Supporting Information

Automated LC-HRMS(/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics

Nora K. N. Neumann¹, Sylvia M. Lehner¹, Bernhard Kluger¹, Christoph Bueschl¹, Karoline Sedelmaier¹, Marc Lemmens², Rudolf Krska¹, Rainer Schuhmacher¹*

¹Center for Analytical Chemistry, ²Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Strasse 20, 3430 Tulln, Austria.

* corresponding author: Tel.: +43-2272-66280-407, Fax: +43-2272-66280-403, rainer.schuhmacher@boku.ac.at

Keywords: LC-HRMS/MS, LTQ Orbitrap XL, metabolite identification, stable isotope labeling, tandem mass spectrometry

Table of content

Distribution of mass accuracy intervals of ¹² C fragment signals	3
Distribution of mass accuracy of ¹³ C fragment signals.	4
Distribution of mass accuracy intervals of ¹² C and ¹³ C fragment signals based on the rules of error propagation	5
Product ion spectra of native 3AcDON and U- ¹³ C-labeled 3AcDON standard	6
List of automatically obtained fragment ions for 3AcDON standard solution	6
Fungal metabolite standards spiked into Fusarium culture samples	8
3AcDON	9 .13 .14 .20 .24 .28 .31 .37 .41 .46
Results of selected unknown metabolites of a Fusarium graminearum culture filtrate sample	52

Figure S-1. Distribution of mass accuracy intervals of ¹²C fragment signals. The histogram shows the distribution of all calculated mass deviations [ppm] of all manually annotated signals. The mass accuracy was calculated by comparing the measured mass of the fragment signal to the calculated exact mass. This was done for all manually annotated fragment signals of all product ion spectra (all standard substances). The green dashed line depicts the mean of a normal distribution of all ppm errors. The blue dashed lines show the mean $\pm 1 *$ the standard deviation.

Figure S-2. Distribution of mass accuracy of ¹³C fragment signals. The histogram shows the distribution of all calculated mass deviations [ppm] of all manually annotated signals. The mass accuracy was calculated by comparing the accurate mass of the fragment signal to the exact mass, which was calculated based on the molecular formula of the fragment signal. This was done for all manually annotated fragment signals of all product ion spectra. The green dashed line depicts the mean of a normal distribution of all ppm errors. The blue dashed lines show the mean ± 1 * the standard deviation.

Figure S-3. Distribution of mass accuracy intervals of ¹²C and ¹³C fragment signals based on the rules of error propagation. For the inter-spectrum comparison, the tolerance of the m/zdifference window between ¹²C and potentially corresponding MS/MS signals has to be chosen based on the fragment mass accuracies of both ¹²C and corresponding U-¹³C fragment ions. Here the distribution of mass accuracy intervals of the m/z values is shown.

Figure S-4. Collision-induced dissociation (CID) product ion spectra of native 3AcDON and U-¹³C-labeled 3AcDON standard. Molecular formulas for selected fragment signals are given for mass deviations below 10 ppm and were determined manually. Structure formula of 3AcDON is shown in the upper left corner.

Table S-1. Fragments and corresponding elemental compositions for MS/MS fragments of $3AcDON (C_{17}H_{22}O_7)$ derived from automated data evaluation by FragExtract, all of which have been manually verified.

