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1 Generalized Sequential Minimization Algorithm (GSMO) for Optimiza-

tion with Given Material Types

The Generalized Sequential Minimization Algorithm (GSMO) [1] was proposed originally for solving

quadratic programming problems arising in support vector machines. The GSMO is derived using Karush-

Kuhn-Tucker (KKT) conditions, guaranteed to converge and significantly faster than the original SMO [1].

For simplification of notation, we drop the notations on iteration (n), pixel index j and material triplet

ω, and write the quadratic optimization problem with constraints in equation (47) of this paper as

x̂ = argmin
x

φ(x)

φ(x) ≡
1

2
x′Hx+ p′x

s.t.

{

∑

L

l=1
xl = 1,

al ≤ xl ≤ bl.
(1)

Table 1 summarizes the pseudo-code of GSMO for solving (1). Please refer to the original GSMO publica-

tion [1] for details and derivations of this algorithm. The algorithm is available in the image reconstruction

toolbox online [2].

2 Supplementary Figures

Fig. 1 shows the fraction images reconstructed by the ID method [3] without median filtering. Fig. 2, Fig. 3,

Fig. 4 and Fig. 5 show profiles of reconstructed fat, blood, bone and air component fraction images by the

filtered ID method and the PL method.
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1. Choose a tolerance parameter τ > 0.

2. Initialize k = 0 and x̂(0) ∈ F where F denotes the feasible set of (1).

3. Repeat

(a) Compute derivatives of φ
(

x̂(k)
)

F
(k)
l =

[

Hx̂(k) + p
]

l

(b) Update the following index sets

I
(k)
0 =

{

l : al <
[

x̂(k)
]

l
< bl

}

, I
(k)
1 =

{

l : al =
[

x̂(k)
]

l

}

, I
(k)
2 =

{

l : bl =
[

x̂(k)
]

l

}

I(k)
up = I

(k)
0 ∪ I

(k)
1 , I

(k)
low = I

(k)
0 ∪ I

(k)
2

(c) Find the most τ -violating index pair (m,n) as

m = m(k) = argmin
l∈I

(k)
up

F
(k)
l , n = n(k) = argmax

l∈I
(k)
low

F
(k)
l

(d) Minimize φ(x̂) on F while varying only (xm, xn) and update them with the minimizer.

x̂(k+1)
m = x̂(k)

m + t, x̂(k+1)
n = x̂(k)

n − t,

where

t = min

(

max

(

F
(k)
m − F

(k)
n

[H ]mm + [H ]nn − 2 [H ]mn

, t1

)

, t2

)

,

t1 = max
(

am − x̂(k)
m , x̂(k)

n − bn

)

, t2 = min
(

bm − x̂(k)
m , x̂(k)

n − an

)

(e) k = k + 1

Until x̂
(k)
j (ω) satisfies the KKT condition

min
l∈I

(k)
up

F
(k)
l ≥ max

l∈I
(k)
low

F
(k)
l − τ

4. Minimizer x̂ = x̂(k)

Table 1: Pseudo-code of GSMO for solving the quadratic optimization problem with constraints in (1).
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Figure 1: Reconstructed volume fractions of five component images and VUE image at 70 keV by the ID

method. The volume fractions are in the range of [0, 1] and the monoenergetic image is displayed over [800,

1200] with the shifted Hounsfield unit (HU) scale where air is 0 HU and water is 1000 HU.
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Figure 2: Fat component fraction images reconstructed by the filtered ID method (upper center) and the PL

method (upper right). The upper left image is the down-sampled true image. The lower image shows the

horizontal profiles through the red line in the down-sampled true image.
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Figure 3: Zoom-in blood component fraction images reconstructed by the filtered ID method (upper center)

and the PL method (upper right). The upper left image is the down-sampled true image. The lower image

shows the horizontal profiles through the red line in the down-sampled true image.
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Figure 4: Cortical bone component fraction images reconstructed by the filtered ID method (upper center)

and the PL method (upper right). The upper left image is the down-sampled true image. The lower image

shows the vertical profiles through the red line in the down-sampled true image.
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Figure 5: Air component fraction images reconstructed by the filtered ID method (upper center) and the PL

method (upper right). The upper left image is the down-sampled true image. The lower image shows the

horizontal profiles through the red line in the down-sampled true image.
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