and limited to those derived from drug-naïve hosts and not classified in 
the database as “problematic.” The sequence alignments were processed to remove 
insertions with respect to the HXB2 reference sequence (Leitner, 2005), and translated 
into the cognate protein sequence. Ambiguous codons containing unknown bases or gaps 
were translated as an unknown amino acid residue. The one and two-position amino 
acid residue frequencies, P1i  and P2ij , were computed from the multiple sequence 
alignments (MSA) as the fitting targets for inference of the Potts model parameters,  
and . 
 
2.2 Gauge fixing of Potts model parameters 
 
Following Morcos et al., dependencies between the one and two-position marginals allow 
us to define an arbitrary reference state for each  vector and  matrix with no loss of 

generality by setting hi Ai = a( ) = 0  and Jij Ai = a,Aj( ) = Jij Ai,Aj = a( ) = 0 , where a  is a 

particular amino acid residue (Morcos, 2012). Mathematically, the Potts Hamiltonian 
(Eqn. 14) possesses a “gauge invariance,” wherein the  and  parameter values may 
be modified in a coordinated fashion to leave the value of E unchanged (Weigt, 2009). 
Elimination of this degeneracy in the model is achieved by specifying reference energies, 
and is known as “gauge fixing.” We observe that this model degeneracy and gauge fixing 
necessitates that one must be circumspect in assigning physical interpretations to 
individual model parameters.  
 
In this work, we elect to pin to zero the  and  elements corresponding to the most 
probable amino acid in each position. Fitting of the remaining vector and matrix 
elements to reproduce the observed one and two-position amino acid frequencies is a 
convex inverse inference problem possessing a unique solution corresponding to the 
maximum likelihood estimates of the Potts model parameters (Weigt, 2009; Morcos, 
2012; Ferguson, 2013). 
 
2.3 Model simplification 
 

hi
Jij

hi Jij

hi Jij

hi Jij
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The number of parameters in the Potts Hamiltonian described in (Eqn. 14) is 
mq+m(m−1)q2 2 , where m is the number of positions in the protein, and q=21 is the 
number of natural amino acid residues, plus the unknown residue, that may occupy each 
position. To simplify the model, and accelerate and stabilize numerical fitting of its 
parameters, we reduced the number of model parameters by truncating the  vector at 
each position and  matrix at each pair of positions to contain only those residues that 
are actually observed in each position within the MSA. This simplification restricts the 
generality of the inferred model, rendering it unable to assign energies to viral strains 
containing residues in particular positions that were not observed within the training 
data. For sufficiently many sequences in the MSA, we anticipate that viable mutant 
strains containing point mutations not present within this data will be rare. 
 
In principal, this model simplification is not required, and it is possible to fit a model 
containing parameters for all amino acid residues at all positions. This would require 
additional model regularization to stabilize numerical fitting of the model by adding 
pseudo-counts to the P1i  marginals in an analogous manner as described below for the 
P2ij  marginals, and would significantly increase the computational effort required for 
numerical parameterization. 
 
2.4 Bayesian regularization 1: Addition of pseudo-counts to P2ij  marginals 
 
The viral sequences constituting the MSA represent an incomplete sampling of the 
mutational space available to the HIV-1 virus. Correspondingly, it is expected that not 
all possible pairs of amino acid mutations will be present within the data. (In contrast, 
the model is restricted as described above, such that only those point mutations that are 
observed within the data are represented in the model.)  
 
To reflect this incomplete knowledge, we wish to assert our belief that these pairs of 
mutations are not infinitely improbable, but just sufficiently unlikely that they are not 
represented within our finite sequence data. We encode this assertion as a Bayesian 
prior by adding pseudo-counts to our two-position frequency computations (Sivia and 
Skilling, 2003). Physically, this can be interpreted as asserting that every possible pair 
of amino acid mutations is observed a small number of times, and adding these counts 
to those computed from the MSA. In practice, we add a small value, γ2 ninj , to each 
element of the P2ij  matrix for each pair of positions – where ni  is the number of single 
residue parameters contained within the truncated  vector (see above) – and 
iteratively rescale the rows and columns of the matrix to reproduce the corresponding 
P1i  and P1j  marginals. 

hi
Jij

hi
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2.5 Bayesian regularization 2: Gaussian prior distribution on Potts model parameters 
 
To further stabilize numerical fitting of our model, we adopt a second form of 
regularization on the Potts model parameters to regularize growth of the absolute 
parameter values. This regularization was imposed in response to empirical observations 
of coupled groups of  and  elements exhibiting uncontrolled absolute growth in 
numerical fitting of the model. We enforce this regularization in the context of a 
Bayesian approach to parameter estimation (see below), and adopt a Gaussian prior 
distribution over the Potts model parameters, θ


= hi, Jij{ } , 

 

 
P θ

( ) = P hi{ }( )P Jij{ }( ) =Πi Πq exp −λh hi q( ) 2

#
$

%
&⋅Πi

Π
j>i
Π
q
Π
r
exp −λJ Jij q, r( ) 2

#
$

%
&,    (14) 

 
Physically, this prior distribution penalizes large values of model parameters, reflecting 
our belief that the parameters should not grow arbitrarily large, and restraining 
uncontrolled growth of coupled groups of parameters. We observe that substituting the 
L2-norms for L1-norms in the above expression corresponds to the specification of a 
Laplacian prior distribution, which represents another common choice of regularizing 
prior (Sivia and Skilling, 2003). 
 