No.	Molecular	Relative	m/z meas ^a	$\Delta m/z$	n(C)
	formula	abundan		[ppm]	
1	$C_{12}H_{13}O$	4.5	173.0950	6.2	12
2	$C_{11}H_{11}O_2$	7.5	175.0754	0.2	11
3	$C_{13}H_{15}O$	8.4	187.1109	4.6	13
4	$C_{12}H_{13}O_2$	30.8	189.0905	2.7	12
5	$C_{14}H_{13}O$	6.0	197.0957	2.2	14
6	$C_{13}H_{13}O_2$	9.1	201.0905	2.6	13
7	$C_{13}H_{15}O_2$	26.4	203.1054	6.2	13
8	$C_{14}H_{13}O_2$	45.1	213.0901	4.48	14
9	$C_{14}H_{15}O_2$	29.8	215.1055	5.2	14
10	$C_{15}H_{13}O_2$	5.2	225.0916	2.6	15
11	$C_{14}H_{15}O_{3}$	100.0	231.1009	3.0	14
12	$C_{14}H_{17}O_3$	6.9	233.1169	1.5	14
13	$C_{15}H_{15}O_{3}$	21.9	243.1009	2.7	15
14	C ₁₅ H ₁₇ O ₄	30.4	261.1115	2.4	15
15	$C_{15}H_{19}O_5$	46.6	279.1219	2.7	15
16	C ₁₆ H ₁₉ O ₅	5.6	291.1226	0.3	16
17	$C_{16}H_{21}O_5$	2.2	293.1357	9.0	16
18	$C_{15}H_{21}O_{6}$	21.5	297.1325	1.6	15

^{*a*}m/z meas = measured m/z of fragment in MS/MS spectrum; The fragment number (No.) corresponds to the fragments highlighted in Figure 1. Molecular formulas were calculated by FragExtract with the element list of C, H, N, O, Cl, S and P. The maximum atom count of those 7 elements was derived as described in Table 1 by Kind and Fiehn ${}^{1}(m/z < 500 \text{ Da: max. C: } 39, \text{max. H: } 72, \text{max. N: } 20, \text{max. O: } 20, \text{max. P: } 9, \text{max. S: } 10; <math>m/z < 1000 \text{ Da: max. C: } 78, \text{max. H: } 126, \text{max. N: } 20, \text{max. O: } 27, \text{max. P: } 9, \text{max. S: } 14).$

Standard compound	High concentration ($c = 1 mg/L$)	Lowest concentration (mg/L)
	# detected/ # annotated	concentration /# detected/ # annotated
3AcDON	39/17	0.1/ 16/ 1
DIAS	26/3	0.7/ 26/ 1
T-2	74/10	0.001/15/1
HT-2	41/4	0.001/15/1
ZEN	87 / 12	0.02/ 12/ 1
FB3	15/7	0.4/ 11/ 2
GRIS	40/7	0.001/18/1
STER	29/6	0.02/21/2
FB1	63/15	0.007/ 19/ 2
FB2	48/12	0.007/ 17/ 2

Table S-2 Summary of results for spiked *Fusarium* culture filtrates.

The number of signals that were detected in the raw LC-HRMS/MS spectra at the highest concentration level (c = ~1 mg/L) compared to the number of signals annotated by FragExtract is shown. Additionally the lowest concentration for each compound for which at least one fragment was still annotated is presented together with the total number of observed signals vs. the number of annotated fragments.

3AcDON

Figure S-6. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for 3AcDON at a concentration level of c = 0.7 mg/L

Figure S-7. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for 3AcDON at a concentration level of c = 0.4 mg/L

Figure S-8. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for 3AcDON at a concentration level of c = 0.1 mg/L

DIAS

Figure S-9. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for DIAS at a concentration level of c = 1.0 mg/L

Figure S-10. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for DIAS at a concentration level of c = 0.7 mg/L

T-2 toxin

Figure S-12. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.7 mg/L

Figure S-13. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.4 mg/L

Figure S-14. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.1 mg/L

Figure S-15. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.02 mg/L

Figure S-16. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.007 mg/L

No.	Molecular formula	Relative abundance [%]	$^{12}C m/z$	$^{13}C m/z$	ppm	n(C)
1	$C_{15}H_{17}O_3$	32.43	245.1164	260.1668	3.3	15
2	C ₁₅ H ₁₆ O ₃ Na	12.26	267.0991	282.1492	0.2	15
3	$C_{17}H_{20}O_5Na$	100.00	327.1205	344.1768	0.5	17
4	C ₁₉ H ₂₄ O ₇ Na	84.15	387.1414	406.2053	0.1	19

