
The American Journal of Human Genetics, Volume 95 Supplemental Data

Pathogenic Variants for Mendelian and Complex Traits in Exomes of 6,517 European and African Americans: Implications for the Return of Incidental Results

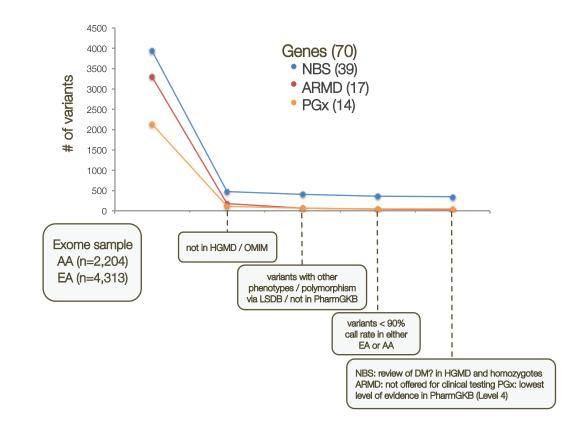
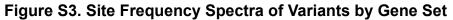

Holly K. Tabor, Paul L. Auer, Seema M. Jamal, Jessica X. Chong, Joon-Ho Yu, Adam S. Gordon, Timothy A. Graubert, Christopher J. O'Donnell, Stephen S. Rich, Deborah A. Nickerson, NHLBI Exome Sequencing Project, and Michael J. Bamshad

Figure S1. Principal components analysis of NHLBI ESP6500 SNVs



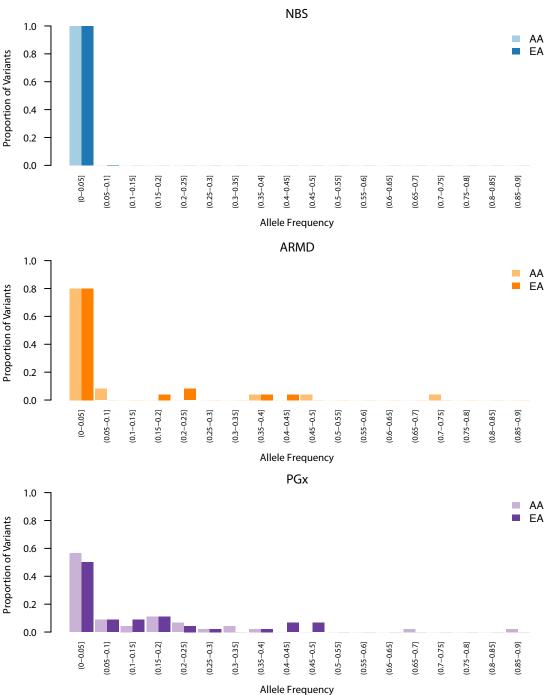

Figure S1. The first two principal components from the full 6,823 ESP samples. Self-reported European Americans (EA) are shown in orange, African Americans (AA) in light blue, Hispanics in red, Asians in black, and Native American in dark blue. Missing self-reported race is shown in green.

Figure S2. Filtering of Variants in Genes Assessed

Figure S2. Plot showing the curation strategy for NBS (blue), ARMD (red), and PGx (orange) variants in the ESP6500. Exclusion step 1: variants in the PGx and ARMD gene sets that were not found in OMIM or HGMD; and variants not found in OMIM or HGMD as either "Disease Mutation" ("DM") or "Disease Mutation?" ("DM?") in the NBS gene set, were eliminated. Exclusion step 2: variants listed in HGMD or OMIM but associated with a different phenotype, those listed as polymorphic in one of twenty-seven locus-specific databases, and those not in PharmGKB were eliminated. Exclusion step 3: variants with a call rate <90% in either EA or AA were eliminated. Exclusion step 4: 10 variants in the NBS set that were homozygous in the absence, via literature review, of compelling evidence of disease causality and 3 variants that had an allele frequency >3%, suggesting they were polymorphisms rather than risk variants for a rare Mendelian disorder, and/or had been shown to not be pathogenic; in the ARMD gene set, those variants for which clinical testing was not available per GeneTests; and in the PGx gene set, had the lowest level of evidence for functional significance (i.e., level 4) in PharmGKB, were excluded.

Figure S3. Histograms of the site frequency spectrum of risk variants underlying NBS phenotypes in European Americans (EA, blue) and African Americans (AA, light blue), ARMD phenotypes in EA (orange) and AA (light orange), and PGx phenotypes in EA (puprple) and AA (light purple).

Table S1: ESP Cohort descriptions

A. Overview

The ESP project funded by NHLBI included 3 cohort-focused awards. (1) Lung GO is a consortium of five lung disease related studies (Genomic Research on Asthma in the African Diaspora [GRAAD], Lung Health Study [LHS], Pulmonary Arterial Hypertension [PAH] population, Acute Lung Injury [ALI] cohort, and Cystic Fibrosis (CF) cohort). (2) HeartGO is a consortium of six cardiovascular disease-based prospective cohort studies comprised primarily of European American and African American participants: Atherosclerosis Risk in Communities [ARIC] study, Coronary Artery Risk Development in Young Adults [CARDIA], Cardiovascular Health Study [CHS], Framingham Heart Study [FHS], Jackson Heart Study [JHS], and Multi-Ethnic Study of Atherosclerosis [MESA]). (3) WHISP (Women's Health Initiative [WHI] Sequencing Project) is a prospective of women's health with a focus on coronary vascular disease (CVD). Additional studies were subsequently recruited to provide to provide additional cases of specific phenotypes [*e.g.*, early onset myocardial infarction (MI) and stroke]. Participants in all ESP studies provided written informed consent for non-commercial use of their data.

Further details regarding each of the 19 participating ESP studies can be found at their respective websites, listed below. dbGaP contains information about additional genetic information and phenotypes available on study participants (see <u>http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap</u>).

B. The LungGO Consortium

The goal of the NHLBI LungGO consortium is to identify disease-causing variants affecting a key set of pediatric and adult lung diseases by utilizing large cohorts characterized for a comprehensive set of clinical traits, including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PAH), asthma, and acute lung injury (ALI).

1. Cystic Fibrosis (CF):

Original cohort ascertainment: This cohort includes two longitudinal population cohorts of cystic fibrosis patients that have been well characterized for a comprehensive set of clinical traits for the study of *Pseudomonas aeruginosa* (*Pa*) acquisition. The first cohort, Early Pseudomonas Infection Control (EPIC or CFES-CF1) is the world's largest, multicenter, longitudinal, prospective cohort of early lung disease in young CF patients. CFES-CF1 consists of 1,704 CF cases who were ≤ 12 years old with no prior isolation of *Pa* or at least a two-year history of *Pa* negative cultures. The second cohort, the NHLBI-GWAS to Identify CF Modifiers (CFES-CF2), consists of 1,208 CF cases at the extremes of lung disease severity ("severe", worst 25th %'tile of birth cohort vs. "mild", best 25th %'tile) based on ~ 22 measures of lung function for each patient (over 5 yrs) developed at the University of North Carolina.

Ascertainment for ESP sequencing study: As part of the Lung-GO component of the NHLBI Exome Sequencing Project (ESP), exome sequencing was performed on 48 cystic fibrosis patients with early Pa infection and 48 cystic fibrosis patients with late Pa infection to identify variants influencing the time to onset of Pa infection. In Phase II, 330 additional exomes were

added to the study, to reach a total of 86 individuals with early Pa infection and 65 with late Pa infection. Additionally, 124 and 121 had mild and severe pulmonary function phenotype as determined by the survival corrected Kulich FEV percentile of Corey et al. The remaining 25 have intermediate phenotypes and/or show severe decline in lung function during childhood.

Prior GWAS: A GWAS for CF modifiers using 655,352 SNPs from the Illumina Infinium[™] II HumanHap650Y BeadChip v.1.0 (Illumina Inc.) was performed on CF-2 and 3,300 additional CF cases.

Reference:

Treggiari MM, Rosenfeld M, Mayer-Hamblett N, Retsch-Bogart G, Gibson RL, Williams J, Emerson J, Kronmal RA, Ramsey BW; EPIC Study Group. <u>Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study'</u>. Contemp Clin Trials. 2009 May;30(3):256-68. Epub 2009 Jan 15. PubMed PMID: 19470318; PubMed Central PMCID: PMC2783320.

Website: none

2. COPDGene:

Original cohort ascertainment: The COPDGene Study is a multicenter study, with 21 U.S. clinical centers, designed to identify genetic variants affecting COPD susceptibility. Eligible subjects were aged 45-80 with at least 10 pack-years of cigarette smoking, without other concomitant respiratory diseases, and without contraindications to spirometry and chest CT scans. Of 10,171 eligible, enrolled subjects, 3534 are cases (GOLD stages 2-4 with forced expiratory volume over one second FEV₁ < 80% predicted and FEV₁/FVC < 0.7) and 4063 are controls with FEV₁ \geq 80% predicted and FEV₁/FVC \geq 0.7). Approximately 2/3 of COPDGene subjects are non-Hispanic European Americans , and 1/3 are African Americans. Study participants underwent a standardized study protocol including spirometry (pre/post bronchodilator), chest CT, questionnaires, six minute walk test, and phlebotomy.

Ascertainment for ESP sequencing study: As part of the Lung-GO component of the NHLBI Exome Sequencing Project (ESP) and with additional support from the COPD Foundation, 290 non-Hispanic European Americans (NHEA) COPDGene subjects underwent whole exome sequencing. COPD cases and controls were chosen from the phenotypic extremes in this cohort, focusing on COPD subjects with extensive emphysema: age < 63.0, GOLD Stage 3-4 COPD (FEV₁ < 50% predicted, FEV₁/FVC < 0.7), emphysema \geq 15% at -950 HU, and no severe AAT deficiency. Control subjects were selected based on age \geq 65.0, FEV₁ \geq 85% predicted, FEV₁/FVC \geq 0.7, and emphysema < 5% at -950 HU. Similar mean pack-years of smoking were included for the case and control groups.

Prior GWAS: Genome-wide SNP genotyping was obtained in all COPDGene subjects using the Illumina Omni-Express Chip which contains 730,525 SNPs..

Reference:

Regan, E. A., J. E. Hokanson, et al. 2010. Genetic epidemiology of COPD (COPDGene) study design. *COPD* **7**(1): 32-43).

Website: http://www.copdgene.org

3. Lung Health Study (LHS):

Original cohort ascertainment: The Lung Health Study (LHS) was a 14.5-year (1985-2001), multicenter (10 sites), randomized clinical trial to determine whether a program of smoking intervention and use of an inhaled bronchodilator could slow the rate of decline in pulmonary function or alter mortality among COPD patients. The LHS is a randomized multicenter clinical trial with 5,887 participants carried out from October 1986 to April 1994, designed to test the effectiveness of smoking cessation and bronchodilator administration in smokers aged 35 to 60 with mild lung function impairment. Participants were randomly assigned to one of three groups: (1) usual care, who received no intervention; (2) smoking intervention with the inhaled bronchodilator ipratroprium bromide; or (3) smoking intervention with an inhaled placebo. The effect of intervention was evaluated by the rate of decline of forced expiratory volume in one second (FEV1). The LHS represents one of the largest COPD cohorts worldwide (N=5,887). With additional support from the Canadian Institutes of Health Research, DNA is now available from over 4,600 of the LHS participants.

Ascertainment for ESP sequencing study: As part of the Lung-GO component of the NHLBI Exome Sequencing Project (ESP), exome sequencing was performed on 337 samples from European American participants who have lung function decline measures in at least 3 of 5 time points.

Prior GWAS: Genome-wide SNP genotyping was obtained in the European American LHS subjects using the HumanHap660W Quad Genotyping BeadChip.

<u>Reference:</u>

Connett JE, Kusek JW, Bailey WC, O'Hara P, Wu M. <u>Design of the Lung Health Study: a</u> <u>randomized clinical trial of early intervention for chronic obstructive pulmonary disease.</u> Control Clin Trials. 1993 Apr;14(2 Suppl):3S-19S. PubMed PMID: 8500311.

