### SUPPLEMENTAL TABLES

#### TABLE SI

# Olignucleotide primers used for generation of PCR products for BACmid recombination and siRNA sequences used for knockdown of pUL50 and pUL97 expression

<sup>a</sup>Nucleotide specification: additional bases (lower case letters), CODING SEQUENCE (capital letters), RESTRICTION SITE (capital letters, bold), *NUCLEOTIDES DIFFERING FROM WILD-TYPE SEQUENCE* (capital letters, bold, italic), *I-Scel* site (white)

| Designation          | Size<br>[bp] | Sequence                                                                                                                                                             |                                          |  |
|----------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Primers <sup>a</sup> |              |                                                                                                                                                                      |                                          |  |
| UL50L11Afor          | 86           | tac <b>GGATCC</b> ACGCGCAGCTCGCTGGGACCCAACTTGAGGATACGCCGC<br>GTGGCCTGCAC <b>CGC</b> TAGGGATAACAGGGTAAT <mark>CGATTT</mark>                                           |                                          |  |
| UL50L11Arev          | 135          | ac <b>GAATTC</b> TCGGCGGTGGCGTCGGTGCGATGGAGATGAACAAGGTTC<br>CCATCAGGAT <i>GCG</i> GTGCAGGCCACGCGGCGTATCCTCAAGTTGGGT<br>CCAGCGAGCTGCGCGTGCCAGTGTTACAACCAATTAACC       |                                          |  |
| UL50Q13Afor          | 86           | tac <b>GGATCC</b> TCGGTGACGCGCAGCTCGCTGGGACCCAACTTGAGGATA<br>CGCCGCGTGGC <b>CGC</b> TAGGGATAACAGGGTAAT <mark>CGATTT</mark>                                           |                                          |  |
| UL50Q13Arev          | 135          | tac <b>GAATTC</b> GTGGCGTCGGTGCGATGGAGATGAACAAGGTTCTCCATC<br>AGGATCTGGTG <i>GCG</i> GCCACGCGGCGTATCCTCAAGTTGGGTCCCAGC<br>GAGCTGCGCGTCACCGAGCCAGTGTTACAACCAATTAACC    |                                          |  |
| UL50E56Afor          | 86           | tac <b>GGATCC</b> ATAAAACAAGGCACGTGGTCTGTGCGGCTCTCCCAGTAG<br>CTGAGTAGATA <b>CGC</b> TAGGGATAACAGGGTAAT <mark>CGATTT</mark>                                           |                                          |  |
| UL50E56Arev          | 135          | tac <b>GAATTC</b> ATTACTCGGTGTGCGACGCCATGCTCAAGACAGACACGGT<br>CTATTGTGTC <b>GCG</b> TATCTACTCAGCTACTGGGAGAGCCGCACAGACCA<br>CGTGCCTTGTTTTATGCCAGTGTTACAACCAATTAACC    |                                          |  |
| E56AY57Afor<br>UL50  | 89           | tac <b>GGATCC</b> AAGATAAAACAAGGCACGTGGTCTGTGCGGCTCTCCCAG<br>TAGCTGAGTAG <b>CGCCGC</b> TAGGGATAACAGGGTAAT <mark>CGATTT</mark>                                        |                                          |  |
| E56AY57Arev<br>UL50  | 138          | tac <b>GAATTC</b> ATTACTCGGTGTGCGACGCCATGCTCAAGACAGACACGGT<br>CTATTGTGTC <b>GCGGCG</b> CTACTCAGCTACTGGGAGAGCCGCACAGACC<br>ACGTGCCTTGTTTTATCTTGCCAGTGTTACAACCAATTAACC |                                          |  |
| UL50L116Afor         | 86           | tac <b>GGATCC</b> CACTTCGTCAGCACTCCGTAGGCCGAGGGCTTGATCTCC<br>TCGATGTCCTT <b>CGC</b> TAGGGATAACAGGGTAAT <mark>CGATTT</mark>                                           |                                          |  |
| UL50L116Arev         | 135          | tac <b>GAATTC</b> ACGTAGGTGAGTTCAATGTGCTTAAGGTGAACGAGTCGCT<br>CATCGTCACG <i>GCG</i> AAGGACATCGAGGAGATCAAGCCCTCGGCCTACG<br>GAGTGCTGACGAAGTGGCCAGTGTTACAACCAATTAACC    |                                          |  |
| siRNAs               |              |                                                                                                                                                                      |                                          |  |
| UL50a                | 21           | GACAGACACGGUCUAUUGUUU<br>ACAAUAGACCGUGUCUGUCUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL50b                | 21           | UUCGGCGUCGGUGUUCAACUU<br>GUUGAACACCGACGCCGAAUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL50A                | 21           | GACAGACACGGUCUAUUGUUU<br>ACAAUAGACCGUGUCUGUCUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL50B                | 21           | UUCGGCGUCGGUGUUCAACUU<br>GUUGAACACCGACGCCGAAUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL50C                | 21           | UAUCUGCUCAGCUACUGGGUU<br>CCCAGUAGCUGAGCAGAUAUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL50D                | 21           | UGUGCUUAAGGUGAACGAGUU<br>CUCGUUCACCUUAAGCACAUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL97a                | 21           | UUUCUCAAUCACCAGUGUCUU<br>GACACUGGUGAUUGAGAAAUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |
| UL97b                | 21           | GAUCUGUUAUGCCGUGGACUU<br>GUCCACGGCAUAACAGAUCUU                                                                                                                       | (sense sequence)<br>(antisense sequence) |  |