2.6 Numerical inference of parameters by semianalytical gradient descent 
 
In a generalization of our previous approach for Ising parameter inference (Ferguson, 
2013), the parameters of the Potts model were fitted using a semianalytical extension of 
the iterative gradient descent implemented by Mora and Bialek (Mora and Bialek, 
2011). Adopting a Bayesian perspective, we seek to maximize the likelihood, L , of the 
model parameters, θ


= hi, Jij{ } , given the observed protein sequences in the MSA (the 

“data”, D ) under the adopted prior distribution, P θ

( ) . The likelihood of the model 

given the data is,  
 

    L D θ


( ) = P θ

D( )∝P D θ


( )P θ


( ) .     (15) 

 
P θ

( )  is given by (Eqn. 14), and, assuming the sequences in the MSA to be independent 

and identically distributed, 
 

    P D θ


( ) = ΠA{ }
P A

( )

Pobs A

( )K

,     (16) 

hi Jij
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where P A


( )  is the probability predicted by the Potts model of sequence  within the 

space of all possible sequences given by (Eqn. 14), Pobs A

( )  is the observed probability of 

sequence  within the MSA, and K  is the number of sequences in the MSA. 
 
It may be shown that the likelihood in (Eqn. 15) is maximized with respect to the model 
parameters θ


= hi, Jij{ } when, 

 
    P1i q( ) = P1iobs q( )+ 2

K λhhi q( ) ,          (17a) 

    P2ij q, r( ) = P2ijobs q, r( )+ 2
K λJ Jij q, r( ) .    (17b) 

 
The parameter values satisfying these relations correspond to the maximum a posterior 
(MAP) estimates of the model parameters, and may be viewed as regularized versions of 
the maximum likelihood estimates (Sivia and Skilling, 2003). 
 
In practice, the MAP estimate may be numerically computed by iteratively adjusting 
the Potts model parameters from some initial guess until (Eqns. 17a,b) are satisfied, and 
the model parameters converge. In a generalization of our previous approach (Ferguson, 
2013), the Potts Hamiltonian (Eqn. 14) admits an analytical expression for the 
Jacobian,  
 

    J =
∂ P1i (q), P2ij (q, r){ }
∂ hi (q), Jij (q, r){ }

,     (18) 

 
enabling the formulation of a multidimensional Newton search for the MAP parameter 
estimates. (Numerical estimates of the gradients would require double the number of 
model probability evaluations to estimate gradients, resulting in a less efficient 
multidimensional secant search subject to greater sampling noise.)  
 
Using the analytical expressions for the gradients, the Taylor expansions for the one and 
two-position amino acid probabilities predicted by the model, P1i, P2ij{ }, around target 

probabilities, P1i
*, P2ij

*{ } , retaining in each expansion only the term in each probability 

marginal’s “own” model parameter are,  
 

              P1i
* q( )  = P1i q( )+

∂P1i q( )
∂hi q( )

Δhi q( )+… 

A


A

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   = P1i q( )+P1i q( ) P1i q( )−1"# $%Δhi q( )+…,    (19a) 

          P2ij
* q, r( ) = P2ij q, r( )+

∂P2ij q, r( )
∂Jij q, r( )

ΔJij q, r( )+… 

   = P2ij q, r( )+P2ij q, r( ) P2ij q, r( )−1"# $%ΔJij q, r( )+….   (19b) 

 
 
These expressions may be rearranged to establish the Newton steps, 
 

   Δhi q( ) = γh
P1i

* q( )−P1i q( )
P1i q( ) P1i q( )−1( )
#

$
%
%

&

'
(
(
,     (20a) 

   ΔJij q( ) = γ J
P2ij

* q, r( )−P2ij q, r( )
P2ij q, r( ) P2ij q, r( )−1( )
#

$
%
%

&

'
(
(
 ,    (20b) 

 
 
where γh and γ J  are softening parameters to improve numerical stability of the fitting 
trajectory. Under the Gaussian priors on the model parameters, the target probabilities 
are given by (Eqns. 17a,b), and the Newton steps become, 
 

   Δhi q( ) = γh
P1i

obs q( )−P1i q( )+ 2
K λhhi q( )

P1i q( ) P1i q( )−1( )
#

$
%
%

&

'
(
(
,    (21a) 

   ΔJij q( ) = γ J
P2ij

obs q, r( )−P2ij q, r( )+ 2
K λJ Jij q, r( )

P2ij q, r( ) P2ij q, r( )−1( )
#

$
%
%

&

'
(
(
.   (21b) 

 
 
2.7 Monte-Carlo evaluation of model probabilities 
 
Repeated application of the Newton steps in (Eqns. 21a,b) iteratively converge the 
model parameters to their MAP estimates. At each iteration, the one and two-position 
amino acid probabilities predicted by the model, P1i, P2ij{ }, at the current parameter 

values are computed by Markov-chain Monte-Carlo (MCMC) (Ferguson, 2013). We 
implement this process by initializing the Markov chain to a protein sequence vector, A



, in which each position is occupied by the most probable amino acid residue observed 
in the data, and the Markov chain is then evolved for a fixed number of steps, M , by 
proposing point mutations in the protein sequence and accepting or rejecting these 
mutations according to the Metropolis acceptance criterion (Frenkel and Smit, 2002). 
The one and two-position amino acid frequency marginals are estimated from the series 
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of sequences realized in the Markov chain. Evaluation of these probabilities at each 
Newton step is the principal computational cost of our numerical fitting approach. 
 