Website: http://www.biostat.umn.edu/lhs/

4. Pulmonary Arterial Hypertension (PAH):

Original cohort ascertainment: The Johns Hopkins SCCOR program entitled "Molecular Determinants of Pulmonary Arterial Hypertension" was funded by NIH in 2006 to utilize stateof-the-art physiological, molecular, genomic and proteomic approaches as well as novel phenotyping instrumentation that will provide the deepest understanding of the critical pathobiologic processes of pulmonary vascular (PV) and right ventricular remodeling, resulting RV-PV uncoupling, and their crucial impact on morbidity and mortality in PAH. This study is comprised of idiopathic PAH (IPAH) and PAH-scleroderma (SSc) cases and healthy controls. Rigorous definitions for primary phenotypes of interest have been used. Pulmonary hypertension is defined in IPAH or PAH-SSc patients as a mean pulmonary artery pressure greater than 25 mm Hg proven by right heart catheterization defined. For patients with scleroderma, the presence of disease is defined as systemic sclerosis with diffuse or limited scleroderma meeting the American College of Rheumatology criteria (LeRoy, 1988).

All patients underwent baseline routine clinical (e.g., 6 minute walk test) and echocardiographic evaluation, and hemodynamic assessment of pressures with vasodilator challenge. Repeat assessment was performed every 6 months with routine hemodynamic assessment performed at

one year, or at earlier time-points if clinically indicated. Data for the following are available for all participants: patient age, gender, race, severity and duration of illness (for scleroderma, IPAH and PAH-SSc), and other data related to clinical, hemodynamic (mean pulmonary artery pressure, pulmonary vascular resistance, cardiac index), and echocardiographic parameters (e.g., TAPSE measurement) related to PAH.

Ascertainment for ESP sequencing study: European American and African American participants with and without PAH. The study also focuses on patients with scleroderma, who are further stratified according to those who have or do not have PAH.

Prior GWAS: None

Reference: None

Website: none

5. Severe Asthma Research Program (SARP)

Original cohort ascertainment: SARP participants were recruited at the NHLBI SARP sites with an emphasis on recruiting severe asthmatics (Moore et al, Am J Respir Crit Care Med, 2010). Asthma status was based on both a physician's diagnosis and either bronchodilator reversibility or hyper-responsiveness to methacholine as well as less than 5 pack years of smoking. All subjects were carefully characterized using the standardized SARP protocol which included spirometry (medication withheld), maximum bronchodilator reversibility, hyper-responsiveness to methacholine (not performed in subjects with low baseline FEV1), skin-tests to common allergens, questionnaires on health care utilization and medication use and sputum, lung imaging and bronchoscopy in a subset.

Ascertainment for ESP sequencing study: The exome sequencing asthma project includes 191 African-Americans with asthma (82 severe, 109 non-severe).

Prior GWAS: Genotyping was performed on the Illumina 1Mv1 platform. GWAS results for asthma susceptibility were reported as part of the EVE consortium (Torgerson et al, Nat Genet 2011).

Reference:

Jarjour NN, Erzurum SC, Bleecker ER, Calhoun WJ, Castro M, Comhair SA, Chung KF, Curran-Everett D, Dweik RA, Fain SB, Fitzpatrick AM, Gaston BM, Israel E, Hastie A, Hoffman EA, Holguin F, Levy BD, Meyers DA, Moore WC, Peters SP, Sorkness RL, Teague WG, Wenzel SE, Busse WW; NHLBI Severe Asthma Research Program (SARP). <u>Severe</u> <u>asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma</u> <u>Research Program.</u> Am J Respir Crit Care Med. 2012 Feb 15;185(4):356-62.

Website: www.severeasthma.org

6. Acute Lung Injury (ALI)

Original cohort ascertainment:

Acute Lung Injury (ALI) is a syndrome defined by the presence of acute hypoxemic respiratory failure (arterial oxygen: inspired oxygen ratio < 300), bilateral pulmonary infiltrates on chest

radiograph, a known clinical risk factor (e.g. sepsis, trauma, gastric fluid aspiration, massive transfusion), and the absence of physiologic or clinical evidence of congestive heart failure. ALI is a common occurrence in hospitalized patients in the United States with an estimated incidence of 78.9 cases/100,000 person-years and an associated mortality of 25-35 percent. This leads to the estimation that over 75,000 people die of ALI in the United States each year. This study was designed to use exome sequencing to identify coding variants associated with the extremes of ALI severity.

Original Cohort: We selected subjects from a cohort of approximately 800 patients with ALI enrolled from the Massachusetts General Hospital Intensive Care Unit (ICU) by Dr. David Christiani between 2000-2010 as part of the Molecular Epidemiology of acute respiratory distress syndrome (ARDS) study. These patients were followed through their intensive care unit (ICU) and hospital stay until death or discharge from the hospital. Dr. Christiani has used this cohort to identify several common genetic variants that alter susceptibility to ALI and related outcomes in the genes for *NFKBIA*, *IL10*, and *PBEF* [1-4].

Ascertainment for ESP sequencing study:

Phenotypes: The rate of resolution of ALI is highly variable. Examination of the composite variable of 'Ventilator-free days' (VFDs)[5] (all days between enrollment and day 28 during which the patient was both alive and breathing without mechanical ventilator support) in patients with ALI reveals a remarkably bi-modal distribution with approximately 17% of the patients dying or never liberating from mechanical ventilation over the first 28 days of observation while over 10% were free of mechanical ventilation for over 24 out of 28 days. We hypothesized that patients requiring prolonged mechanical ventilation (low VFDs) or who died with ALI relatively early after onset of the syndrome harbor functional genetic variants that predispose to more severe lung injury and impaired tissue injury repair compared with patients with rapidly liberating from dependence on mechanical ventilation (high VFDs). Notably, our subjects were all selected from this single-center cohort minimizing variation in processes of care such as the weaning from mechanical ventilation. We selected subjects with ALI at the two extremes of ventilator-free days, representing roughly the upper and lower 5th percentiles of this distribution, using the following criteria:

Exclusions: Individuals who are not European-Americans and early death unlikely to be attributable to ALI (Death within the 1st 48 hours after admission to intensive care unit), presence of DNAR (Do not attempt resuscitation/CPR) order indicative of an incomplete commitment to aggressive intensive care.

Inclusions: We restricted the cohort to those with an underlying diagnosis of sepsis (infection and a systemic inflammatory response) and who were found to have at least a moderate severity of illness (APACHE III acute physiology score \geq 45) and severe hypoxemia (PaO2/FiO2 < 200).

Definitions of Extremes of VFD phenotype:

- 1. Mild ALI : VFDs ≥ 23 (n=46)
- 2. Severe ALI : VFDs = 0(n=43)

Prior GWAS:

Subjects selected for this ESP study were also included in a GWAS designed to identify common genetic variants associated with risk for ALI (RC2 HL101779, 'Genetic determinants of ALI in

the iSPAAR consortium'). ALI cases (n=1200) and at-risk critically ill controls (n=1200) were genotyped using the Illumina 660W quad beadchip. *References:*

1. Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. *Crit Care Med.* May 2007;35(5):1290-1295.

Website: none

C. The HeartGO Consortium

HeartGO is a multiethnic consortium consisting of six NHLBI population-based cohorts of men and women with extensive baseline and follow-up data related to CVD outcomes and risk factors. The age range of participants in these six cohorts spans the spectrum from early adulthood to old age, providing a broad age representation. Each participating cohort in HeartGO has completed (a) genomewide SNP (GWAS) genotyping in most of its participants and (b) ascertainment of multiple high-resolution phenotypes, including all of the major CVD risk factors (blood pressure, lipids, diabetes status), biomarkers including measures of blood cell counts, subclinical disease imaging, and CVD and lung outcomes including myocardial infarction and stroke.

1. The Atherosclerosis Risk in Communities Study (ARIC):

Original Cohort Ascertainment: The ARIC study is a multi-center prospective investigation of atherosclerotic disease in a predominantly bi-racial population. Men and women aged 45-64 years at baseline were recruited from 4 communities: Forsyth County, North Carolina; Jackson, Mississippi; suburban areas of Minneapolis, Minnesota; and Washington County, Maryland. A total of 15,792 individuals participated in the baseline examination in 1987-1989, with follow-up examinations in approximate 3-year intervals, during 1990-1992, 1993-1995, and 1996-1998.

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 1,235 participants were sent to both sequencing centers for exome sequencing. ARIC contributed samples and data to analysis of early-onset MI, blood pressure, LDL, ischemic stroke and the deeply phenotyped reference group. Of the 860 DNA samples that passed initial Q/C, finished sequence data was completed in 847 (98%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: ARIC Study samples were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0.

Reference:

The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. *Am J Epidemiol* **129**, 687-702 (1989).

Website: http://www.cscc.unc.edu/aric/

2. The Cardiovascular Risk in Communities Study (CARDIA):

Original Cohort Ascertainment: The CARDIA study is a prospective, multi-center investigation of the natural history and etiology of cardiovascular disease in African Americans and European Americans 18-30 years of age at the time of initial examination [1] (http://www.cardia.dopm.uab.edu/index.htm). The CARDIA sample was recruited at random during

1985-86 primarily from geographically based populations in Birmingham AL, Chicago IL, and Minneapolis MN and, in Oakland, CA, from the membership of the Kaiser-Permanente Health Plan. The initial examination included 5,115 participants selectively recruited to represent proportionate racial, gender, age, and education groups from each of the four communities. Each participant's age, race, and sex were self-reported during the recruitment phase and verified during the baseline clinic visit. Details of the study design and procedures for data collection have been published. From the time of initiation of the study in 1985-1986 (baseline examination), six follow-up examinations have been conducted at years 2, 5, 7, 10, 15, 20, and 25.

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 209 participants were sent to both sequencing centers for exome sequencing. CARDIA contributed samples and data to analysis of blood pressure, LDL and the deeply phenotyped reference group. Of the 209 DNA samples that passed initial Q/C, finished sequence data was completed in 207 (99%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: Prior genome-wide genotyping in CARDIA was performed separately for European Americans and African Americans. African American samples were genotyped at the Broad Institute using the Affymetrix Genome-Wide Human SNP Array 6.0, as part of the NHLBI Candidate Gene Association Resource (CARe) project. European American samples were genotyped using Affy6.0 at the Broad Institute of MIT and Harvard through the Gene Environment Association Studies initiative (GENEVA, <u>http://www.genevastudy.org</u>).

References:

1. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, et al (1988) CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41:1105-1116.

Website: http://www.cardia.dopm.uab.edu/

3. The Cardiovascular Health Study (CHS):

Original Cohort Ascertainment: The CHS is a population-based cohort study of risk factors for CHD and stroke in adults \geq 65 years conducted across four field centers in the United States. The original predominantly Caucasian cohort of 5201 persons was recruited in 1989-1990 from a random sample of people on Medicare eligibility lists and an additional 687 African-Americans were enrolled subsequently for a total sample of 5888.

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 376 participants were sent to both sequencing centers for exome sequencing. CHS contributed samples and data to analysis of early-onset MI, blood pressure, LDL, ischemic stroke and the deeply phenotyped reference group. Of the 239 DNA samples that passed initial Q/C, finished sequence data was completed in 222 (93%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: In 2007-2008, genomewide genotyping was performed at the General Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 370CNV Duo® BeadChip system on the 3980 CHS participants who were free of CVD at baseline.

Reference:

Fried, L.P. *et al.* The Cardiovascular Health Study: design and rationale. *Ann Epidemiol* **1**, 263-76 (1991).

Website: http://www.chs-nhlbi.org/default.htm

4. The Framingham Heart Study (FHS):

Original Cohort Ascertainment: The methods of recruitment and data collection have been described previously for the original Framingham Heart Study cohort (5,209 participants ascertained systematically from two-thirds of the households in the town of Framingham, MA, beginning in 1948), the Framingham Heart Study Offspring cohort (5,124 children of the original cohort, and spouses of those children, beginning in 1972) and the Third Generation cohort (4,095 children of the Offspring cohort, beginning in 2002).