## Table SII

|                |         |                     | <b>e</b> ,        | -   | 2                                |
|----------------|---------|---------------------|-------------------|-----|----------------------------------|
| No. of<br>Exp. | Sample  | Virus               | IP antibody       | dpi | Specificity/<br>Negative Control |
| I.<br>MS/MS    | NEC 1   | UL53-FLAG           | mAb-FLAG          | 7   | pUL53                            |
|                | NEC 2   | UL53-FLAG + UL50-HA | mAb-FLAG + mAb-HA | 7   | pUL53 + pUL50                    |
|                | Ctrl 1  | UL53-FLAG           | mAb-HA            | 7   | Control for NEC 1                |
|                | Ctrl 2  | UL53-FLAG + UL50-HA | mAb-GFP           | 7   | Control for NEC 2                |
| II.<br>MS/MS   | NEC 3   | UL53-FLAG           | mAb-FLAG          | >7  | pUL53                            |
|                | NEC 4   | UL50-HA             | mAb-FLAG + mAb-HA | >7  | pUL50                            |
|                | Ctrl 3a | HCMV-GFP            | mAb-FLAG          | >7  | Control for NEC 3                |
|                | Ctrl 3b | UL53-FLAG           | mAb-HA            | >7  | Control for NEC 3                |
|                | Ctrl 4  | UL50-HA             | mAb-GFP           | >7  | Control for NEC 4                |
| III.<br>MS/MS  | NEC 5   | UL53-FLAG           | mAb-FLAG          | 1   | pUL53                            |
|                | NEC 6   | UL53-FLAG           | mAb-FLAG          | 2   | pUL53                            |
|                | NEC 7   | UL53-FLAG           | mAb-FLAG          | 3   | pUL53                            |
|                | NEC 8   | UL53-FLAG           | mAb-FLAG          | 4   | pUL53                            |
|                | Ctrl 5  | Mock                | mAb-FLAG          | 1   | Control for NEC 5                |
|                | Ctrl 6  | Mock                | mAb-FLAG          | 2   | Control for NEC 6                |
|                | Ctrl 7  | Mock                | mAb-FLAG          | 3   | Control for NEC 7                |
|                | Ctrl 8  | Mock                | mAb-FLAG          | 4   | Control for NEC 8                |
| IV.<br>MS/MS   | NEC 9   | UL53-FLAG           | mAb-FLAG          | 2   | pUL53                            |
|                | NEC 10  | UL53-FLAG           | mAb-FLAG          | 3   | pUL53                            |
|                | NEC 11  | UL53-FLAG           | mAb-FLAG          | 4   | pUL53                            |
|                | Ctrl 9a | Mock                | mAb-FLAG          | 2   | Control for NEC 9                |
|                | Ctrl 9b | UL53-FLAG           | Fab fragment      | 2   | Control for NEC 9                |
|                | Ctrl 10 | UL53-FLAG           | Fab fragment      | 3   | Control for NEC 10               |
|                | Ctrl 11 | UL53-FLAG           | Fab fragment      | 4   | Control for NEC 11               |

## List of NEC samples and corresponding negative control samples analyzed by MS/MS





FIG. S1. Intracellular localization of NEC-associated viral protein kinase pUL97, cellular PKC, and cellular protein p32/gC1qR in HCMV-infected primary fibroblasts. HFFs were infected with HCMV strain AD169 (*A*, panels a-f and *B*) or remained uninfected (mock) (*A*, panels g-m). At 3 dpi (*A*) or at consecutive time-points post-infection (B), cells were fixed and coimmunostained with the indicated antibodies. *B, Dashed boxes* (panels a-d) are depicted in the insets (panels e-h). *DAPI*, 4',6-diamidino-2-phenylindole; scale bars, 7.5 µm.

Figure SII



FIG. S2. **Knock-down efficiency of emerin-specific siRNAs in primary fibroblasts.** HFFs were transiently transfected with emerin-specific siRNAs or with a scrambled siRNA as a control. In addition, transfected cells were infected with the reporter virus HCMV-GFP (*A*, lanes 2-3) or remained uninfected (mock) (*A*, lane 1 and *B*). *A*, At 7 dpi, cells were harvested and HCMV replication efficiency was determined from total lysates by automated GFP fluorometry (see Fig. 6A). Thereafter, these samples were further subjected to Wb analysis to monitor the knock-down of emerin. Signal intensities of emerin expression were evaluated by densitometry and compared to the corresponding staining of the loading control  $\beta$ -actin. *B*, At 6 d post-transfection of siRNAs, cells were fixed and immunostained with mAb-emerin. Samples were subsequently analyzed by confocal laser scanning microscopy. Knock-down efficiency of emerin-specific siRNAs was determined by scoring six microscopic fields (415 cells). In ~80% of the scored cells, endogenous emerin levels were markedly reduced. *DAPI*, 4',6-di-amidino-2-phenylindole; scale bars, 20 µm.