2.8 Parameter initialization 
 
To accelerate the numerical fitting of the model parameters, initial values for the hi  
vector elements were specified using the P1i

obs  values by assuming an independent site 
model (i.e., by setting all Jij  elements in (Eqn. 14) to zero). All Jij  matrix elements 
were initialized as zero. 
 
2.9 Numerical results 
 
We inferred the MAP estimates of the Potts hi, Jij{ }  parameter values for p24 by 

performing N =10,000 Newton steps with softening parameters γh = γ J  = 0.01, and 
regularization parameters γ2 =0.1, λh K =0.0, λJ K=2.5×10-3.  To further stabilize the 
numerical fitting, the Jij  values were only updated every other Newton step, and the 
maximum Newton step at each iteration limited to 0.01. M =8,000,000 MCMC steps 
were performed at each Newton step, and the P1i, P2ij{ }  marginals evaluated by 

sampling every 10th realization of the MCMC trajectory.  
 
The p17 model parameters were inferred by performing N =25,000 Newton steps. 
Identical fitting parameters were implemented to p24, with the following two 
exceptions. Since the protein is shorter, the number of MCMC steps per Newton 
iteration was reduced to M =2,000,000. A milder Jij  regularization strength of λJ K
=1.0×10-3 was admitted without compromising the stability of the fitting procedure. 
 
In the case of p24, an in-house C++ implementation of the numerical fitting algorithm 
parallelized over 32 2.66 GHz Intel Xeon CPU cores under MPI required approximately 
11 days of wall time (~1.4 years of CPU time) to converge. For p17, 5 days of wall time 
using 16 cores was required (~80 days of CPU time). 
 
In Figs. 1 and 2 we present a comparison of the p17 and p24 one and two-position 
amino acid frequencies in the MSA to those computed by performing MCMC sampling 
from the final Potts model. 
 
 
  



3. Comparison with experimental measurements of replicative ca-

pacity

3.1 Correlation with energy for the uncorrected, regularized Ising model

Once we chose the best fitting Ising model for p17 and p24, we computed the energy (Eqn. 3)
of the NL4-3 sequence, E(s

NL4�3

), as well as the energy of each mutant which was tested in
the replicative capacity (RC) experiments. Assuming that the RC of a virus with a given
sequence is proportional to its probability (Eqn. 2) in the inferred Ising model, we have

RC
mutant

RC
NL4�3

=
e

�E(smutant)

e

�E(sNL4�3)
, (22)

so that

�E = E(s
mutant

)� E(s
NL4�3

) = log

✓
RC

mutant

RC
NL4�3

◆
. (23)

Thus, we expect the di↵erence in energy between the wild-type and a mutant sequence
should give an indication of (the logarithm of) the ratio of their RC. For comparison with
previous results, we show the di↵erences in energy computed for the original, unregularized
Ising model (Ferguson et al., 2013) in Figure 3 and Table 1.

Table 2 shows the di↵erence in energy �E between the NL4-3 sequence and each mutant, as
well as the RC ratio RC

mutant

/RC
NL4�3

, with RC
NL4�3

= 1 for convenience. The correlation
between �E and the RC ratio is strong and highly significant (Pearson ⇢ = �0.82, p =
1.89⇥ 10�11).

In practice, we may be more interested in more coarse-grained measures of viral fitness: will
a virus with a given sequence be able to replicate with an e�ciency similar to the wild-type,
or will it be significantly impaired? To explore this point, we grouped the experimentally
tested mutants into two categories, fit (RC ratio > 0.5) and unfit (RC ratio  0.5). We then
fit a linear classifier to the data using logistic regression (Hastie et al., 2009), with �E as
the predictor variable and the fitness class, fit or unfit, as the outcome. In this model the
probability that a mutant with �E = x is assigned to the fit category is given by

P (fit) =
e

�0+�x

1 + e

�0+�x

, P (unfit) = 1� P (fit) =
1

1 + e

�0+�x

, (24)

with �

0

and � determined by maximum likelihood. Analysis was performed with the sta-
tistical package R (R Core Team, 2012). As a measure of classifier performance, we also
report the area under the receiver operating characteristic curve (AUROC), which is formed
by plotting the true positive rate of the classifier versus as a function of the false positive
rate for all potential values of the threshold (Peterson et al., 1954). An AUROC value of
1 represents perfect classification, while 0.5 represents classification accuracy equivalent to
chance.