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 499 unrelated FHS Offspring participants were sent to both sequencing centers for exome sequencing. FHS contributed samples and data to analysis of early-onset MI, blood pressure, LDL, ischemic stroke and the deeply phenotyped reference group. Of the 493 DNA samples that passed initial Q/C, finished sequence data was completed in 475 (96%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: Prior genomewide genotyping was conducted for the SNP Health Association Resource (SHARe) project (<u>http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v10.p5</u>) using the Affymetrix 500K mapping array (250K Nsp and 250K Sty arrays) and the Affymetrix 50K supplemental gene focused array.

References:

1. Kannel, W.B., Feinleib, M., McNamara, P.M., Garrison, R.J. & Castelli, W.P. An investigation of coronary heart disease in families. The Framingham offspring study. *Am J Epidemiol* **110**, 281-90 (1979).

Website: http://www.framinghamheartstudy.org/

5. The Jackson Heart Study (JHS):

Original Cohort Ascertainment: The Jackson Heart Study (JHS) is a prospective population-based study to seek the causes of the high prevalence of common complex diseases among African Americans in the Jackson, Mississippi metropolitan area. During the baseline examination period (2000-2004) 5,301 self-identified African Americans were recruited from four sources, including (1) randomly sampled households from a commercial listing; (2) ARIC participants; (3) a structured volunteer sample that was designed to mirror the eligible population; and (4) a nested family cohort. Unrelated participants were between 35 and 84 years old, and members of the family cohort were \geq 21 years old when consent for genetic testing was obtained and blood was drawn for DNA extraction.

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 535 participants were sent to both sequencing centers for exome sequencing. FHS contributed samples and data to analysis of early-onset MI, blood pressure, LDL, ischemic stroke, obesity/diabetes and the deeply phenotyped reference group. Of the 441 DNA samples that passed initial Q/C, finished sequence data was completed in 424 (96%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: Prior genome wide association genotyping was performed at the Broad Institute of Harvard and MIT using the Affymetrix Genome-Wide Human SNP Array 6.0.

Reference:

Taylor HA, Jr., Wilson, JG, Jones DW, Sarpong, DF, Srinivasan A, et al (2005) Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis 15: S6-4-17.

Website: http://www.jsums.edu/jhs/

6. The Multiethnic Study of Atherosclerosis (MESA):

Original Cohort Ascertainment: The Multi-Ethnic Study of Atherosclerosis (MESA) is a National Heart, Lung and Blood Institute-sponsored, population-based investigation of subclinical cardiovascular disease and its progression. A total of 6,814 individuals, aged 45 to 84 years, were recruited from six US communities (Baltimore City and County, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; New York, NY; and St. Paul, MN) between July 2000 and August 2002. Participants were excluded if they had physician-diagnosed cardiovascular disease prior to enrollment, including angina, myocardial infarction, heart failure, stroke or TIA, resuscitated cardiac arrest or a cardiovascular intervention (e.g., CABG, angioplasty, valve replacement, or pacemaker/defibrillator placement). Pre-specified recruitment plans identified four racial/ethnic groups (non-Hispanic European-American, African-American, Hispanic-American, and Chinese-American) for enrollment, with targeted oversampling of minority groups to enhance statistical power. Ethnicity was self-reported. The institutional review boards at each participating institution approved MESA and each individual participant provided informed written consent prior to enrollment.

Ascertainment for ESP sequencing study: As part of the HeartGO component of the NHLBI Exome Sequencing Project (ESP), DNA from 424 participants were sent to both sequencing centers for exome sequencing. MESA contributed samples and data to analysis of blood pressure, LDL, ischemic stroke, obesity/diabetes and the deeply phenotyped reference group. Of the 424 DNA samples that passed initial Q/C, finished sequence data was completed in 409 (96%) and deposited into the SRA; variant calls and phenotypic data were deposited into dbGaP.

Prior GWAS: Prior genomewide association genotyping was performed at the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) and at the Affymetrix Laboratory (Santa Clara, CA, USA) using the Affymetric Genome-Wide Human SNP Array 6.0.

Reference:

Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002;156:871-81.

Website: http://www.mesa-nhlbi.org/

C. The Women's Health Initiative (WHI)

WHI is one of the largest (n=161,808) studies of women's health ever undertaken in the U.S. There are two major components of WHI: (1) a Clinical Trial (CT) that enrolled and randomized 68,132 women ages 50 – 79 into at least one of three placebo-control clinical trials (hormone therapy, dietary modification, and calcium/vitamin D); and (2) an Observational Study (OS) that enrolled 93,676 women of the same age range into a parallel prospective cohort study [1]. A diverse population including 26,045 (17%) women from minority groups were recruited from 1993-1998 at 40 clinical centers across the U.S. The design has been published [1]. For the CT and OS participants enrolled in WHI and who had consented to genetic research, DNA was extracted by the Specimen Processing Laboratory at the Fred Hutchinson Cancer Research Center (FHCRC) using specimens that were collected at the time of enrollment in to the study (between 1993 and 1998).

Prior GWAS: Genotyping was done at Affymetrix Laboratory on the Affymetrix 6.0 array.

References:

A series of papers describing methods for WHI, dealing with design [2], recruitment [3], postmenopausal hormone therapy trials [4], dietary modification trial [4], calcium and vitamin D supplement trial [6],observational study [7], and outcomes ascertainment [8] were published in the Annals of Epidemiology. The main trial results are published in [9-15].

- 1. The Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study. Control Clin Trials. 1998 Feb;19(1):61-109.
- Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Ann Epidemiol. 2003 Oct;13(9 Suppl):S5-17.
- Hays J, Hunt JR, Hubbell FA, Anderson GL, Limacher M, Allen C, Rossouw JE. The Women's Health Initiative recruitment methods and results. Ann Epidemiol. 2003 Oct;13(9 Suppl):S18-77
- 4. Stefanick ML, Cochrane BB, Hsia J, Barad DH, Liu JH, Johnson SR. The Women's Health Initiative postmenopausal hormone trials: Overview and baseline characteristics of participants. Ann Epidemiol. 2003 Oct;13(9 Suppl):S78-86.
- 5. Ritenbaugh C, Patterson RE, Chlebowski RT, Caan B, Fels-Tinker L, Howard B, Ockene J. The Women's Health Initiative Dietary Modification Trial: Overview and baseline characteristics of participants. Ann Epidemiol. 2003 Oct;13(9 Suppl):S87-97.
- 6. Jackson RD, LaCroix AZ, Cauley JA, McGowan J. The Women's Health Initiative calciumvitamin D trial: Overview and baseline characteristics of participants. Ann Epidemiol. 2003 Oct;13(9 Suppl):S98-106.
- 7. Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women's Health Initiative Observational Study: Baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol. 2003 Oct;13(9 Suppl):S107-21.
- 8. Curb JD, McTiernan A, Heckbert SR, Kooperberg C, Stanford J, Nevitt M, Johnson KC, Proulx-Burns L, Pastore L, Criqui M, Daugherty S, WHI Morbidity and Mortality Committee. Outcomes ascertainment and adjudication methods in the Women's Health Initiative. Ann Epidemiol. 2003 Oct;13(9 Suppl):S122-8.
- 9. The Writing Group for the WHI Investigators. Risks and benefits of estrogen plus progestin in healthy post-menopausal women: Principal results of the Women's Health Initiative randomized controlled trial. JAMA 2002;288(3):321-333.

- 10. The Women's Health Initiative Steering Committee. Effects of Conjugated Equine Estrogen in Postmenopausal Women With Hysterectomy. The Women's Health Initiative Randomized Controlled Trial. JAMA 2004; 291: 1701-1712.
- Beresford S, Johnson K, Ritenbaugh C, Lasser N, Snetselaar L, Black H, Anderson G, Assaf A, Bassford T, Bowen D, Brunner R, Brzyski R, Caan B, Chlebowski R, et al. Low-Fat Dietary Pattern and Risk of Colorectal Cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006;295:643-654.
- 12. Howard B, Van Horn L, Hsia J, Manson J, Stefanick M, Wassertheil-Smoller S, Kuller L, LaCroix A, Langer R, Lasser N, Lewis C, Limacher M, Margolis K, Mysiw, et al.Low-Fat Dietary Pattern and Risk of Cardiovascular Disease:The Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006;295:655-666.
- Prentice R, Caan B, Chlebowski R, Patterson R, Kuller L, Ockene J, Margolis K, Limacher M, Manson J, Parker L, Paskett E, Phillips L, Robbins J, Rossouw J, et al.Low-Fat Dietary Pattern and Risk of Invasive Breast Cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006;295:629-642.
- 14. Wactawski-Wende J, Kotchen J, Anderson G, Assaf A, Brunner R, O'Sullivan M, Margolis K, Ockene J, Phillips L, Pottern L, Prentice R, Robbins J, Rohan T, Sarto G, et al. Calcium plus Vitamin D Supplementaion and the Risk of Colorectal Cancer. NEJM 2006;354:(7):684-696.
- 15. Jackson R, LaCroix A, Gass M, Wallace R, Robbins J, Lewis C, Bassford T, Beresford S, Black H, Blanchette P, Bonds D, Brunner R, Bryzski R, Caan B, et al. Calcium plus Vitamin D Supplementation and the Risk of Fractures. NEJM 2006;354:(7):669-683.

Website: http://www.whiscience.org.

D. Other EOMI Studies

1. Cleveland Clinic GeneBank (CCGB) was a single-center prospective cohort-based study that enrolled patients undergoing elective diagnostic coronary angiography between 2001 and 2006 [1]. Coronary artery disease (CAD) was defined as adjudicated diagnoses of stable or unstable angina, MI (adjudicated definition based on defined electrocardiographic changes or elevated cardiac enzymes), angiographic evidence of \geq 50% stenosis of one or more major epicardial vessel, and/or a history of known CAD (documented MI, CAD, or history of revascularization). For the ESP EOMI study, 35 cases were ascertained from the CCGB study.

2. Heart Attack Risk in Puget Sound (HARPS) was a population-based case-control study that enrolled cases with incident MI presenting to a network of hospitals in Washington State between 1991 and 2002 [2]. In HARPS, eligible cases were men with MI at age less than 50 and women with MI at age less than 60. For the ESP EOMI study, 406 cases were selected from the HARPS study.

3. Massachusetts General Hospital - Premature Coronary Artery Disease (MGH-PCAD) was a hospital-based case-control study that enrolled cases hospitalized with MI at MGH between 1999 and 2004 [3]. In MGH-PCAD, eligible cases were men with MI at age less than 50 and women with MI at age less than 60. For the ESP EOMI study, 155 cases were drawn from the MGH-PCAD study.

4. Penn-CATH was a catheterization-lab based cohort study from the University of Pennsylvania Medical Center and enrolled subjects at the time of cardiac catheterization and coronary angiography between 1998 and 2003 [4]. Persons undergoing cardiac catheterization at either the Hospital of the University of Pennsylvania or Penn Presbyterian Medical Center consented for the PennCath study to

identify genetic and biochemical factors related coronary disease. For the ESP EOMI study, 36 cases were selected from the PennCATH study.

5. Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients' Health Status (TRIUMPH) was an observational, multi-center prospective registry that enrolled subjects presenting with MI at participating medical centers between 2005 and 2008 [5]. For the ESP EOMI study, 122 cases were selected from the TRIUMPH study.

Broad EOMI References:

- Tang, W.H., et al., *Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease*. Clin Chem, 2011. 57(1): p. 33-9.
- 2. Meiner, V., et al., *Cholesteryl ester transfer protein (CETP) genetic variation and early onset of non-fatal myocardial infarction.* Ann Hum Genet, 2008. **72**(Pt 6): p. 732-41.
- 3. Low, A.F., et al., *Aging syndrome genes and premature coronary artery disease*. BMC Med Genet, 2005. **6**: p. 38.
- 4. Helgadottir, A., et al., *A common variant on chromosome 9p21 affects the risk of myocardial infarction*. Science, 2007. **316**(5830): p. 1491-3.
- 5. Arnold, S.V., et al., *Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients' Health Status (TRIUMPH): design and rationale of a prospective multicenter registry.* Circ Cardiovasc Qual Outcomes, 2011. **4**(4): p. 467-76.

