SUPPLEMENTARY MATERIAL for Multi-Material Decomposition Using Statistical Image Reconstruction for Spectral CT

Yong Long and Jeffrey A. Fessler, Fellow, IEEE

April 23, 2014

1 Generalized Sequential Minimization Algorithm (GSMO) for Optimization with Given Material Types

The Generalized Sequential Minimization Algorithm (GSMO) [1] was proposed originally for solving quadratic programming problems arising in support vector machines. The GSMO is derived using Karush-Kuhn-Tucker (KKT) conditions, guaranteed to converge and significantly faster than the original SMO [1].

For simplification of notation, we drop the notations on iteration (n), pixel index j and material triplet ω , and write the quadratic optimization problem with constraints in equation (47) of this paper as

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \phi(\boldsymbol{x})$$

$$\phi(\boldsymbol{x}) \equiv \frac{1}{2} \boldsymbol{x}' \boldsymbol{H} \boldsymbol{x} + \boldsymbol{p}' \boldsymbol{x}$$
s.t.
$$\begin{cases} \sum_{l=1}^{L} x_l = 1, \\ a_l \leq x_l \leq b_l. \end{cases}$$
(1)

Table 1 summarizes the pseudo-code of GSMO for solving (1). Please refer to the original GSMO publication [1] for details and derivations of this algorithm. The algorithm is available in the image reconstruction toolbox online [2].

2 Supplementary Figures

Fig. 1 shows the fraction images reconstructed by the ID method [3] without median filtering. Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show profiles of reconstructed fat, blood, bone and air component fraction images by the filtered ID method and the PL method.

References

 S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. *Machine Learning*, 46(1-3):351–60, 2002.

- 1. Choose a tolerance parameter $\tau > 0$.
- 2. Initialize k = 0 and $\hat{x}^{(0)} \in \mathcal{F}$ where \mathcal{F} denotes the feasible set of (1).

3. Repeat

(a) Compute derivatives of $\phi(\hat{x}^{(k)})$

$$F_l^{(k)} = \left[\boldsymbol{H} \hat{\boldsymbol{x}}^{(k)} + \boldsymbol{p}
ight]_l$$

(b) Update the following index sets

$$\begin{aligned} \mathcal{I}_{0}^{(k)} &= \left\{ l : a_{l} < \left[\hat{\boldsymbol{x}}^{(k)} \right]_{l} < b_{l} \right\}, \quad \mathcal{I}_{1}^{(k)} &= \left\{ l : a_{l} = \left[\hat{\boldsymbol{x}}^{(k)} \right]_{l} \right\}, \quad \mathcal{I}_{2}^{(k)} = \left\{ l : b_{l} = \left[\hat{\boldsymbol{x}}^{(k)} \right]_{l} \right\} \\ \mathcal{I}_{\mathrm{up}}^{(k)} &= \mathcal{I}_{0}^{(k)} \cup \mathcal{I}_{1}^{(k)}, \qquad \mathcal{I}_{\mathrm{low}}^{(k)} = \mathcal{I}_{0}^{(k)} \cup \mathcal{I}_{2}^{(k)} \end{aligned}$$

(c) Find the most τ -violating index pair (m, n) as

$$m = m^{(k)} = \operatorname*{arg\,min}_{l \in \mathcal{I}_{up}^{(k)}} F_l^{(k)}, \quad n = n^{(k)} = \operatorname*{arg\,max}_{l \in \mathcal{I}_{low}^{(k)}} F_l^{(k)}$$

(d) Minimize $\phi(\hat{x})$ on \mathcal{F} while varying only (x_m, x_n) and update them with the minimizer.

$$\hat{x}_m^{(k+1)} = \hat{x}_m^{(k)} + t, \quad \hat{x}_n^{(k+1)} = \hat{x}_n^{(k)} - t,$$

where

$$t = \min\left(\max\left(\frac{F_m^{(k)} - F_n^{(k)}}{[\mathbf{H}]_{mm} + [\mathbf{H}]_{nn} - 2[\mathbf{H}]_{mn}}, t_1\right), t_2\right),$$
$$t_1 = \max\left(a_m - \hat{x}_m^{(k)}, \hat{x}_n^{(k)} - b_n\right), \quad t_2 = \min\left(b_m - \hat{x}_m^{(k)}, \hat{x}_n^{(k)} - a_n\right)$$

(e) k = k + 1

Until $\hat{x}_{j}^{(k)}(\omega)$ satisfies the KKT condition

$$\min_{l \in \mathcal{I}_{up}^{(k)}} F_l^{(k)} \ge \max_{l \in \mathcal{I}_{low}^{(k)}} F_l^{(k)} - \tau$$

4. Minimizer $\hat{x} = \hat{x}^{(k)}$

Table 1: Pseudo-code of GSMO for solving the quadratic optimization problem with constraints in (1).

Figure 1: Reconstructed volume fractions of five component images and VUE image at 70 keV by the ID method. The volume fractions are in the range of [0, 1] and the monoenergetic image is displayed over [800, 1200] with the shifted Hounsfield unit (HU) scale where air is 0 HU and water is 1000 HU.

Figure 2: Fat component fraction images reconstructed by the filtered ID method (*upper center*) and the PL method (*upper right*). The upper left image is the down-sampled true image. The lower image shows the horizontal profiles through the red line in the down-sampled true image.

Figure 3: Zoom-in blood component fraction images reconstructed by the filtered ID method (*upper center*) and the PL method (*upper right*). The upper left image is the down-sampled true image. The lower image shows the horizontal profiles through the red line in the down-sampled true image.

Figure 4: Cortical bone component fraction images reconstructed by the filtered ID method (*upper center*) and the PL method (*upper right*). The upper left image is the down-sampled true image. The lower image shows the vertical profiles through the red line in the down-sampled true image.

Figure 5: Air component fraction images reconstructed by the filtered ID method (*upper center*) and the PL method (*upper right*). The upper left image is the down-sampled true image. The lower image shows the horizontal profiles through the red line in the down-sampled true image.

- [2] J. A. Fessler. Matlab tomography toolbox, 2004. Available from http://www.eecs.umich.edu/~fessler.
- [3] P. R. S. Mendonca, P. Lamb, and D. Sahani. A flexible method for multi-material decomposition of dual-energy CT images. *IEEE Trans. Med. Imag.*, 33(1):99–116, January 2014.