In this case we found the maximum likelihood logistic function (Eqn. 24) with �

0

= 7.346 and
� = �0.991. The inferred crossover point is �E

cross

= 7.413; mutants with �E < �E

cross

are assigned to the fit group, while those with �E > �E

cross

are predicted to be unfit. This
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classifier is quite accurate, classifying 38 out of the 43 mutants (88.4%) correctly (AUROC=
0.88). The accuracy and significance of this classifier are also stable under reasonable changes
of the classification criterion (e.g. RC ratio cuto↵ of 0.4 instead of 0.5).

Excluding p17 mutants, we find for p24 a slightly stronger correlation between the energy
and fitness (Pearson ⇢ = �0.84, p = 4.78⇥10�11). The maximum likelihood classifier trained
on this data has �

0

= 7.322 and � = �1.019. This gives a cuto↵ of �Ẽ

cross

= 7.185, which
classifies 35 of 38 mutants (92.1%) correctly (AUROC= 0.91).
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Mutations Gag protein �E

RCmutant
RCNL4�3

186I p24 75.76 0.67
269E p24 40.45 0
186I269E p24 Infinity 0
295E p24 19.83 0.94
186I295E p24 Infinity 0
181R p24 41.64 0
310T p24 3.27 0.9
181R310T p24 Infinity 0
182S p24 22.15 0.97
198V p24 Infinity 0
182S198V p24 Infinity 0
179G p24 53.11 0.8
229K p24 41.64 0.75
179G229K p24 94.03 0
174G p24 Infinity 0
243P p24 63.67 0.36
174G243P p24 Infinity 0
168I p24 35.60 0.82
315G p24 16.13 0.86
168I315G p24 Infinity 0.36
331R p24 8.78 0.96
186I331R p24 Infinity 0
302R p24 8.12 0.85
302R315G p24 Infinity 0.45
315G331R p24 Infinity 0.86
190I p24 38.54 0.39
190I302R p24 Infinity 0.56
219Q p24 3.75 0.99
242N p24 5.70 0.91
219Q242N p24 7.82 0.99
146P p24 4.23 0.99
147L p24 0.44 0.95
146P147L p24 3.59 1
326S p24 1.61 0.64
310T326S p24 7.55 1.04
173T p24 2.93 0.88
173T286K p24 1.91 0.94
173T286K147L p24 1.14 1
12K p17 0.31 0.95
12K54A p17 1.41 1.01
86F p17 4.57 1.05
92M p17 5.31 0.99
86F92M p17 Infinity 1.07

Table 1: Table of energy di↵erences �E computed by the unregularized Ising model (Ferguson
et al., 2013) and replicative capacity ratios RC

mutant

/RC
NL4�3

for the experimentally tested mu-
tants. All mutations are defined with respect to the NL4-3 sequence. Labeling of mutation positions
is with respect to the start of Gag. The energy of the NL4-3 sequence is 3.43 for p17 and 2.98 for
p24.
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Mutations Gag protein �E

RCmutant
RCNL4�3

186I p24 6.16 0.67
269E p24 7.33 0
186I269E p24 13.50 0
295E p24 5.32 0.94
186I295E p24 11.48 0
181R p24 8.46 0
310T p24 2.19 0.90
181R310T p24 10.65 0
182S p24 3.43 0.97
198V p24 7.87 0
182S198V p24 11.30 0
179G p24 7.10 0.80
229K p24 6.63 0.75
179G229K p24 13.72 0.00
174G p24 9.10 0
243P p24 7.08 0.36
243P174G p24 16.18 0.00
168I p24 6.00 0.82
315G p24 3.18 0.86
168I315G p24 10.59 0.36
331R p24 3.69 0.96
186I331R p24 9.85 0.00
302R p24 4.06 0.85
302R315G p24 8.63 0.45
315G331R p24 6.87 0.86
190I p24 4.51 0.39
190I302R p24 8.57 0.56
219Q p24 1.98 0.99
242N p24 3.02 0.91
219Q242N p24 4.37 0.99
146P p24 1.94 0.99
147L p24 0.58 0.95
146P147L p24 2.10 1.00
326S p24 1.11 0.64
310T326S p24 4.05 1.04
173T p24 2.14 0.88
173T286K p24 2.89 0.94
173T286K147L p24 2.26 1.00
12K p17 0.27 0.95
12K54A p17 1.55 1.01
86F p17 2.89 1.05
86F92M p17 7.83 1.07
92M p17 4.35 0.99

Table 2: Table of regularized Ising model energy di↵erences �E (Eqn. 23) and replicative capacity
ratios RC

mutant

/RC
NL4�3

for the experimentally tested mutants. All mutations are defined with
respect to the NL4-3 sequence. Labeling of mutation positions is with respect to the start of Gag.
The energy of the NL4-3 sequence is 1.675 for p17 and 3.736 for p24.
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3.2 Correction for the e↵ects of mutations

The inverse Ising procedure infers an Ising model approximates the empirical distribution
obtained from the MSA data, consistent with the one- and two-point correlations. Predicted
energies/fitnesses then provide estimates for the likelihood of measuring a given sequence.
However, given that viruses can mutate during replication, the prevalence of a particular
strain in the population does not necessarily correspond with its ability to replicate. For
instance, viruses which are completely unable to replicate will still occasionally be produced
due to mutation of similar, replication-competent viruses. The following is a very simple
attempt to account for these e↵ects.