E. Other Stroke Studies

1. The Ischemic Stroke Genetics Study (ISGS)

The Ischemic Stroke Genetics Study (ISGS) was supported to perform a prospective genetic association study of ischemic stroke focusing on the hemostatic system. ISGS was a 5-center case-control study of first-ever ischemic stroke cases and concurrent controls individually matched for age, sex and recruitment site. This study utilized the NINDS Repository Cerebrovascular/Stroke Study, and neurologically normal controls from the sample population which are banked in the National Institute of Neurological Disorders and Stroke (NINDS Repository) collection for a first stage whole genome analysis. The number of study subjects that have individual level data available through Authorized Access is 485.

ISGS Study Case eligibility criteria:

Ischemic stroke was diagnosed according to World Health Organization definition by history and physical examination, as well as by and findings on brain imaging (either head computed tomography or magnetic resonance imaging). Subjects were eligible cases if they were over the age of 18 years and had a first-ever ischemic stroke with onset of symptoms within 30 days of enrollment. The study excluded cases with postoperative or post-procedural stroke (i.e., stroke related to cardiac catheterization, carotid stenting or conventional cerebral angiography); stroke related to recent subarachnoid hemorrhage or mechanical heart valve (aortic or mitral); patients with known inherited stroke syndromes (CADASIL, MELAS, Fabry disease, homocysteinemia, sickle cell anemia); and patients with biopsy-proven central nervous system vasculitis or stroke occurring in the setting of active bacterial endocarditis.

ISGS Study Control Eligibility criteria:

Controls were volunteers over the age of 18 years who have been verified stroke-free by structured interview. This study excluded volunteers who were considered unreliable historians, who had a blood relative enrolled as a case; and who were inpatients being treated for coronary or peripheral vascular disease. Controls needed to answer negatively on all the items of the Questionnaire for Verifying Stroke-Free Status (*Stroke* 2000 May; 31(5): 1076-80).

Prior GWAS:

References:

Meschia JF, Brott TG, Brown RD Jr, Crook RJ, Frankel M, Hardy J, Merino JG, Rich SS, Silliman S, Worrall BB; Ischemic Stroke Genetics Study. <u>The Ischemic Stroke Genetics Study (ISGS) Protocol.</u> BMC Neurol 2003 Jul 8;3:4. Epub 2003 Jul 8. PMID: 12848902

Matarín M, Brown WM, Scholz S, Simón-Sánchez J, Fung HC, Hernandez D, Gibbs JR, De Vrieze FW, Crews C, Britton A, Langefeld CD, Brott TG, Brown RD Jr, Worrall BB, Frankel M, Silliman S, Case LD, Singleton A, Hardy JA, Rich SS, Meschia JF. <u>A genome-wide genotyping study in patients</u> with ischaemic stroke: initial analysis and data release. Lancet Neurol 2007 May; 6(5):414-20. PMID: 17434096

C. Siblings With Ischemic Stroke (SWISS)

The Siblings with Ischemic Stroke Study (SWISS) was supported to perform an affected sibpair (ASP) linkage and family-based genetic association study of ischemic stroke focusing on the hemostatic system. The number of study subjects that have individual level data available through Authorized Access: 100 (100 phenotyped subjects)

Probands were recruited at 70 US and Canadian medical centers. Probands were adult (>18 years old) men and women presenting to a participating center with a study neurologist–confirmed ischemic stroke. Stroke was defined as rapidly developing signs of a focal or global disturbance of cerebral function, with symptoms lasting at least 24 hours or leading to death, with no apparent cause other than vascular origin (World Health Organization definition). Stroke was defined as ischemic when computed tomography or magnetic resonance imaging of the brain was performed within 7 days of onset of stroke symptoms and identified the symptomatic cerebral infarct or failed to identify an alternative cause of symptoms.

Probands were required to have reported at least 1 living full sibling with a history of stroke. No probands were enrolled with iatrogenic vasospastic or vasculitic stroke or if the stroke occurred in the setting of a mechanical heart valve or in the setting of untreated or actively treated bacterial endocarditis.

Probands were also excluded if they were known to have CADASIL, Fabry disease, homocysteinuria, MELAS, or sickle-cell anemia. Study neurologists at each center assigned to the qualifying ischemic stroke of each proband a Trial of Org 10172 in Acute Stroke Treatment (TOAST) subtype diagnosis.

Stroke-affected siblings of the proband (concordant siblings) were recruited by using proband-initiated contact. Telephone interviews were performed to obtain demographic and clinical information and to gain permission for obtaining medical records pertaining to treatment for stroke. Medical records were compiled and adjudicated by a central committee to verify the diagnosis of ischemic stroke and to

assign a TOAST subtype diagnosis. Unaffected siblings were ascertained by telephone contact and interview.

Prior GWAS: 223 probands, 248 stroke-affected siblings, and 84 stroke-unaffected siblings (total sample size, 555; DNA samples were genotyped using Genotyping was performed with an Illumina 610-quad array (probands) and an Illumina linkage V array (affected siblings)

References:

Meschia JF, Brown RD Jr, Brott TG, Chukwudelunzu FE, Hardy J, Rich SS; The Siblings With Ischemic Stroke Study (SWISS) Protocol. BMC Med Genet 2002; 3:1. Epub 2002 Feb 12. PMID: 11882254

Meschia JF, Nalls M, Matarin M, Brott TG, Brown RD Jr, Hardy J, Kissela B, Rich SS, Singleton A, Hernandez D, Ferrucci L, Pearce K, Keller M, Worrall BB; Siblings With Ischemic Stroke Study Investigators. Siblings with ischemic stroke study: results of a genome-wide scan for stroke loci. Stroke. 2011 Oct;42(10):2726-32. doi: 10.1161/STROKEAHA.111.620484. Epub 2011 Sep 22. PMID: 21940970

Section 2: ESP phenotype definitions and sample selection criteria

1. Early-Onset Myocardial Infarction (EOMI)

EOMI cases and controls were selected from ten studies, including ARIC, CCGB, FHS, HARPS, MGH-PCAD, PennCATH, TRIUMPH, WHI, CHS, and JHS. We ascertained 1,090 cases with MI at an early age. Early onset myocardial infarction (EOMI) cases were defined as individuals who had experienced an incident MI at age ≤ 60 years in women or ≤ 50 years in men. As a comparison group, we selected 979 participants from prospective cohort studies who were free of MI despite advanced age. Controls were selected as individuals with no history of MI at baseline or during follow-up to at least age 60 for men and 70 for women. Controls were also selected as having the highest baseline calculated Framingham risk scores (selected in descending order). Approximately two-thirds of the EOMI sample was of European ancestry and one-third of African-American ancestry. By design, the cases were, on average, more than two decades younger than the controls. Thus, male cases suffered an MI on average at 44 years old whereas the average age for male controls was 73 years old.

For the ESP EOMI study, 129 cases were selected from the primary ESP population-based cohorts ARIC, FHS and MESA studies and 642 controls were drawn from the ARIC, CHS, FHS, JHS and MESA studies. From WHI, 21 AA and 138 EA female MI cases age 60 or younger were selected. From the WHI study, 146 female cases and 305 female controls were selected. Among the prospective cohort studies, incident cases were defined by MI, coronary revascularization, hospitalized angina or CHD death, as adjudicated from medical record data by committee using standardized criteria. Additional cases meeting the EOMI criteria were selected from: HARPS (406 cases), a population-based case-control study that enrolled cases with incident MI in Washington State; MGH-PCAD (155 cases), a hospital-based MI case-control study; TRIUMPH (122 cases), an observational, multi-center prospective MI registry; PennCATH (36 cases), a catheterization-lab based coronary angiography cohort study from the University of Pennsylvania Medical Center; CCGB (35 cases), a single-center prospective cohort of patients undergoing diagnostic coronary angiography. Among the angiography-based studies,

coronary artery disease (CAD) was defined as adjudicated diagnoses of stable or unstable angina, MI (adjudicated definition based on defined electrocardiographic changes or elevated cardiac enzymes), angiographic evidence of \geq 50% stenosis of one or more major epicardial vessel, and/or a history of known CAD (documented MI, CAD, or history of revascularization).

2. Ischemic Stroke

HeartGO stroke cases were defined as participants who had experienced an incident ischemic stroke that was subcategorized as either large vessel (atherosclerotic) or small vessel (lacunar) and falling into one of the following categories: stroke occurring by age 65 years and a positive family history of stroke, stroke occurring by age 65 years and no positive family history of stroke, or stroke occurring after age 65 years and a positive family history of stroke. Participants were excluded from selection if they had previously been selected for the EOMI or LDL studies. HeartGO stroke cases were selected from ARIC, CHS, FHS and MESA. A total of 55 samples passed initial quality control and 53 samples (45 EA cases and 8 AA cases) generated finished sequence. From WHI, women who had experienced a large or small vessel ischemic stroke were considered for selection. Women were selected based on the following priorities, age <65 and a positive family history of stroke, age < 65 and no positive family history of stroke, or age \geq =65 and a positive family history of stroke. The following table summarizes the women selected for sequencing in the Stroke study:

-	Africar	Americans	European Americans				
	Large Vess	Small Vessel	Large Vessel	Small Vessel			
>=65 positive family history	5	10	49	143			
<65 positive family history	1	11	17	47			
<65 no positive family history	2	11	10	31			

There were 98 affected sibpair members (SWISS) and 94 stroke cases from ISGS that passed QC and 94 SWISS and 89 ISGS samples had completed exome sequence data. For the ischemic stroke cases, control exome sequence data were chosen from the deeply-phenotyped reference group and other (non-stroke associated) phenotypes.

3. LDL-cholesterol

To enrich for individuals with rare large-effect size variants, we initially ascertained 412 individuals with extreme (high or low) LDL-C levels from ~25,000 population-based samples. The LDL-C extreme samples were selected initially from four population-based cohorts: ARIC, CHS, FHS and JHS. Samples previously selected as EOMI cases or controls were excluded from selection. In each cohort, first visit LDL-C was calculated using the Friedewald formula, based on HDL, triglyceride and total cholesterol measurements obtained in fasting subjects. For individuals on lipid lowering medication, pre-treatment LDL-C values were estimated by dividing treated LDL-C values by 0.75 to model a 25% reduction in LDL-C on therapy. Estimated pre-treatment LDL-C levels (or actual LDL-C levels for those not on lipid-lowering therapies) were then regressed on sex, age, and age-squared within cohort and within ethnicity strata (European-American and African-American). Residuals were then combined across studies, within ethnicity strata. The N=120 residuals in each ethnic stratum associated with the largest adjusted LDL-C values were selected. A corresponding number of individuals with the smallest adjusted LDL-C residuals were selected so that the number of extreme low LDL-C samples matched the number of extreme high LDL-C samples for each cohort. A second set of extreme LDL samples was selected from the CARDIA and MESA cohorts, using the same criteria that were used for the first set of LDL samples. The 412 selected samples roughly represent the 1st and 99th percentiles for adjusted LDL in European-Americans and the 2nd and 98th percentiles in African-Americans. A total of 147 EA LDL High, 142 AA LDL High, 145 EA LDL Low, and 131

AA LDL Low samples were sequenced and passed initial quality control. An additional N=26/ N=27 respectively) were selected for sequencing. African American women whose residuals were in the 2^{nd} high/low EA samples and N=23/N=23 high/low AA samples were selected from WHI? Mean LDL-C in high subjects was xx mg/dl and in low subjects was xx mg/dl.

The extreme LDL-C samples were augmented with data from additional samples sequenced as part of ESP for other phenotypes from those with LDL-C measured and lipid-lowering medication status available (N=1593). The primary phenotypes for sample selection were EOMI and controls (individuals with no baseline or incident MI and with high estimated Framingham risk scores), ischemic stroke cases (large or small vessel ischemic stroke before age 65 or with positive family history), blood pressure extremes (1st and 99th sex- and decade-specific percentile tails), body mass index (high and low BMI), and a set of randomly selected samples among participants with near-complete phenotype data across a range of traits.

The total of 2005 ESP samples were selected from seven population based cohorts: Atherosclerosis Risk in Communities (ARIC), the Coronary Artery Risk Development in Young Adults (CARDIA), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Jackson Heart Study (JHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Women's Health Initiative (WHI). Of the 2005 sequenced individuals, a total of 854 (43%) individuals were African-American and the remainder (N=1151, 57%) were European-American.

