

Figure S1 Deletion of *An-swd1* confers cold sensitivity. Colony growth of Δ *An-swd1* (strain MG41) from single conidia at the indicated temperatures on media with or without 1 M sucrose, in comparison to wild type (WT, strain R153). The conidiation defects, but not cold sensitivity, of Δ *An-swd1* cells are remediated in the presence of 1 M sucrose.

Figure S2 Cells deleted for *An-set1* or *An-swd1* show lack of H3K4 methylation. Western blots using antibodies against monomethylated, dimethylated or trimethylated histone H3K4 show the absence of these post-translational modifications in strains lacking Set1 complex function (ΔAn -swd1 or ΔAn -set1) compared to WT strains. The equal intensity of the non-specific bands (marked by asterisk) among all the lanes reveals equal loading of the lanes. Strains used: WT = R153, ΔAn -swd1 = MG41, ΔAn -set1 = MG177.

Figure S3 The degree of genetic interaction between ΔAn -swd1 and nimT23 is not greater than that between H3K4R and nimT23. Colony growth of conidia spread on media with or without 1 M sucrose, as indicated, is shown after 2 days incubated at 32°C. Equal numbers of conidia were plated for each strain. Note that the viability of the H3K4R strain is reduced in the absence of sucrose and that there is a greater growth defect in the nimT23 + H3K4R strain than for the nimT23 + ΔAn -swd1 strain. Strains used: WT = R153, nimT23 = MG151, ΔAn -swd1 = MG41, H3K4R = MG316, nimT23 + ΔAn -swd1 = MG104, nimT23 + H3K4R = MG267.

Figure S4 The ΔAn -swd1 mutant does not cause greater growth defects than the H3K4R mutation. Colony growth of conidia spread on YAGUU is shown after 2 days incubated at 32°C. Equal numbers of conidia were plated for WT and ΔAn -swd1 strains and 10-times more conidia were plated for the H3K4R and ΔAn -swd1 + H3K4R strains. Note that the viability of the H3K4R and $\Delta swd1$ + H3K4R strains are reduced and that there is a slightly greater growth defect in the ΔAn -swd1 + H3K4R strain than for the H3K4R strain. Strains used: WT = R153, ΔAn -swd1 = MG41, H3K4R = MG316, ΔAn -swd1 + H3K4R = MG411.

Figure S5 Lack of the methylatable lysine 4 and phosphorylatable serine 10 in histone H3 results in growth defects but not lethality. Colony growth of the strains carrying either WT H3, H3K4R, H3-S10A or the double mutant at 32°C after 96 hours. WT = R153, H3K4R = MG316, H3-S10A = MG327, H3K4R + S10A = MG320.

Figure S6 Cells with partial mitotic CDK1 activity complete mitosis successfully. Mitosis in cells of WT genotype (MG300) (A) and carrying *nimT23* mutant allele (MG304) (B) was followed by live cell imaging using GFP-Tub as a marker for the mitotic spindle and histone H1-chRFP as a marker for chromatin at 37.5°C, the semi-permissive temperature for *nimT23*. In contrast to WT cells, about half (n=13) of the *nimT23* cells had established polarized growth before entering the first nuclear division (see also Figure 4C). Bar for (A) 2.5µm; Bar for (B) 5µm.