We assume that the steady state distribution of viruses with sequence s is given by the Ising
model probability measure

P (s) =
e

�E(s)

Z

. (25)

Let us consider a simple model where replication takes place in discrete steps, and after each
step the old population is replaced by the new. For all viruses independent of sequence, the
probability of mutating during a replication step is ↵ ⌧ 1. When a mutation occurs, one
site is chosen at random and its value is flipped from a zero to a one, or vice versa.

Let us call Q(s) the fraction of all the viruses produced in each replication step which are
the o↵spring of viruses with sequence s, including those which mutate during replication.
Then the steady state condition gives

P (s) = (1� ↵)Q(s) +
↵

N

X

s

0|ds,s0=1

Q(s0), (26)

where d

s,s

0 is the Hamming distance between sequences s and s

0, such that the sum in
(Eqn. 26) is a sum over all sequences s0 separated from sequence s by a single mutation.

We will now solve for Q(s)/P (s) to first order in ↵. This ratio represents the number of
expected o↵spring that each virus with sequence s will produce in each replication step.
Rearranging (Eqn. 26) and dividing through by P (s) we have

Q(s)

P (s)
=

1

1� ↵

0

@1� ↵

N

X

s

0|ds,s0=1

Q(s0)

P (s)

1

A
. (27)

To zeroth order in ↵, Q(s) is simply equal to P (s), so (Eqn. 27) is

Q(s)

P (s)
= 1 + ↵

0

@1� 1

N

X

s

0|ds,s0=1

P (s0)

P (s)

1

A+O(↵2). (28)

The interpretation of (Eqn. 28) is physically intuitive. If the sequences which di↵er from s

by a single mutation occupy on average a larger fraction of the population than P (s), then
in the dynamics there is a net flow in to sequence s from its (mutational) neighbors, thus
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under the steady state assumption Q(s) must be smaller than P (s). Conversely, if the fitness
of neighbors of s is smaller than P (s), the net flow due to mutation is out, and Q(s) > P (s).

We can also use (Eqn. 28) to compute an energy Ẽ(s), which di↵ers from E(s) by terms of
order ↵, which approximates the distribution for the number of o↵spring produced by each
sequence in each replication step, rather than the total population fraction. Up to a constant
which is independent of the sequence s,

Ẽ(s) = E(s)� ↵

0

@1� 1

N

X

s

0|ds,s0=1

exp [E(s)� E(s0)]

1

A+O(↵2) . (29)

An analogous equation can be similarly derived for Potts models. In this case the sum over
sequences s0 a Hamming distance of 1 away from s also includes a sum over di↵erent possible
amino acids at each site, so that the normalizing factor is not 1/N but 1/Nq, where q is the
number of states.

Adding in this correction to the energy improves the correpsondence with real fitness mea-
surements. For most mutants the correction is very small; however, preferentially for the
mutants which are unable to replicate, the corrections are much larger, leading to better
separation between mutants with zero and finite replicative capacities. For the following
computations we used ↵ = 3N ⇥ 10�4, though the results do not depend strongly on the
specific value of ↵.

Table 3 shows the di↵erence in the corrected energy �Ẽ for the regularized Ising model
between the NL4-3 sequence and each mutant and the RC ratio RC

mutant

/RC
NL4�3

. This
data is also reproduced in Figure 4. The correlation between �Ẽ and the RC ratio is
improved relative to the uncorrected energy (Pearson ⇢ = �0.83, p = 3.73⇥ 10�12).

As before, we can train a linear classifier on the data with mutants categorized into fit
(RC ratio > 0.5) and unfit (RC ratio  0.5) classes. Here the maximum likelihood logistic
function (Eqn. 24) is obtained with �

0

= 7.451 and � = �0.960. The inferred crossover point
is �Ẽ

cross

= 7.761; mutants with �Ẽ < �Ẽ

cross

are assigned to the fit group, while those
with �Ẽ > �Ẽ

cross

are predicted to be unfit. In this case 39 of the 43 mutants (90.7%)
are classified correctly (AUROC= 0.93), and the di↵erence between the classes is highly
significant (Mann-Whitney U = 32, p = 4.51⇥ 10�7).

If we focus on p24 alone we find a slightly stronger correlation between the energy and fitness
(Pearson ⇢ = �0.85, p = 1.42 ⇥ 10�11). The maximum likelihood classifier trained on this
data has �

0

= 7.298 and � = �0.968. This gives a cuto↵ of �Ẽ

cross

= 7.539, which classifies
35 of 38 mutants (92.1%) correctly (AUROC= 0.91), with a stronger di↵erence between
classes (Mann-Whitney U = 4, p = 2.38⇥ 10�9). Figure 5 shows fitness of each mutant and
whether its energy is above or below the classifier cuto↵.

In contrast to the results found for the Ising model, the correction (Eqn. 29) for the Potts
model is quite small. In this case the correlation between energy and RC is only slightly
a↵ected, and the accuracy of the Potts model classifier is unchanged. Figure 6 demonstrates
the small perturbation of the Potts model energies due to the correction.