4. Blood Pressure

Samples were selected for the blood pressure study based on blood pressure measurements from all available visits. Participants were excluded from selection if they had previously been selected for another ESP phenotype, had a history of MI or heart failure at baseline, or age<20 or >70 years. Blood pressure measurements from visits with concurrent or a prior visit report of incident MI, CHF or BMI measurement > 4 standard deviations from the mean were excluded from selection eligibility. At each eligible visit, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were adjusted for self-report of hypertension medication use. Both SBP and DBP were then regressed on age, age^2, BMI, sex, and race, within cohort. The sum of the standardized residuals (summing across SBP and DBP residuals) was used for selection. Individuals with sum of standardized residuals in the 1st and 99th race-, sex-, and age category-specific (based on decade) percentiles at any visit were selected for sequencing. HeartGO blood pressure samples were selected from the ARIC, CARDIA, CHS, FHS, JHS and MESA cohorts. A total of 184 EA High Blood Pressure, 82 AA High Blood Pressure, 175 EA Low Blood Pressure, and 74 AA Low Blood Pressure samples were sequenced and passed initial quality control. From WHI, individuals with sum of standardized residuals in the 1st (66 AAs, 99 EAs) and 99th percentiles (70 AAs, 102 EAs) were selected for sequencing.

5. Body Mass Index (BMI)

For the body mass index (BMI) study, 217 lean (BMI between 18 and 25) non-diabetic women were selected along with 163 morbidly obese (BMI over 40) diabetic women and 163 morbidly obese non-diabetic women were selected from WHI. An extra 70 morbidly obese women were added regardless of diabetes status. All women in the BMI study were of African American (AA) ethnicity. High body mass index (BMI) samples were additionally selected from the CARDIA, JHS and MESA cohorts. Samples were restricted to female AA participants who had not previously been selected for another ESP phenotype, and with first visit BMI measurement of at least 45, regardless of type 2 diabetes status. A total of 144 AA HeartGO BMI samples were sequenced and passed initial quality control.

6. Deeply Phenotyped Reference (DPR):

For the deeply phenotype reference (DPR) group, individuals were chosen based on availability of multiple heart, lung, and blood phenotypes. Eligibility for sample selection was determined using the following criteria: participants had to have non-missing data for the majority of a range of baseline cardiovascular-related phenotypes measured in each cohort (>95% of each sample) and had not been selected previously for another ESP phenotype. Samples were selected from the ARIC, CARDIA, CHS, FHS, JHS and MESA cohorts so that the race-specific (EA and AA) sample sizes for each were proportional to the overall cohort sizes. Samples were then randomly selected from the pool of eligible participants within each cohort. A total of 431 EA samples and 124 AA samples from HeartGO cohorts were sequenced and passed initial quality control. An additional 95 AA and 311 EA women from WHI were selected for sequencing in the DPR group.

Category	Gene	Phenotype
Newborn screening (NBS: 39)	ACADM	Medium chain acyl CoA dehydrogenase deficiency
(120100)	ACADVL	Very long chain acyl CoA dehydrogenase
	, (0) (2) (2	deficiency
	ACAT1	Mitochondrial acetoacetyl-CoA thiolase
		defiency (beta-kethothiolase deficiency)
	ASL	Argininosuccinic aciduria
	ASS1	Citrullinemia, type I
	BCKDHA	Maple syrup urine disease
	BCKDHB	Maple syrup urine disease
	BTD	Biotinidase deficiency
	CBS	Homocystinuria
	CFTR	Cystic fibrosis
	CYP21A2	Congenital adrenal hyperplasia
	DBT	Maple syrup urine disease
	FAH	Tyrosinemia type 1
	GALT	Classic galactosemia
	GCDH	Glutaric acidemia type 1
	GCH1	Hyperphenylalaninemia, BHF4-deficient, B
	GJB2	Hearing loss
	HADHA	Long-chain 3-hydroxyacyl-CoA dehydrogenase
		deficiency; Trifunctional protein deficiency
	HADHB	Trifunctional protein deficiency
	HBA1	Alpha thalassemia
	HBA2	Alpha thalassemia
	HBB	Sickle cell anemia; Sickle cell disease; Beta
	ססוו	thalassemia
	HLCS	Multiple carboxylase deficiency
	TIL00	(holocarboxylase synthetase deficiency)
	HMGCL	3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
	TIMGGE	lyase deficiency
	IVD	Isovaleric acdemia
	MCCC1	Biotin-unresponsive 3-methylcrotonyl-CoA
	WOODT	carboxylase deficiency
	MCCC2	Biotin-unresponsive 3-methylcrotonyl-CoA
	100002	carboxylase deficiency
	MMAA	Methylmalonic acidemia cblA type
	MMAB	Methylmalonic acidemia cblA type
	MMACHC	Methylmalonic acidemia and homocystinuria,
		cblC type
	MMADHC	Methylmalonic acidemia and homocystinuria,
	MIIT	cbID type Methylmalonic acidemia
	MUT PAH	Methylmalonic acidemia
		Phenylketonuria; Hyperphenylalaninaemia
	PCBD1	Hyperphenylalaniemia, BHF4-deficient, D

Table S2. Genes and phenotypes assessed

	PCCA	Propionic acidemia
	PCCB	Propionic acidemia
	PTS	Hyperphenylalaninemia, BHF4-deficient, A
	QDPR	Hyperphenylalaninemia, BHF4-deficient, C
	SLC22A5	Carnitine uptake deficiency
Age related	ABCA4	Age related macular degeneration
macular	APOE	Age related macular degeneration
degeneration	ARMS2	Age related macular degeneration
(ARMD: 17)	C2	Age related macular degeneration
· ,	C3	Age related macular degeneration
	CFB	Age related macular degeneration
	CFH	Age related macular degeneration
	CFHR1	Age related macular degeneration
	CFHR3	Age related macular degeneration
	CST3	Age related macular degeneration
	CX3CR1	Age related macular degeneration
	ERCC6	Age related macular degeneration
	FBLN5	Age related macular degeneration
	HMCN1	Age related macular degeneration
	HTRA1	Age related macular degeneration
	RAX2	Age related macular degeneration
	TLR4	Age related macular degeneration
Drug response	ABCB1	Digoxin sensitivity; nevirapine hepatotoxicity
(PGx: 14)		Simvastatin response
· · · ·	ABCC1	Methotrexate response
	ABCC2	Tenofovir response
	ABCG2	Rosuvastatin response
	ADRB1	Atenolol efficacy
	COMT	Nicotine replacement therapy response
	CYP2C19	Clopidogrel sensitivity
	CYP2C9	Warfarin sensitivity
	DPYD	Fluoropyrimidine response
	DRD2	Clozapine and Olanzapine response
	EPHX1	Carbamazepine dosage
	SLCO1B1	Simvastatin response
	TPMT	Thiopurine response
	UGT1A1	Irinotecan response

Table S3. Number of Variants Removed in Each Step of curation.

Number of variants by exclusion step and category (A); Number of variants in EA (B) and AA (C) by exclusion step and category; Total number of variants by exclusion step in EA, AA, and combined (D)

Α.								
Variants in	Ν	BS	AF	RMD	PGx			
ESP6500	38	306	32	235	20)78		
Exclusion	Excluded	Remaining	Excluded	Remaining	Excluded	Remaining		
Steps		0		0		Ũ		
1	3353	453	3049	186	1971	107		
	79	374	127	59	50	57		
2 3	33	341	14	45	7	50		
4	13	328	20	25	4	46		
В.								
Variants in	Ν	BS	AF	RMD	Р	Gx		
ESP6500		336	20	013		375		
Exclusion	Excluded	Remaining	Excluded	Remaining	Excluded	Remaining		
Steps		Ũ		Ū		U		
1	1992	344	1865	148	1287	88		
2	65	279	98	50	37	51		
3	22	257	9	41	7	44		
4	10	247	19	22	4	40		
	-		-			-		
C.								
Variants in	Ν	BS	AF	RMD	Р	Gx		
ESP6500	21	167	18	344	11	44		
Exclusion	Excluded	Remaining	Excluded	Remaining	Excluded	Remaining		
Steps		-		-		-		
1	1950	217	1729	115	1062	82		
2	45	172	79	36	37	45		
2 3	17	155	13	23	4	41		
4	11	144	8	15	3	38		
D.								
Variants in	EA (n	=4313)	AA (n	=2203)	EA+AA	(n=6516)		
ESP6500	57	724	51	155	91	199		
Exclusion	Excluded	Remaining	Excluded	Remaining	Excluded	Remaining		
Steps								
1	5144	580	4741	414	8373	746		
2 3	200	380	161	253	256	490		
3	38	342	34	219	54	436		
4	22	309	າາ	107	27	200		
•	33	209	22	197	37	399		

Exclusion Step 1: Not in OMIM or HGMD

Exclusion Step 2: Variants with other phenotypes; polymorphism in LSDB; not in PharmGKB

Exclusion Step 3: Variants <90% call rate in either EA or AA

Exclusion Step 4: NBS: Review of DM? and homozygotes in HGMD; ARMD: Not offered for clinical testing; PGx: Lowest level of evidence in PharmGKB (level 4)

Table S4. Locus specific databases queried

ACADMhttps://research.cchmc.org/LOVD2/home.php?select_db=ACADMACADVLhttps://research.cchmc.org/LOVD2/home.php?select_db=ACADVLACAT1N/AASLhttp://chromium.liacs.nl/LOVD2/home.php?select_db=ASLASS1http://chromium.liacs.nl/LOVD2/home.php?select_db=ASS1
ACADVLhttps://research.cchmc.org/LOVD2/home.php?select_db=ACADVLACAT1N/AASLhttp://chromium.liacs.nl/LOVD2/home.php?select_db=ASLASS1http://chromium.liacs.nl/LOVD2/home.php?select_db=ASS1
ACAT1 N/A ASL http://chromium.liacs.nl/LOVD2/home.php?select_db=ASL ASS1 http://chromium.liacs.nl/LOVD2/home.php?select_db=ASS1
ASS1 http://chromium.liacs.nl/LOVD2/home.php?select_db=ASS1
ASS1 http://chromium.liacs.nl/LOVD2/home.php?select_db=ASS1
BCKDHA http://databases.lovd.nl/shared/variants/BCKDHA
BCKDHB N/Å
BTD http://www.arup.utah.edu/database/BTD/BTD display.php
CBS http://cbs.lf1.cuni.cz/mutations.php
CFTR http://www.genet.sickkids.on.ca/
http://www.cftr2.org/
CYP21A2 http://www.cypalleles.ki.se/cyp21.htm
DBT N/A
FAH http://databases.lovd.nl/shared/variants/FAH
GALT http://arup.utah.edu/database/GALT/GALT_welcome.php
GCDH http://databases.lovd.nl/shared/variants/GCDH
GCH1 http://www.biopku.org/BIOMDB/BIOMDB_Results.asp
GJB2 http://davinci.crg.es/deafness/
HADHA N/A
HADHB N/A
HBA1 N/A
HBA2 http://globin.cse.psu.edu/globin/hbvar/menu.html
HBB http://globin.cse.psu.edu/
HLCS N/A
HMGCL N/A
IVD http://databases.lovd.nl/shared/variants/IVD
MCCC1 N/A
MCCC2 N/A
MMAA http://www.genomed.org/LOVD/mma/home.php?select_db=MMAA
MMAB http://www.genomed.org/LOVD/mma/home.php?select_db=MMAB
MMACHC http://www.genomed.org/lovd/mma/home.php?select_db=MMACHC
MMADHC N/A
MUT http://www.genomed.org/lovd/mma/variants.php?action=view_unique&select_
b=MUT
PAH http://www.pahdb.mcgill.ca
PCBD1 N/A
PCCA https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=PCC
PCCB https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=PCC
PTS http://www.biopku.org/BIOMDB/BIOMDB_Results.asp
QDPR http://www.biopku.org/BIOMDB/BIOMDB_Results.asp
SLC22A5 http://arup.utah.edu/database/OCTN2/OCTN2_display.php N/A: not available