Figure S-17. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for T-2 toxin at a concentration level of c = 0.001 mg/L

HT-2 toxin

Figure S-19. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for HT-2 toxin at a concentration level of c = 0.7 mg/L

Figure S-20. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for HT-2 toxin at a concentration level of c = 0.4 mg/L

Figure S-22. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for HT-2 toxin at a concentration level of c = 0.02 mg/L

Figure S-23. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for HT-2 toxin at a concentration level of c = 0.007 mg/L

Figure S-24. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for HT-2 toxin at a concentration level of c = 0.001 mg/L

ZEN

Figure S-25. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment

ions for ZEN at a concentration level of c = 1.0 mg/L

Figure S-26. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for ZEN at a concentration level of c = 0.7 mg/L

Figure S-27. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for ZEN at a concentration level of c = 0.4 mg/L

Figure S-28. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for ZEN at a concentration level of c = 0.1 mg/L

Figure S-29. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for ZEN at a concentration level of c = 0.02 mg/L

FB3

Figure S-31. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB3 at a concentration level of c = 0.7 mg/L

56.28

670.3816

540.4526

558.4636

704.4946

28

28

34

1.1

1.1

2.8

- 5 $C_{34}H_{56}O_{12}N$

Figure S-32. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB3 at a concentration level of c = 0.4 mg/L

GRIS

Figure S-34. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.7 mg/L

Figure S-35. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.4 mg/L

Figure S-36. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.1 mg/L

Figure S-37. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.02 mg/L

Figure S-38. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.007 mg/L

Figure S-39. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for GRIS at a concentration level of c = 0.001 mg/L

STER

Figure S-41. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for STER at a concentration level of c = 0.7 mg/L

Figure S-42. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for STER at a concentration level of c = 0.4 mg/L

Figure S-43. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for STER at a concentration level of c = 0.1 mg/L

Figure S-44. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for STER at a concentration level of c = 0.02 mg/L

FB1

Figure S-46. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB1 at a concentration level of c = 0.7 mg/L

No.	Molecular formula	Relative abundance [%]	¹² C <i>m/z</i>	¹³ C <i>m/z</i>	ppm	n(C)
1	C ₁₅ H ₂₆ ON	2.14	236.2007	251.2519	0.9	15
2	$C_{15}H_{28}O_2N$	3.36	254.2115	269.2615	0.0	15
3	$C_{22}H_{35}$	3.24	299.2734	321.3474	0.2	22
4	$C_{22}H_{38}N$	9.98	316.3001	338.3740	0.8	22
5	$C_{22}H_{40}ON$	54.14	334.3107	356.3849	0.9	22
6	$C_{22}H_{42}O_2N$	87.89	352.3215	374.3955	1.3	22
7	$C_{22}H_{44}O_3N$	23.69	370.3318	392.4060	0.7	22
8	$C_{22}H_{46}O_4N$	2.15	388.3419	410.4159	0.5	22
9	$C_{28}H_{46}O_6N$	9.43	492.3324	520.4269	0.9	28
10	C ₂₈ H ₄₈ O ₇ N	48.27	510.3431	538.4376	1.2	28
11	$C_{28}H_{50}O_8N$	100.00	528.3538	556.4480	1.3	28
12	$C_{28}H_{52}O_9N$	39.22	546.3643	574.4585	1.1	28
13	$C_{28}H_{54}O_{10}N$	5.98	564.3750	592.4686	1.4	28
14	$C_{34}H_{54}O_{12}N$	20.13	668.3653	702.4792	1.9	34
15	C ₃₄ H ₅₆ O ₁₃ N	90.94	686.3765	720.4905	2.8	34

Figure S-47. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB1 at a concentration level of c = 0.4 mg/L

Figure S-48. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB1 at a concentration level of c = 0.1 mg/L

Figure S-49. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB1 at a concentration level of c = 0.02 mg/L