Name	Genotype (all strains carry veA1)	Source
R153	wA3;pyroA4	Lab stock
MG71	nimA7; pyrG ^{AF} insertion (pyrG89); ΔKu70::arqB (arqB2); riboA1; pyroA4; nicB8/A2?; wA3	This study
MG41	ΔAn-swd1::pyrG ^{AF} (pyrG89); ΔKu70::argB(argB/B2); pyroA4; nirA14; sE15, wA3; fwA1; chA1	This study
MG65	nimA7: \DeltaAn-swd1::pvrG^AF (pvrG89): \DeltaKu70::araB (araB2): riboA1: pvroA4: nicB8/A2?: wA3	, This study
MG99	nimT23: AKu70::araB (araB2): pvrG89: pvroA4: pabaA1: sF15: wA3	This study
MG104	nimT23: \Delta - swd1::pvrG^F(pvrG89): \Delta Ku70::araB (araB2): pvroA4: pabaA1: sE15: wA3	This study
MG177	AAn-set1::pvrG ^{AF} (pvroG89): AKu70::araB(araB/B2): pvroA4: nirA14: sE15, wA3: fwA1: chA1	This study
MG179	A An-set1::pyrG ^{AF} (pyrG89): nimA7: Λ Ku70::araB (araB2): riboA1: pyrOA4: nicB8/A22: wA3	This study
MG181	$\Delta \Delta n = set1::nvrG^{AF}(nvrG89): nimT23: \Lambda Ku70::argB (argB2): nvroA4: nahgA1: sE15: wA3$	This study
MG216	H2KAB :: pyrO(AF (pyrO(B)), AKu70::araB(araB(D)); pyrO(A; pirO(A; purO(A); sE15, wA3; shA1; shA1)	This study
MC219	$H_{2K4R} = (pyr0465), \Delta Ku70urgb(urgb/b2), pyr044, IIIIA14, SL15, WA5, JWA1, CIA1$	This study
NICOCZ	H3K4RpyrG (pyrG89), IIIIIA7, ΔKu70urgB (urgB2), IIb0A1, pyrOA4, IIIcB0/A2?, WAS	
NG207	H3K4K::pyrG** (pyrG89); nim123; LKu70::argB (argB2); pyrOA4; pabaA1; SE15; WA3	This study
	H3510A.:py/G (py/0689), ΔKu/O.:u/g8(u/g8/B2), py/044, III/A14, SE15, WA3; JWA1, CIA1	This study
	H3K4R+SIUA::pyrG* (pyrOG89); UKU7U::argB(argB/B2); pyrOA4; nirA14; SE15, WA3; JWA1; ChA1	This study
	pimT22: GED tub: An H1 chPED::puroA ^{AF} ; purG89; (puroA4; argP22); AKuA.:argP	Lab stock [1,2]
MC160	An cudi inverter (aug Call All CED tub)	This study
MG100	ערייגערייגערייגערייגערייגערייגערייגעריי	This study
MG161	nimT23: AAn-swd1::pvrGAE (pvrG89): AKu70::graB (graB2/graB2):tubAGEP: H1chREP::pvroA ^{AF}	This study
	(pvroA4)	This study
MG300	pyrG89; H1-chRFP::pyro ^{AF} (pyroA4); GFP-tub; argB2; nirA14?; nicB8/A2?	This study
MG304	nimT23; pyrG89; GFP-tub; H1-chRFP::pyro ^{AF} (pyroA4); argB2; sE15?; yA2/3	This study
MG276	ΔAn-swd1::pyrG ^{AF} (pyrG89);H1-chRFP::pyro ^{AF} (pyroA4); GFP-tub; argB2; nirA14?; nicB8/A2?; wA3	This study
MG302	nimT23; ΔAn-swd1::pyrG ^{AF} (pyrG89); GFP-tub; H1-chRFP::pyro ^{AF} (pyroA4); argB2; sE15?; fw/wA3	This study
MG153	nimA7; pyrG89; ΔKu70::argB? (argB2/argB?); H1chRFP::pyroAAF(pyroA4); GFP-tub; nicB8/A2?	This study
MG159	ΔAn-swd1::pyrG ^{AF} (pyrG89); nimA7; ΔKu70::argB (argB2/argB?); H1chRFP::pyroAAF (pyroA4);	This study
	GFP-tub; nicB8/A2?; wA3	