Table S5. Allele frequency comparisons of included variants in newborn screening (NBS), age related macular degeneration (ARMD), and drug response (PGx) to 1000Genomes Project data and data from NHLBI Exome Variant Server

Category	Gene	transcript	chr.pos. (hg19)	rsID	ESP6500 AA Disease AF%	1000Genomes (AFR) AF%	ESP6500 EA Disease AF%	1000Genomes (EUR) AF%	dbSNP MAF%/MinorAlleleCount	EVS* Disease AF9 (EA/AA/AII)
lewborn	ACADM	NM_000016.4	chr1:76198337	rs147559466	0.05%	A=0%	0.37%	A=1%	A=0.003/6	0.3488/0.0454/0.246
creening	ACADM	NM_000016.4	chr1:76198409	rs121434280	0.05%	NA	0.11%	NA	NA	0.1047/0.0454/0.0846
NBS)	ACADM	NM_000016.4	chr1:76205779	rs121434278	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
	ACADM	NM_000016.4	chr1:76211507	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADM	NM 000016.4	chr1:76211508	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADM	NM 000016.4	chr1:76215194	rs121434274	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADM	NM 000016.4	chr1:76226846	rs77931234	0.14%	G=0%	0.74%	G=1%	G=0.002/5	0.7442/0.1362/0.5382
	ACADM	NM 000016.4	chr1:76226906	rs148207467	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ACADM	NM 000016.4	chr1:76215192	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADN	NM 000018.2	chr17:7124982	0	0.02%	NA	0.00%	NA	NA	
										0.0/0.0227/0.0077
	ACADVL	NM_000018.2	chr17:7126063	rs149467828	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ACADVL	NM_000018.2	chr17:7124899	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADVL	NM_000018.2	chr17:7125285	rs140629318	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ACADVL	NM_000018.2	chr17:7125522	rs113994168	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADVL	NM 000018.2	chr17:7125591	rs113994167	0.02%	NA	0.13%	NA	NA	0.1279/0.0227/0.0923
	ACADVL	NM_000018.2	chr17:7125608	0	0.02%	NA	0.03%	NA	NA	0.0349/0.0227/0.0308
	ACADVL	NM 000018.2	chr17:7126179	rs146589640	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADVL	NM 000018.2	chr17:7127312	rs138058572	0.05%	NA	0.00%	NA	NA	0.0/0.0454/0.0154
	ACADVL	NM 000018.2	chr17:7127359	rs113994170	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACADVL	NM 000018.2	chr17:7127698	rs146379816	0.02%	T=0%	0.07%	T=0%	T=0.000/1	0.0698/0.0227/0.0538
	ACADVL	NM_000018.2	chr17:7128292	rs148584617	0.09%	A=0%	0.34%	A=0%	A=0.001/2	0.3372/0.0908/0.2537
	ACAT1	NM_000019.3	chr11:108009661	rs148639841	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACAT1	NM_000019.3	chr11:108010835	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ACAT1	NM_000019.3	chr11:108016927	rs145229472	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ASL	NM_000048.3	chr7:65552367	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ASL	NM_000048.3	chr7:65546812	rs145138923	0.05%	NA	0.30%	NA	NA	0.314/0.0454/0.223
	ASL	NM_000048.3	chr7:65547430	rs28940585	0.00%	T=60%	0.01%	T=21%	NA	0.0116/0.0/0.0077
	ASL	NM_000048.3	chr7:65547906	rs138310841	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASL	NM 000048.3	chr7:65548107	rs143793815	0.00%	T=0%	0.08%	T=0%	T=0.001/2	0.0814/0.0/0.0538
	ASL	NM 000048.3	chr7:65548162	rs142637046	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASL	NM_000048.3	chr7:65557065	rs28940287	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
						T=0%	0.02%			
	ASS1	NM_000050.4	chr9:133327612	rs138350285	0.14%			T=0%	T=0.001/2	0.0233/0.1362/0.061
	ASS1	NM_000050.4	chr9:133333869	rs121908644	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASS1	NM_000050.4	chr9:133333936	rs35269064	1.52%	T=1%	0.16%	T=0%	T=0.005/10	0.1628/1.5433/0.630
	ASS1	NM_000050.4	chr9:133342161	rs121908637	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASS1	NM 000050.4	chr9:133346260	rs121908646	0.00%	C=0%	0.02%	C=0%	C=0.000/1	0.0233/0.0/0.0154
	ASS1	NM 000050.4	chr9:133355791	rs148918985	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ASS1	NM_000050.4	chr9:133355803	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ASS1	NM 000050.4	chr9:133355833	rs121908645	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASS1	NM 000050.4	chr9:133355834	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	ASS1	NM 000050.4	chr9:133364810	õ	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	ASS1 ASS1	NM 000050.4	chr9:133364800	rs183276875	0.02%	T=0%	0.00%	T=0%	T=0.000/1	0.0/0.0227/0.0077
	ASS1	NM_000050.4	chr9:133374932	rs121908641	0.02%	NA	0.02%	NA	NA	0.0233/0.0227/0.023
	BCKDHA	NM_000709.3	chr19:41916560	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	BCKDHA	NM_000709.3	chr19:41916570	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BCKDHA	NM_000709.3	chr19:41920030	rs34442879	0.16%	T=0%	1.06%	T=1%	T=0.006/12	1.0581/0.1589/0.753
	BCKDHA	NM_000709.3	chr19:41928081	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BCKDHA	NM_000709.3	chr19:41928183	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BCKDHA	NM 000709.3	chr19:41925055	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	BCKDHA	NM 000709.3	chr19:41928569	rs145901144	0.05%	NA	0.01%	NA	NA	0.0116/0.0454/0.023
	BCKDHA	NM 000709.3	chr19:41928570	0	0.02%	NA	0.01%	NA	NA	0.0116/0.0227/0.015
	BCKDHA	NM 000709.3	chr19:41920570	rs137852870	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
	BCKDHB	NM_000056.3	chr6:80838934	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BCKDHB	NM_000056.3	chr6:80878661	rs149766077	0.00%	T=0%	0.02%	T=0%	T=0.000/1	0.0233/0.0/0.0154
	BCKDHB	NM_000056.3	chr6:80878662	rs79761867	0.00%	NA	0.05%	NA	NA	0.0465/0.0/0.0308
	BCKDHB	NM_000056.3	chr6:80910740	rs150084361	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BTD	NM_000060.2	chr3:15686178	rs148031701	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	BTD	NM 000060.2	chr3:15677019	rs34885143	0.18%	A=0%	1.61%	A=1%	A=0.004/8	1.593/0.1816/1.1149

BTD	NM_000060.2	chr3:15683548	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
BTD	NM_000060.2	chr3:15685833	rs146015592	0.00%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
BTD	NM 000060.2	chr3:15685994	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
BTD	NM_000060.2	chr3:15686568	0	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
BTD	NM 000060.2	chr3:15686298	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
BTD	NM 000060.2	chr3:15686693	rs13078881	0.77%	C=0%	4.15%	C=4%	C=0.019/41	4.1512/0.7717/3.0063
BTD	NM_000060.2	chr3:15686731	rs80338685	0.00%	C=0%	0.15%	C=0%	C=0.000/1	0.1512/0.0/0.1
BTD	NM 000060.2	chr3:15686732	rs146600671	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
BTD	NM 000060.2	chr3:15686852	rs138818907	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CBS	NM_000071.2	chr21:44480585	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CBS	NM 000071.2	chr21:44480591	rs117687681	0.12%	A=0%	0.39%	A=0%	A=0.001/2	0.3953/0.1135/0.2999
CBS	NM_000071.2	chr21:44483098	rs121964962	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CBS	NM_000071.2	chr21:44484053	rs149119723	0.02%	NA	0.01%	NA	NA	0.0116/0.0227/0.0154
CBS	NM 000071.2	chr21:44484063	rs143124288	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CBS	NM_000071.2	chr21:44483184	rs5742905	0.36%	NA	0.28%	NA	NA	0.2791/0.3631/0.3076
		chr21:44486389							
CBS	NM_000071.2		rs121964965	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CBS	NM_000071.2	chr21:44486463	rs121964964	0.02%	NA	0.05%	NA	NA	0.0465/0.0227/0.0384
CBS	NM_000071.2	chr21:44486353	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
					NA		NA		
CBS	NM_000071.2	chr21:44492158	rs148865119	0.02%		0.05%		NA	0.0465/0.0227/0.0384
CFTR	NM_000492.3	chr7:117144378	rs143456784	0.00%	NA	0.03%	NA	NA	0.0233/0.0/0.0154
CFTR	NM_000492.3	chr7:117149085	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR									
	NM_000492.3	chr7:117149101	rs77284892	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117149144	rs142540482	0.05%	A=0%	0.12%	A=0%	A=0.000/1	0.1047/0.0454/0.0846
CFTR	NM_000492.3	chr7:117170947	0	0.02%	NA	0.05%	NA	NA	0.0465/0.0227/0.0384
CFTR	NM 000492.3	chr7:117171007	rs113993958	0.02%		0.00%	NA		0.0116/0.0227/0.0154
					NA			NA	
CFTR	NM_000492.3	chr7:117171028	rs77834169	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117171169	rs78756941	0.00%	NA	0.01%	NA	NA	0.0349/0.0/0.0231
	NM 000492.3		0		NA	0.01%			
CFTR		chr7:117174375	•	0.00%			NA	NA	0.0116/0.0/0.0077
CFTR	NM_000492.3	chr7:117175323	rs138338446	0.00%	A=0%	0.01%	A=0%	A=0.000/1	0.0233/0.0/0.0154
CFTR	NM 000492.3	chr7:117175339	rs121908752	0.00%	NA	0.01%	NA	NA	0.0233/0.0227/0.0231
CFTR	NM 000492.3	chr7:117175372	rs121909046	0.00%	G=0%	0.05%	G=1%	G=0.006/13	0.0465/0.0/0.0308
CFTR	NM_000492.3	chr7:117175437	rs147432698	0.00%	not found	0.01%	not found	NA	NA
CFTR	NM 000492.3	chr7:117176711	rs151073129	0.39%	T=0%	0.00%	T=0%	T=0.000/1	0.0/0.3858/0.1307
CFTR	NM 000492.3	chr7:117180174	rs143486492	0.07%	NA	0.18%	NA	NA	0.1628/0.0681/0.1307
CFTR	NM_000492.3	chr7:117180324	rs77932196	0.00%	NA	0.01%	NA	NA	0.0233/0.0/0.0154
CFTR	NM 000492.3	chr7:117180327	rs142920240	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117180330	rs121909021	0.00%	NA	0.05%	NA	NA	0.0465/0.0/0.0308
CFTR	NM_000492.3	chr7:117227905	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117199476	rs34906874	0.12%	A=0%	0.01%	A=0%	A=0.004/8	0.0/0.1135/0.0384
CFTR	NM 000492.3	chr7:117199525	rs139573311	0.02%	NA	0.00%	NA	NA	0.0233/0.0227/0.0231
CFTR	NM_000492.3	chr7:117199602	rs77101217	0.00%	NA	0.01%	NA	NA	0.0233/0.0/0.0154
CFTR	NM 000492.3	chr7:117199683	rs77646904	0.07%	A=0%	0.00%	A=0%	A=0.001/2	0.0/0.0681/0.0231
CFTR	NM_000492.3	chr7:117227792	rs76713772	0.00%	A=0%	0.05%	A=0%	A=0.000/1	0.1395/0.0/0.0923
CFTR	NM_000492.3	chr7:117227832	rs113993959	0.02%	NA	0.06%	NA	NA	0.186/0.0454/0.1384
CFTR	NM 000492.3	chr7:117227854	rs121908755	0.02%	NA	0.00%	NA	NA	0.0/0.0454/0.0154
CFTR	NM 000492.3	chr7:117227860	rs75527207	0.00%	NA	0.12%	NA	NA	0.2093/0.0/0.1384
								T=0.000/1	
CFTR	NM_000492.3	chr7:117227865	rs74597325	0.00%	T=0%	0.01%	T=0%		0.0581/0.0/0.0384
CFTR	NM 000492.3	chr7:117149123	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117232470	rs140455771	0.02%	T=0%	0.08%	T=0%	T=0.000/1	0.0698/0.0227/0.0538
CFTR	NM 000492.3	chr7:117232481	rs150157202	0.02%	A=0%	0.27%	A=0%	A=0.000/1	0.2442/0.0227/0.1692
CFTR	NM 000492.3	chr7:117232574	0	0.02%	NA	0.00%	NA	NA	0.0116/0.0227/0.0154
CFTR	NM_000492.3	chr7:117234999	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM_000492.3	chr7:117235090	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM_000492.3	chr7:117242854	0	0.00%	NA	0.14%	NA	NA	0.1395/0.0/0.0923
CFTR	NM 000492.3	chr7:117242922	rs80224560	0.00%	NA	0.04%	NA	NA	0.0465/0.0/0.0308
CFTR	NM_000492.3	chr7:117243651	0	0.00%	NA	0.03%	NA	NA	0.0233/0.0/0.0154
CFTR	NM 000492.3	chr7:117243667	rs149790377	0.02%	NA	0.00%	NA	NA	0.0/0.0454/0.0154
CFTR	NM 000492.3	chr7:117243686	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM_000492.3	chr7:117171044	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3	chr7:117243783	rs142773283	0.00%	NA	0.05%	NA	NA	0.0465/0.0/0.0308
CFTR	NM 000492.3	chr7:117246808	rs75096551	0.05%	A=0%	0.00%	A=0%	A=0.000/1	0.0/0.0681/0.0231
CFTR	NM_000492.3	chr7:117250625	rs149279509	0.00%	G=0%	0.04%	G=0%	G=0.000/1	0.0349/0.0/0.0231
CFTR	NM_000492.3	chr7:117251649	rs150212784	0.00%	NA	0.17%	NA	NA	0.1512/0.0/0.1
CFTR			rs1800114	0.00%	NA	0.01%	NA		
	NM_000492.3	chr7:117251695						NA	0.0116/0.0/0.0077
CFTR	NM_000492.3	chr7:117251700	0	0.00%	NA	0.08%	NA	NA	0.0814/0.0/0.0538
CFTR	NM 000492.3	chr7:117251769	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000492.3	chr7:117254753	rs75541969	0.00%	NA	0.04%	NA	NA	0.0233/0.0227/0.0231
CFTR			18/004/909	0.00%	INA	U U4%	INA	NA	0.0233/0.02277/0.0231