Figure S-50. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB1 at a concentration level of c = 0.007 mg/L

FB2

Figure S-51. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 1.0 mg/L

Figure S-52. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 0.7 mg/L

Figure S-53. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 0.4 mg/L

33.77

11

C34H56O12N

670.3813

704.4948

2.4

34

Figure S-54. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 0.1 mg/L

No.	Molecular formula	Relative abundance [%]	¹² C <i>m/z</i>	¹³ C <i>m/z</i>	ppm	n(C)
1	$C_{22}H_{40}N$	28.29	318.3159	340.3900	1.2	22
2	$C_{22}H_{42}ON$	84.47	336.3268	358.4003	2.2	22
3	$C_{22}H_{44}O_2N$	33.09	354.3373	376.4109	1.9	22
4	$C_{28}H_{48}O_6N$	17.28	494.3477	522.4423	0.3	28
5	$C_{28}H_{50}O_7N$	100.00	512.3589	540.4526	1.4	28
6	$C_{28}H_{52}O_8N$	35.07	530.3696	558.4637	1.6	28
7	$C_{28}H_{54}O_9N$	3.80	548.3776	576.4756	3.1	28
8	$C_{34}H_{56}O_{12}N$	33.61	670.3804	704.4946	1.0	34

Figure S-55. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 0.02 mg/L

Figure S-56. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for FB2 at a concentration level of c = 0.007 mg/L

Table S-3. Overview of all precursor ions of biological compounds which had been chosen from a metabolomics LC-HRMS dataset for LC-HRMS/MS measurements and subsequent data processing by FragExtract used together with the annotated elemental composition

$^{12}C m/z$	¹³ C <i>m/z</i>	n(C)	Ion species	Rt[min]	Possible molecular formula	Annotated molecular formula
571.0856	601.1863	30	$[M+H]^+$	26.15	$C_{30}H_{19}O_{12}$,	C ₃₀ H ₁₉ O ₁₂ ,
			+		$C_{30}H_{24}O_5NP_3$	$C_{30}H_{24}O_5NP_3$
611.2491	637.3363	26	[M+H]	10.45	$C_{26}H_{46}N7P_5,$	$C_{26}H_{41}O_7N_6P_2$,
					$C_{26}H_{41}O_7N_6P_2$,	$C_{26}H_{34}O_5N_{11}P$
		•		•••	$C_{26}H_{34}O_5N_{11}P$	~
647.3724	677.4731	30	[M+Na]	23.9	$C_{30}H_{52}O_8N_6Na$,	$C_{30}H_{52}O_8N_6Na$
			+		$C_{30}H_{57}ON_7P_3Na$	
647.3724	677.4731	30	[M+Na]	26.74	$C_{30}H_{52}O_8N_6Na$,	$C_{30}H_{52}O_8N_6Na$
					$C_{30}H_{57}ON_7P_3Na$	
651.5653	690.6961	39	unknown	35.39	$C_{39}H_{75}O_5N_2$	$C_{39}H_{75}O_5N_2$
761.3612	791.4619	30	$[M+H]^+$	12.74	$C_{30}H_{48}O_7N_{15}P$,	$C_{30}H_{48}O_7N_{15}P$,
					$C_{30}H_{60}O_2N_{11}P_5,$	$C_{30}H_{55}O_9N_{10}P_2$
					$C_{30}H_{75}O_4NP_8$,	
					$C_{30}H_{70}O_{11}P_5$,	
					$C_{30}H_{55}O_9N_{10}P_2$	
787.5031	822.6205	35	$[M+H]^+$	22.31	$C_{35}H_{67}O_{10}N_{10}$,	$C_{35}H_{67}O_{10}N_{10}$
					$C_{35}H_{72}O_3N_{11}P_3,$	
					$C_{35}H_{82}O_{12}P_3$	
877.375	916.5058	39	$[M+H]^+$	17.01	$C_{39}H_{64}O_4N_9P_5$,	$C_{39}H_{59}O_{11}N_8P_2$,
					$C_{39}H_{59}O_{11}N_8P_2,$	$C_{39}H_{52}O_9N_{13}P$
					$C_{39}H_{52}O_9N_{13}P$,	
					$C_{39}H_{57}O_2N_{14}P_4,$	
					$C_{39}H_{62}O_{18}N_2P$	
790.3163	820.4168	30	$[M+H]^+$	13.25	$C_{30}H_{54}O_{13}N_8Fe$,	$C_{30}H_{54}O_{13}N_8Fe$,
					C ₃₀ H ₅₉ O ₆ N ₉ P ₃ Fe,	$C_{30}H_{66}O_8N_4P_4Fe$
					$C_{30}H_{44}O_4N_{19}Fe$,	
					$\mathrm{C}_{30}\mathrm{H}_{71}\mathrm{ON}_{5}\mathrm{P}_{7}\mathrm{Fe},$	
					$C_{30}H_{66}O_8N_4P_4Fe$,	
					C ₃₀ H ₆₁ O ₁₅ N ₃ PFe	

