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1 Generalized Sequential Minimization Algorithm (GSMO) for Optimiza-
tion with Given Material Types

The Generalized Sequential Minimization Algorithm (GSMO) [1] was proposed originally for solving
quadratic programming problems arising in support vector machines. The GSMO is derived using Karush-
Kuhn-Tucker (KKT) conditions, guaranteed to converge and significantly faster than the original SMO [1].

For simplification of notation, we drop the notations on iteration (n), pixel index j and material triplet
w, and write the quadratic optimization problem with constraints in equation (47) of this paper as
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Table 1 summarizes the pseudo-code of GSMO for solving (1). Please refer to the original GSMO publica-
tion [1] for details and derivations of this algorithm. The algorithm is available in the image reconstruction
toolbox online [2].

2 Supplementary Figures

Fig. 1 shows the fraction images reconstructed by the ID method [3] without median filtering. Fig. 2, Fig. 3,
Fig. 4 and Fig. 5 show profiles of reconstructed fat, blood, bone and air component fraction images by the
filtered ID method and the PL. method.
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1. Choose a tolerance parameter 7 > 0.
2. Initialize k = 0 and &(©) € F where F denotes the feasible set of (1).
3. Repeat

(a) Compute derivatives of ¢ (& "))
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(b) Update the following index sets
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(c) Find the most 7-violating index pair (m, n) as

m=m® = arg min Fl(k), n=nk = arg max Fl(k)
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(d) Minimize ¢(x) on F while varying only (2, 2, ) and update them with the minimizer.
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Table 1: Pseudo-code of GSMO for solving the quadratic optimization problem with constraints in (1).
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Figure 1: Reconstructed volume fractions of five component images and VUE image at 70 keV by the ID
method. The volume fractions are in the range of [0, 1] and the monoenergetic image is displayed over [800,
1200] with the shifted Hounsfield unit (HU) scale where air is 0 HU and water is 1000 HU.
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Figure 2: Fat component fraction images reconstructed by the filtered ID method (upper center) and the PL
method (upper right). The upper left image is the down-sampled true image. The lower image shows the
horizontal profiles through the red line in the down-sampled true image.
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Figure 3: Zoom-in blood component fraction images reconstructed by the filtered ID method (upper center)
and the PL method (upper right). The upper left image is the down-sampled true image. The lower image
shows the horizontal profiles through the red line in the down-sampled true image.
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Figure 4: Cortical bone component fraction images reconstructed by the filtered ID method (upper center)
and the PL method (upper right). The upper left image is the down-sampled true image. The lower image
shows the vertical profiles through the red line in the down-sampled true image.
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Figure 5: Air component fraction images reconstructed by the filtered ID method (upper center) and the PL
method (upper right). The upper left image is the down-sampled true image. The lower image shows the
horizontal profiles through the red line in the down-sampled true image.
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