MG224	argB2; sE15; GFP-tub; AN162-CR; pyrG89; pyroA4; wA2/3; nicB8/A2?; nirA14?	This study
MG227	argB2; sE15; nimA7; pyrG89; pyroA4; GFP-tub; AN162-CR; nicB8/A2?; nirA14?; wA2/3	This study
MG190	nimA7; pyrG89; argB2; ndc80-CR::pyroA ^{AF} (pyroA4?); GFP-tub; chaA1; GCP3-GFP::riboB ^{AF} ; nicB8/A2?	This study
MG229	nimA7; argB2; pyrG89; ΔyA::NLS-DsRed; GFP-tub; pyroA4; nicB8/A2?	This study
MG244	argB2; ΔAn-swd1::pyrG ^{AF} (pyrG89); ΔyA::NLSDsRed; GFP-tub; nicB8/A2?; pyroA4; wA3	This study
MG243	Δswd1-pyrG ^{AF} (pyrG89); nimA7; GFP-tub; ΔyA::NLS-DsRed; argB2; wA3; pyroA4; nicB8/A2?	This study
MG213	nimA7; Δswd1-pyrG ^{AF} (pyrG89); argB2; nup49-CR::pyroA ^{AF} (pyroA4); GFP-tub; nirA14?; nicB8/A2?; wA3	This study
CDS790	nimA7; argB2; wA3	[3]
MG215	nimA7; Δswd1-pyrG ^{AF} (pyrG89); argB2; nicB8/A2?; wA3	This study
CDS629	ΔAn-mad2::pyrG ^{AF} ; pyroA4; pyrG89; chaA1	[4]
MG383	ΔAn-swd1::pyrG ^{AF} (pyrG89); ΔAn-mad2::pyrG ^{AF} (pyrG89); pyroA4; nirA14?; nicB8/A2?; chaA1	This study
MG381	nimA7; ΔAn-mad2::pyrG ^{AF} (pyrG89); pyroA4; nirA14?; nicB8/A2?; chaA1	This study
MG405	nimT23; ΔAn-mad2::pyrG ^{AF} (pyrG89); pyroA4; argB2; sE15?; wA/chA/fw	This study
MG384	nimA7; ΔAn-swd1::pyroG ^{AF} (pyrG89); Δmad2::pyrG ^{AF} (pyrG89);pyroA4; nirA14?; nicB8/A2?; wA/chaA1	This study
MG219	nimT23; Δswd1-pyrG ^{AF} (pyrG89); argB2; pabaA1; pyroA4; sE15?; wA/yA	This study
SO53	nimT23; wA2	[5]
MG402	nimT23; ΔAn-swd1::pyrG ^{AF} (pyrG89); Δmad2::pyrG ^{AF} (pyrG89); pyroA4; argB2; sE15?; wA/chA/fw	This study
MG218	Δswd1-pyrG ^{AF} (pyrG89); riboA1; argB2; nicB8/A2?; wA3	This study
MG151	pyrG ^{Ar} insertion (pyrG89); nimT23; ΔKu70::argB (argB2); pyroA4; pabaA1; sE15; wA3.	This study
MG411	ΔAn-swd1::pyro ^{&+} (pyroA4); H3K4R::pyrG ^{&+} (pyrG89); sE15; nirA14; wA3; fwA1; chA1.	This study

Question marks indicate mutations or alleles that may be present in the strain and have not been tested for.

- 1. Yang L, Ukil L, Osmani A, Nahm F, Davies J, et al. (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3: 1359-1362.
- 2. Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc 2: 822-830.
- 3. Osmani SA, Ye XS (1996) Cell cycle regulation in Aspergillus by two protein kinases. Biochem J 317 (Pt 3): 633-641.
- De Souza CP, Hashmi SB, Nayak T, Oakley B, Osmani SA (2009) Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol Biol Cell 20: 2146-2159.
- 5. Ye XS, Fincher RR, Tang A, Osmani SA (1997) The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34^{cdc}2 in Aspergillus nidulans. EMBO J 16: 182-192.