To obtain the possible molecular formulas for the precursor ions $a \pm 3$ ppm window was allowed. For pairing of the corresponding fragment ions an inter-spectrum mass deviation of ± 10 ppm and a Relative abundance deviation of 30% was allowed. Rt is the approximate measured retention time as taken from the preceding LC-HRMS full scan measurements. n(C) is the number of carbon atoms that was calculated by FragExtract for the precursor ion and was compared to the detected number of carbon atoms by MetExtract. The ion species was obtained by analyzing the LC-HRMS full scan data with MetExtract^{2, 3}.

'*' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-58. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 611.2491 at a CE of 35%

'*' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-60. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 647.3724 (RT: 26.74) at a CE of 35%

**' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-61. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 651.5653 at a CE of 35%

'*' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-62. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 761.3612 at a CE of 35%

'*' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-63. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 787.5031 at a CE of 35%

[&]quot;*" no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-64. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 877.375 at a CE of 35%

'*' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

Figure S-65. Product ion spectra, fragment ion EICs and list of all FragExtract derived fragment ions for m/z 790.3163 at a CE of 35%

25	$C_{26}H_{42}O_{13}N_6Fe$, $C_{26}H_{54}O_8N_2P_4Fe$	47.79	702.2152	728.3026	0.2/3.2	26
26	$C_{28}H_{52}O_{10}N_8Fe$	24.63	716.3150	744.4077	0.0	28
27	$C_{30}H_{46}O_9N_8Fe$	23.38	718.2735	748.3731	0.5	30
28	$C_{29}H_{48}O_{10}N_8Fe$	13.80	724.2837	753.3824	0.1	29
29	$C_{30}H_{48}O_{10}N_8Fe$	90.80	736.2837	766.3844	0.1	30
30	$C_{29}H_{58}O_6N_4P_4Fe$	2.68	738.2684	767.3695	4.5	29
31	$C_{30}H_{50}O_{11}N_8Fe$, $C_{30}H_{62}O_6N_4P_4Fe$	100.00	754.2943	784.3955	0.1/2.8	30

**' no elemental composition could be calculated for the neutral loss mass, molecular formula with the lowest mass deviation is presented

References:

- (1) Kind, T.; Fiehn, O. BMC Bioinformatics 2007, 8, 105.
- (2) Bueschl, C.; Kluger, B.; Berthiller, F.; Lirk, G.; Winkler, S.; Krska, R.; Schuhmacher, R. *Bioinformatics* **2012**, *28*, 736-738.
- (3) Bueschl, C.; Kluger, B.; Lemmens, M.; Adam, G.; Wiesenberger, G.; Maschietto, V.; Marocco, A.; Strauss, J.; Bödi, S.; Thallinger, G.; Krska, R.; Schuhmacher, R. *Metabolomics* **2013**, 1-16.