17



Mutations Gag protein �E

RCmutant
RCNL4�3

186I p24 6.31 0.67
269E p24 7.79 0.00
186I269E p24 14.10 0.00
295E p24 5.38 0.94
186I295E p24 11.68 0.00
181R p24 9.87 0.00
310T p24 2.19 0.90
181R310T p24 12.07 0.00
182S p24 3.44 0.97
198V p24 8.65 0.00
182S198V p24 12.09 0.00
179G p24 7.46 0.80
229K p24 6.85 0.75
179G229K p24 14.32 0.00
174G p24 11.80 0.00
243P p24 7.43 0.36
174G243P p24 19.23 0.00
168I p24 6.13 0.82
315G p24 3.18 0.86
168I315G p24 11.11 0.36
331R p24 3.70 0.96
186I331R p24 10.01 0.00
302R p24 4.08 0.85
302R315G p24 8.72 0.45
315G331R p24 6.88 0.86
190I p24 4.53 0.39
190I302R p24 8.61 0.56
219Q p24 1.98 0.99
242N p24 3.03 0.91
219Q242N p24 4.37 0.99
146P p24 1.95 0.99
147L p24 0.58 0.95
146P147L p24 2.10 1.00
326S p24 1.11 0.64
310T326S p24 4.05 1.04
173T p24 2.14 0.88
173T286K p24 2.89 0.94
173T286K147L p24 2.26 1.00
12K p17 0.27 0.95
12K/54A p17 1.55 1.01
86F p17 2.89 1.05
86F/92M p17 7.88 1.07
92M p17 4.37 0.99

Table 3: Table of mutation-corrected energy di↵erences �Ẽ (Eqn. 29) and replicative capacity
ratios RC

mutant

/RC
NL4�3

for the experimentally tested mutants. All mutations are defined with
respect to the NL4-3 sequence. Labeling of mutation positions is with respect to the start of Gag.
The mutation-corrected energy of the NL4-3 sequence is 1.640 for p17 and 3.672 for p24.
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3.3 Classifier with Potts model energies

As presented in the sections above, we can also use energy values from the Potts model fit
for training a classifier (see Table 4 for the di↵erence in the Potts model energy between each
mutant and the NL4-3). Mutants are again divided into two classes, fit (RC ratio > 0.5)
and unfit (RC ratio  0.5), and the probability of a mutant being assigned to either class is
taken to be a logistic function (Eqn. 24), with parameters chosen to maximize the likelihood
of the data.

Focusing on p24 only, we find that the maximum likelihood is attained with the parameters
�

0

= 5.075 and � = �0.573. This yields a cuto↵ energy of �E

cross

= 8.850, which correctly
classifies 29 of 36 mutants (80.6%, overall AUROC= 0.82), and the di↵erence between the
classes is strong (Mann-Whitney U = 34, p = 2.93⇥10�4). The performance of this classifier
is shown in Figure 7. If p17 mutants are also included, the maximum likelihood classifier has
�

0

= 5.075 and � = �0.573, thus the crossover point is �E

cross

= 8.850. In this case 33 out
of 41 mutants (80.5%) are classified correctly (AUROC= 0.82), and the di↵erence between
the classes remains significant (Mann-Whitney U = 70, p = 3.98⇥ 10�3). In each case here,
and for the classifiers trained using Ising model energy values, leave-one-out cross-validation
confirms that the expected prediction error is similar to the error rates obtained for the full
set of data.
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Mutations Gag protein �E

RCmutant
RCNL4�3

186I p24 6.80 0.67
269E p24 7.75 0
186I269E p24 14.54 0
295E p24 6.60 0.94
186I295E p24 13.36 0
181R p24 7.69 0
310T p24 2.77 0.90
181R310T p24 10.44 0
182S p24 5.24 0.97
198V p24 * 0
182S198V p24 * 0
179G p24 7.14 0.80
229K p24 7.24 0.75
179G229K p24 14.38 0.00
174G p24 7.27 0
243P p24 6.65 0.36
243P174G p24 13.89 0.00
168I p24 5.87 0.82
315G p24 6.20 0.86
168I315G p24 11.96 0.36
331R p24 4.73 0.96
186I331R p24 11.42 0.00
302R p24 4.79 0.85
302R315G p24 10.86 0.45
315G331R p24 10.79 0.86
190I p24 6.97 0.39
190I302R p24 11.69 0.56
219Q p24 2.47 0.99
242N p24 3.61 0.91
219Q242N p24 5.64 0.99
146P p24 1.83 0.99
147L p24 0.31 0.95
146P147L p24 2.11 1.00
326S p24 1.26 0.64
310T326S p24 4.37 1.04
173T p24 2.59 0.88
173T286K p24 3.32 0.94
173T286K147L p24 2.34 1.00
12K p17 1.57 0.95
12K54A p17 2.82 1.01
86F p17 3.19 1.05
86F92M p17 9.76 1.07
92M p17 6.62 0.99