CFTR	NM_000492.3		rs150326506	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CFTR	NM_000492.3	0	0	0.00%	NA	0.01%	NA	NA	0.0/0.0227/0.0077
CFTR	NM_000492.3		rs75647395	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CFTR	NM_000492.3		rs145743767	0.02%	A=0%	0.00%	A=0%	A=0.001/2	0.0/0.0227/0.0077
CFTR	NM_000492.3	OUT THE DE TOO	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM_000492.3		rs78769542	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
CFTR	NM_000492.3		rs76649725	0.02%	T=0%	0.00%	T=0%	T=0.000/1	0.0/0.0227/0.0077
CFTR CFTR	NM_000492.3		rs77010898	0.00%	NA	0.06% 0.01%	NA NA	NA	0.0698/0.0/0.0461
CFTR	NM_000492.3 NM_000492.3		rs146795445	0.00% 0.00%	NA C=0%	0.01%	G=0%	NA G=0.000/1	0.0116/0.0/0.0077
CFTR	NM_000492.3 NM_000492.3		rs80034486 rs145545286	0.00%	G=0% NA	0.00%	G=0%	G=0.000/1 NA	0.0349/0.0/0.0231 0.0/0.0227/0.0077
CFTR	NM 000492.3		rs146947665	0.02%	NA	0.03%	NA	NA	0.0233/0.0/0.0154
CFTR	NM 000492.3		0	0.00%	NA	0.03%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3		rs138642693	0.46%	C=0%	0.00%	C=0%	C=0.000/1	0.0/0.4539/0.1538
CFTR	NM 000492.3		0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CFTR	NM 000492.3		rs148783445	0.25%	A=0%	0.03%	A=0%	A=0.001/2	0.0233/0.2497/0.1
CFTR	NM 000492.3		0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
CYP21A2	NM 000500.7		rs6476	1.83%	A=2%	0.00%	A=0%	NA	0.0/1.8157/0.6151
CYP21A2	NM 000500.7		0	0.02%	NA	0.03%	NA	NA	0.0233/0.0227/0.0231
DBT	NM_001918.2	chr1:100681586	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
DBT	NM_001918.2	chr1:100680411	0	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
DBT	NM_001918.2		rs74103423	0.05%	A=0%	0.00%	A=0%	A=0.001/2	0.0/0.0454/0.0154
DBT	NM_001918.2		rs121964999	0.00%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
FAH	NM_000137.2		0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
FAH	NM_000137.2		rs80338895	0.00%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
FAH	NM_000137.2		rs149052294	0.07%	NA	0.00%	NA	NA	0.0/0.0681/0.0231
FAH	NM_000137.2		rs80338898	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
FAH	NM_000137.2	01110.00401400	0	0.00%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
FAH	NM_000137.2		rs80338900	0.02%	NA	0.00%	NA	NA T 0 011/02	0.0/0.0227/0.0077
FAH FAH	NM_000137.2 NM_000137.2		rs11555096 rs80338901	0.35% 0.00%	T=0% A=0%	2.28% 0.07%	T=2% A=0%	T=0.011/23 A=0.000/1	2.2907/0.3404/1.63 0.0698/0.0/0.0461
FAH	NM 000137.2		rs121965076	0.00%	NA NA	0.00%	A=0% NA	A=0.000/1 NA	0.0/0.0227/0.0077
GALT	NM 000155.2		rs111033656	0.02%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
GALT	NM 000155.2		rs111033690	0.25%	T=1%	0.00%	T=0%	T=0.002/4	0.0/0.2497/0.0846
GALT	NM 000155.2		rs111033686	0.00%	NA	0.00%	NA	NA	0.0116/0.0/0.0077
GALT	NM 000155.2		rs111033697	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM 000155.2		rs75391579	0.09%	G=0%	0.27%	G=0%	G=0.001/3	0.2674/0.0908/0.2076
GALT	NM 000155.2		rs111033736	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM 000155.2		rs111033750	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM 000155.2	chr9:34648843	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM_000155.2	chr9:34648885	rs111033766	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
GALT	NM_000155.2		rs111033773	0.00%	T=0%	0.06%	T=0%	T=0.000/1	0.0581/0.0/0.0384
GALT	NM_000155.2	chr9:34649442	rs2070074	2.93%	G=2%	9.36%	G=10%	G=0.055/119	9.3372/2.8824/7.1505
GALT	NM_000155.2		rs144993986	0.02%	NA	0.01%	NA	NA	0.0116/0.0227/0.0154
GALT	NM_000155.2		rs111033800	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM_000155.2		rs111033814	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GALT	NM_000155.2		rs111033819	0.00%	NA	0.03%	NA	NA	0.0349/0.0/0.0231
GCDH	NM_000159.2		rs142967670	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
GCDH	NM_000159.2		rs139851890	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
GCDH	NM_000159.2		rs149120354	0.02%	NA	0.05%	NA	NA	0.0465/0.0227/0.0384
GCDH GCDH	NM_000159.2 NM_000159.2		rs121434373 rs121434371	0.02% 0.05%	NA NA	0.02% 0.00%	NA NA	NA NA	0.0233/0.0227/0.0231
GCDH GCDH	NM_000159.2 NM_000159.2		rs121434371 0	0.05%	NA	0.00%	NA	NA	0.0/0.0454/0.0154 0.0/0.0227/0.0077
GCDH GCDH	NM_000159.2 NM_000159.2		0 rs121434370	0.02%	NA	0.00%	NA NA	NA NA	0.0116/0.0/0.0077
GCDH	NM_000159.2		rs150938052	0.00%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
GCDH	NM 000159.2		rs121434369	0.02%	NA	0.06%	NA	NA	0.0581/0.0227/0.0461
GCDH	NM 000159.2		rs141437721	0.02%	G=0%	0.00%	G=0%	G=0.000/1	0.0/0.0908/0.0308
GCDH	NM 000159.2		rs147611168	0.05%	NA	0.00%	NA	NA	0.0116/0.0454/0.0231
GCDH	NM 000159.2		rs151201155	0.16%	A=0%	0.00%	A=0%	A=0.001/2	0.0/0.1589/0.0538
GCH1	NM 000161.2		rs56127440	0.00%	NA	0.07%	NA	NA	0.0698/0.0/0.0461
GJB2	NM 004004.5		rs111033294	0.00%	C=0%	0.01%	C=0%	C=0.000/1	0.0116/0.0/0.0077
GJB2	NM 004004.5		0	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
GJB2	NM_004004.5		rs111033360	0.11%	T=0%	0.00%	T=0%	T=0.000/1	0.0/0.1135/0.0384
GJB2	NM_004004.5	chr13:20763246	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GJB2	NM_004004.5		rs80338948	0.07%	A=0%	0.00%	A=0%	A=0.000/1	0.0/0.0681/0.0231
GJB2	NM_004004.5		rs76434661	0.00%	T=0%	0.08%	T=0%	T=0.001/2	0.0814/0.0/0.0538
GJB2	NM_004004.5	chr13:20763366	rs150529554	0.00%	T=0%	0.03%	T=0%	T=0.000/1	0.0349/0.0/0.0231