Table 4: Table of regularized Potts model energy di↵erences �E and replicative capacity ratios
RC

mutant

/RC
NL4�3

for the experimentally tested mutants. All mutations are defined with respect
to the NL4-3 sequence. Labeling of mutation positions is with respect to the start of Gag. The
energy of the NL4-3 sequence is 2.81 for p17 and 4.43 for p24. (* denotes sequences with mutations
not observed in the MSA, so their energies cannot be computed in the Potts model as described
here.)
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3.4 Comparison between Potts and Ising model descriptions of a simple toy model

In this study, we tested the fitness of sequences with mutations from the NL4-3 reference to
the most commonly observed mutant amino acid at each codon (or set of codons) selected.
This strategy allows for the best comparison of the tested mutants’ fitness with Ising model
predictions, and is a reasonable approach for a conserved protein such as Gag, where the
diversity of di↵erent amino acids observed at each site is typically quite low. However, this
approach may conceal some potential advantages of a Potts model over an Ising model for
making fitness predictions.

Here we demonstrate, using a simple toy model, that the binary approximation (i.e. Ising
model representation) of a sequence with multiple possible amino acids at each site displays
several biases which can lead to inaccurate predictions. In particular, we show the following
results for the Ising model.

1. The energy of mutants at a site where several di↵erent mutations are similarly likely
is underestimated (equivalently, the fitness is overestimated).

2. The energy of rare mutants is severely underestimated (equivalently, the fitness is
overestimated).

3. Inferred interactions tend to reflect interactions between the most common mutants.

Consider a model protein where each site is one of three possible amino acids: one “wild-type”
amino acid, denoted by 0, and two mutants, denoted as 1 and 2 in order of their frequency.
Each site interacts with its nearest neighboring sites. We will assume the interactions are
such that the most common mutant amino acids are more likely to occur together at a
neighboring pair of sites than would be expected if they were independent (i.e. there is
a positive or compensatory interaction between them), while the less common amino acid
mutants are less likely to occur together than if they were independent (i.e. there is a negative
or deleterious interaction). For definiteness we will consider a system ofN = 5 sites, with true
fields h

i

(1) = �1, h
i

(2) = �i with i = {1, 2, 3, 4, 5}, and true interactions J
i,i+1

(1, 1) = 0.5,
J

i,i+1

(2, 2) = �1, and all other couplings equal to zero, reflecting the underlying fitness of
each sequence. These interactions yield average mutation frequencies of the same order as
those observed at variable sites in HIV protein sequences. In this toy model, the frequency
of the most common mutant amino acid is similar across all sites. The frequency of the rare
mutant amino acid decreases as the site index increases; at site 1, it is similar in frequency
to the common mutant, while at site 5 the rare mutant is approximately 100 times less likely
to be observed than the common mutant.

To assess the ability of the Potts and Ising models to describe this system, we generated a
sample set of sequences according to the true model through Monte Carlo simulation and
used the resulting correlations to infer Potts and Ising models which reproduce the data, as
described in the sections above. We then compared the true energy to the energy computed
from the inferred Potts and Ising models for sequences bearing one or two mutations. The
energy of the single mutants to the most common mutant amino acid 1 and to the rare variant
2 are shown in Figures 8 and 9, respectively. Clearly we see that the Potts model is able to
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accurately recover the single site mutant energies, while the Ising model underestimates the
energy of common mutants (when the rarer variant is also similar in frequency) and severely
underestimates the energy of the rarer mutants (in all cases), as stated in points 1) and 2)
above.

We can also examine the di↵erence in energy between double mutants and single mutants at
neighboring sites to test the ability of each model to accurately recover interactions between
di↵erent mutants. The di↵erence between the double mutant and single mutant energies at
neighboring sites is the coupling, J

i,i+1

(a, b), where a, b are the single mutant states. The
inferred energy di↵erences for a = b = 1 and a = b = 2 for the Potts and Ising models
are plotted against their true values in Figure 10. The Potts model successfully recovers all
interactions, but interactions between rare variants are more di�cult to determine precisely.
The Ising model is unable to distinguish between common and rare mutants, but the inferred
interactions are quite similar to the true interactions between the most common mutant
amino acids at each site. This shows point 3), stated above, and suggests that the Ising
model should be able to successfully infer interactions between common mutations. Indeed,
in this study we have found that the Ising model energy does an excellent job of predicting
the fitness of similar sequences with common mutations.

Note that, while the simple toy model considered here is small (N = 5 sites), the results are
general and do not depend on the system size. Additionally, though we have used energy
as the comparison variable for transparency and analytical convenience, the same general
results should hold even if one compares with sequence prevalence data coming from an
evolutionary dynamics (Shekhar et al., 2013).
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4. Statistical notes

Here we define and briefly explain the statistical tests employed in this paper. For further
information, see standard references (e.g. (DeGroot and Schervish, 2002)).

Pearson’s correlation measures the linear relationship between two sets of variables. If we
call these sets of variables X = {x

1

, . . . , x

n

} and Y = {y
1

, . . . , y

n

}, Pearson’s correlation is

r(X, Y ) =

P
n

i=1

(x
i

� x̄) (y
i

� ȳ)qP
n

i=1

(x
i

� x̄)2
qP

n

i=1

(y
i

� ȳ)2
, (30)

where x̄ and ȳ are the mean of the variables {x
1

, . . . , x

n

} and {y
1

, . . . , y

n

}, respectively.
Pearson’s correlation is bounded between�1 (complete negative correlation) and 1 (complete
positive correlation). To compute the statistical significance (p-value of the result), we first
compute

t = r(X, Y )

p
n� 2p

1� r(X, Y )2
, (31)

which follows Student’s t distribution under the null hypothesis that X and Y are uncorre-
lated. The probability of obtaining Pearson correlation r � |r(X, Y )| by chance can then be
obtained by evaluating the cumulative distribution function.

Mann-Whitney’s U statistic is a non-parametric measure of the di↵erence in distribution of
two sets of ordinal variables (Mann and Whitney, 1947). Let us again consider two collections
of variables, but this time with potentially di↵erent numbers of elements X = {x

1

, . . . , x

m

},
Y = {y

1

, . . . , y

n

}. To compute U , we compute the rank of each of the variables in the full set
{x

1

, . . . , x

m

, y

1

, . . . , y

n

} from 1 (smallest) to n+m (largest). If two or more variables share
the same value, they are each assigned the average of the rank of all variables with the same
value. For example, the ranks corresponding to the set of variables {0, 0.5, 0.5, 0.5, 1} would
be {1, 3, 3, 3, 5}. Then we calculate

U = nm+
m(m+ 1)

2
�

mX

i=1

rank(x
i

) . (32)

Similarly one could compute a value U

0 in the same way as above, but with X and Y (and
the corresponding number of variables in each) exchanged; these values are linked by the
relation U + U

0 = nm. Following convention we report the smaller of the U values. The
smaller the U value, the greater the di↵erence in the ranks of the variables belonging to
X and Y . When the number of data points is large, the distribution for U under the null
hypothesis that variables in X and Y are identically distributed approximately follows the
normal distribution, allowing for the computation of the statistical significance of a certain
value of U . The exact distribution of U can also be computed when the number of samples
is not too large, as in the cases considered here.
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Supplementary Figures 
 
 

 

 
Figure 1. Comparison of the p17 one and two-position amino acid frequencies observed 
in the MSA with those computed from the final Potts model by performing 2×105 steps 
of MCMC sampling. 
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Figure 2. Comparison of the p24 one and two-position amino acid frequencies observed 
in the MSA with those computed from the final Potts model by performing 106 steps of 
MCMC sampling.  



Figure 3: Scatter plot of the energy di↵erence �E computed by the unregularized Ising model
(Ferguson et al., 2013) and the corresponding RC ratio for each of the experimentally tested mu-
tants. Mutants with E = 1 are not shown (n = 13).

Figure 4: Scatter plot of the mutation-corrected energy di↵erence �Ẽ between mutant and the
NL4-3 reference (Eqn. 29) and the corresponding RC ratio (Eqn. 22) for each of the experimentally
tested mutants.
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Figure 5: Plot of mutant RC ratio versus mutation-corrected energy di↵erence �Ẽ between the
mutant and the NL4-3 reference (Eqn. 29), for each of the experimentally tested p24 mutants.
Mutants with �Ẽ < 7.5 are predicted to be fit (RC ratio > 0.5), while those with �Ẽ > 7.5 are
predicted to be unfit (RC ratio  0.5).
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Figure 6: Scatter plot of the Potts model energy di↵erence �E (top) and mutation-corrected
energy di↵erence �Ẽ (top) between mutants and the NL4-3 reference (Eqn. 29) and the corre-
sponding RC ratio (Eqn. 22) for each of the experimentally tested p24 mutants. Note the small
size of the correction in this case.
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Figure 7: Plot of mutant RC ratio versus energy di↵erence �E between the mutant and wild-type
computed with a Potts model, for each of the experimentally tested p24 mutants. Mutants with
�E < 8.4 are predicted to be fit (RC ratio > 0.5), while those with �E > 8.4 are predicted to be
unfit (RC ratio  0.5).
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Figure 8: Plot of inferred common single mutant energies in the toy model, using an Ising model
(purple) and a Potts model (orange), versus the true value (dashed). The Ising model underes-
timates the energy of the most common single mutant at sites where other mutants occur with
similar frequency (sites with low indices). The Potts model can infer these energies accurately.

Figure 9: Plot of inferred rare single mutant energies in the toy model, using an Ising model
(purple) and a Potts model (orange), versus the true value (dashed). The Ising model severely
underestimates the energy of rare single mutants at sites where other mutants occur with far
greater frequency (sites with high indices). The Potts model can infer these energies accurately.

30



Figure 10: Plot of the double mutant energy minus the sum of the single mutant energies at each
pair of nearest neighbor sites, using an inferred Ising model (purple) and a Potts model (orange),
against the true values (dashed). Here we only consider cases where both mutants are to the
common amino acid variant (left) or to the rare variant (right). The Ising model gives the same
energy di↵erence in both cases. The Ising energy di↵erence is closer to the true energy di↵erence
when both mutations are to the most common variant. The Potts model accurately reproduces the
energy di↵erence in both cases, though its accuracy su↵ers slightly when attempting to predict a
strong negative coupling between the rarest mutants, the rare amino acid variants at sites (4, 5).
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