GJB2	NM 004004.5	chr13:20763423	rs143343083	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 004004.5	chr13:20763452	rs80338945	0.02%	NA	0.06%	NA	NA	0.0581/0.0227/0.0461
	NM 004004.5	chr13:20763471	rs104894409	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 004004.5	chr13:20763480	rs145216882	0.05%	NA	0.01%	NA	NA	0.0116/0.0454/0.0231
		chr13:20763483	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM_004004.5	chr13:20763490	rs80338944	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr13:20763552	rs111033297	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GJB2	NM 004004.5	chr13:20763395	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
GJB2	NM_004004.5	chr13:20763611	rs141774369	0.05%	NA	0.00%	NA	NA	0.0/0.0454/0.0154
GJB2	NM_004004.5	chr13:20763612	rs72474224	0.02%	T=0%	0.19%	T=0%	T=0.012/26	0.186/0.0227/0.1307
		chr13:20763627	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 004004.5	chr13:20763633	õ	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 004004.5	chr13:20763710	rs111033222	0.21%	T=0%	0.00%	T=0%	T=0.000/1	0.0/0.2043/0.0692
		chr13:20763534	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr13:20763602	rs111033296	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr2:26414191	rs142120825	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
HADHA	NM_000182.4	chr2:26418053	rs137852769	0.02%	G=0%	0.05%	G=0%	G=0.000/0	0.0465/0.0227/0.0384
HADHA	NM 000182.4	chr2:26435497	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
HADHA	NM 000182.4	chr2:26437990	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000183.2	chr2:26486320	rs121913132	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
	NM 000183.2	chr2:26496605	rs146328300	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000183.2	chr2:26508339	0			0.01%			
				0.00%	NA		NA	NA	0.0116/0.0/0.0077
	NM_000518.4	chr11:5246908	rs33946267	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
	NM_000518.4	chr11:5246959	rs33913413	0.02%	NA	0.01%	NA	NA	0.0116/0.0227/0.0154
	NM_000518.4	chr11:5247806	rs33945777	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
HBB	NM 000518.4	chr11:5247859	rs33993568	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
HBB	NM_000518.4	chr11:5247860	rs35553496	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000518.4	chr11:5248004	rs76728603	0.00%	A=0%	0.01%	A=0%	A=0.000/1	0.0116/0.0/0.0077
		chr11:5248050	rs35004220	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
		chr11:5248052	rs111851677	1.57%	G=2%	0.00%	G=0%	G=0.005/11	0.0/1.5902/0.5385
	NM 000518.4	chr11:5248052		0.00%	T=0%	0.00%	T=0%	T=0.000/1	0.0116/0.0/0.0077
			rs33971440						
	NM_000518.4	chr11:5248170	rs35424040	0.02%	NA	0.00%	NA	NA	NA
	NM_000518.4	chr11:5248177	rs75680770	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM_000518.4	chr11:5248232	rs334	4.00%	A=9%	0.02%	A=0%	A=0.022/49	0.0233/4.0209/1.3771
HBB	NM 000518.4	chr11:5248233	rs33930165	1.61%	T=1%	0.01%	T=0%	T=0.002/5	0.0116/1.6129/0.5539
HBB	NM_000518.4	chr11:5248282	rs63750628	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000411.6	chr21:38309329	rs144572349	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr21:38128859	rs146448211	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
	NM 000411.6	chr21:38128865	rs140951243	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 000411.6	chr21:38128952	rs149399432		NA	0.00%	NA	NA	
				0.02%					0.0/0.0227/0.0077
	NM_000411.6	chr21:38132079	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM_001159508.1	chr15:40708531	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM_001159508.1	chr15:40702898	rs142761835	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
IVD	NM 001159508.1	chr15:40707154	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
IVD	NM_001159508.1	chr15:40707653	rs28940889	0.07%	T=0%	0.07%	T=0%	T=0.001/2	0.0698/0.0681/0.0692
		chr15:40710364	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
		chr3:182763210	Ő	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr3:182763310	rs119103212	0.00%	NA	0.02%	NA	NA	0.0233/0.0/0.0154
							NA		
		chr5:70898412	rs141030969	0.00%	NA	0.02%		NA	0.0233/0.0/0.0154
	NM_022132.4	chr5:70936845	rs150591260	0.02%	NA	0.09%	NA	NA	0.093/0.0227/0.0692
		chr5:70942096	rs142887940	0.00%	NA	0.06%	NA	NA	0.0582/0.0/0.0384
		chr5:70945029	rs139852818	0.05%	NA	0.12%	NA	C=0.002/5	0.1163/0.0454/0.0923
MCCC2	NM 022132.4	chr5:70948566	rs150327768	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
MCCC2	NM_022132.4	chr5:70895499	rs119103219	0.02%	NA	0.02%	NA	C=0.001/2	0.0233/0.0227/0.0231
		chr4:146560724	rs104893851	0.00%	NA	0.05%	NA	NA	0.0465/0.0/0.0308
	NM 052845.3	chr12:109994886	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
		chr12:109998858	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 015702.2		0	0.02%		0.00%	NA	NA	
		chr2:150432296			NA				0.0/0.0227/0.0077
	NM_000255.3	chr6:49399544	rs121918252	0.07%	NA	0.00%	NA	NA	0.0/0.0681/0.0231
		chr6:49403194	rs140600746	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM_000255.3	chr6:49403260	rs147094927	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
		chr6:49407986	rs143023066	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000255.3	chr6:49408008	rs121918254	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 000255.3	chr6:49407995	0	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000255.3	chr6:49425601	rs148331800	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
	NM 000255.3	chr6:49419403	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
	NM 000255.3		rs115923556		NA	0.38%	NA	C=0.001/2	0.3837/0.1362/0.2999
	14141_000200.0	chr6:49426975	19110920000	0.14%	11/1	0.0070	11/1	0-0.001/2	0.303770.1302/0.2999

PAH MA NA NA NA NA NA NA OVERAD0270 PAH MA D0071 D017 D0172 D01720 D0										
PAH NA ADDR Storp 11 out 210028207 addRess 0005% NA Control 1000 Contre Control 10000 Contre										0.1047/0.0227/0.0769
PAH NA NA DOB NA DOB NA Add D017 D0184 D0184 PAH NA DOB NA DOB NA DOB NA DOB NA DOB NA DOB DOB NA DOB DOB NA DOB DOB DOB NA DOB DOB DOB DOB NA DOB DOB DOB NA DOB DOB NA DOB DOB NA DOB										
PAH NA Day NA Day NA NA NA NA Day Day <thday< th=""> <thday< th=""> <thday< th=""></thday<></thday<></thday<>										
PAH NA DOTS NA DOTS NA NA NA NA DA DOTS NA DA DOTS DA DA DOTS DA DA DOTS DA DA DOTS DA DA <thda< th=""> <thda< th=""> <thda< th=""></thda<></thda<></thda<>										
PAH NA OUTS NA OUTS NA NA NA NA DUB PAH NU OUTS NA OUTS NA NA OUTS PAH NU OUTS NA NA NA NA OUTS NA PAH NU OUTS NA OUTS NA NA NA OUTS NA NA OUTS NA NA OUTS NA OUTS NA OUTS NA NA NA OUTS NA NA NA OUTS NA OUTS NA										
PAH NN NA 0.075 NA NA 0.0156 DOTS PAH NN 0.0271 0.0712 0.027144 0.025244 0.0254 NA NA NA NA NA 0.045 PAH NN 0.02771 0.0121 0.021144 0.0255 NA NA NA 0.015 NA 0.015 NA NA 0.015 0.015 NA 0.015 NA 0.015 0.015 NA 0.015										
PAH NN DOTS NA DOTS NA NA DESCRIPTION PAH NN DOTS NA NA NA DOTS NA DOTS NA NA NA NA DOTS NA DOTS NA NA NA NA DOTS NA DOTS NA DOTS NA										
PAH NAL_002771 chrl: 21332478 sel20730 0.01% PA 0.05% TA NA NA 0.04400000231 PAH NAL_002771 chrl: 21332478 sel202328 chrl: 21332478 sel202328 chrl: 21332478 sel201324 se										
PAH NN_0002771 chr:21532758 re3000000000000000000000000000000000000										
PAH NMC_002771 chr12-103238137 ms2510002 0.01% NA 0.01% NA NA 0.01180.00.0077 PAH NMC_002771 chr12-10323817 ms2510022 0.01% NA 0.01% NA NA 0.01180.00.0077 PAH NMC_002771 chr12-10324818 ms2510148 0.00% NA 0.05% NA NA 0.0460.00.00.00 PAH NMC_002771 chr12-10324818 ms2510148 0.00% NA 0.05% NA NA 0.0460.00.00.000 PAH NMC_002771 chr12-10324818 ms2510148 0.00% NA 0.01% NA NA 0.01100.00.0077 PAH NMC_002771 chr12-10324818 ms251048 0.00% NA 0.01% NA NA 0.01100.00.0077 PAH NMC_002771 chr12-10324818 ms251048 0.00% NA 0.02% NA NA 0.01100.00.007 PAH NMC_002771 chr12-10324818 ms250488 0.00% NA 0.02%										
PAH NM D01% NA D01% NA NA D01% NA NA D01% D01% NA D01% D01% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
PAH NA 0.02% NA 0.02% NA NA 0.02% PAH NA 0.02% NA 0.02% NA NA 0.04% <td></td>										
PAH NA_002771 chr121034491 g300853 D 00% NA D 05% NA NA D 05% PAH NA_002771 chr121034491 g3042431 D 00% NA D 05% NA NA NA D 05% NA D 05% NA D 05% NA D 05% NA NA D 05% NA D 0										
PAH NA_0002771 chr1210344581 rtf2424233 D 00% NA D 03% NA NA D 03% PAH NA_002771 chr121034681 rtf211141 D 00% NA D 03% NA NA D 001771 PAH NA_002771 chr121034681 rtf2208088 D 00% NA D 02% NA NA D 00171 PAH NA_002771 chr121034681 rtf2308081 D 00% NA D 00% NA D 00171 PAH NA_002771 chr121034681 rtf330816 D 03% NA D 03% NA NA D 0166000071 PAH NM_002771 chr121034681 rtf330816 D 03% NA D 03% NA NA D 028% NA NA D 028% NA D 03% NA D 03% NA NA D 03%										
PAH NM. D02277.1 chr12-10324888 m6221614.6 0.00% NA 0.01% NA NA NA D01160.00.0077 PAH NM. D02077.1 chr12-10324888 m62208181 0.05% NA 0.01% NA NA 0.01%										
PAH NN_0002771 chr1210248687 n82506888 0.00% NA 0.02% NA NA 0.023% D0.0154 PAH NN_0002771 chr1210248687 n82506881 0.00% NA 0.01% NA 0.02% NA NA 0.023810.01144 0.023810.01144 0.023810.01144 0.023810.01144 0.005% NA NA 0.023810.01144 0.0000.0077 0.005% NA 0.02% NA NA 0.023810.01144 0.0000.0077 0.005% NA 0.005% NA 0.005% NA 0.005% NA NA 0.0006 NA 0.005% NA NA 0.0006 NA 0.005% NA NA NA	PAH				0.00%	NA		NA		
PAH NN_0002771 chr1210248687 n82506888 0.00% NA 0.02% NA NA 0.023% D0.0154 PAH NN_0002771 chr1210248687 n82506881 0.00% NA 0.01% NA 0.02% NA NA 0.023810.01144 0.023810.01144 0.023810.01144 0.023810.01144 0.005% NA NA 0.023810.01144 0.0000.0077 0.005% NA 0.02% NA NA 0.023810.01144 0.0000.0077 0.005% NA 0.005% NA 0.005% NA 0.005% NA NA 0.0006 NA 0.005% NA NA 0.0006 NA 0.005% NA NA NA	PAH	NM_000277.1	chr12:103246593	rs5030851	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
PAH NN_000277.1 chr12:103:48615 p14:329:4615 c -0% NA 0.01% NA 0.01:83-10:536 PAH NN_00277.1 chr12:103:48615 p52:1764 0.00% NA 0.01% NA NA 0.0183-101:60:00:0077 PAH NN_002277.1 chr12:103:48615 p52:00:30 0.02% NA 0.01% NA NA 0.05810.02440473 PAH NN_002277.1 chr12:103:48617 p52:00:3730 0.00% NA 0.01% NA NA 0.018:00:00:077 PAH NN_002277.1 chr12:103:48601 p52:00:02 0.05% NA 0.01% NA NA 0.01% NA 0.02% NA 0.01% NA 0.02%	PAH	NM_000277.1	chr12:103246597	rs62508698	0.00%	NA	0.02%		NA	0.0233/0.0/0.0154
PAH NM_000277.1 chrl2:103248624 ms503894 0.05% NA 0.01% NA NA NA NA PAH NM_000277.1 chrl2:10324861 ms5038947 0.05% NA 0.05% NA NA NA 0.0580.0.0154 PAH NM_000277.1 chrl2:10324871 ms5038947 0.05% NA 0.01% NA NA NA 0.0180.0.00077 PAH NM_000277.1 chrl2:10324871 ms5258734 0.05% NA 0.01% NA NA 0.0180.0.00077 PAH NM_000277.1 chrl2:103248828 ms52587348 0.05% NA 0.01% NA NA 0.0180.0.00077 PAH NM_000277.1 chrl2:10324808 ms5258730 0.05% NA 0.01% NA NA 0.01480.0.0.0277 PAH NM_000277.1 chrl2:10324808 ms525881612 0.05% NA 0.015% NA NA NA 0.016840.0.0527105716 PAH NM_000277.1 chrl2:10324908 <t< td=""><td>PAH</td><td>NM_000277.1</td><td>chr12:103246612</td><td>rs62508691</td><td>0.00%</td><td>NA</td><td>0.01%</td><td>NA</td><td>NA</td><td>0.0116/0.0/0.0077</td></t<>	PAH	NM_000277.1	chr12:103246612	rs62508691	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
PAH NM_000277:1 chrl:10324665 rs500847 0.05% NA 0.05% NA NA 0.03% NA 0.03% NA NA NA 0.033% NA 0.033% NA NA NA 0.03% NA NA NA NA NA 0.00% NA NA NA NA NA 0.00% NA 0.01% NA NA NA 0.01% NA NA NA 0.01% NA NA NA 0.01% NA NA 0.01% NA 0.01% NA										0.0/1.6341/0.5536
PAH NM_000277:1 chrl210324601 rb5030847 0.00% NA 0.02% NA 0.02% NA 0.02% PAH NM_000277:1 chrl2103246713 rb5216730 0.00% NA 0.01% NA NA 0.01680.00.0077 PAH NM_000277:1 chrl210324683 0.00% NA 0.01% NA NA 0.00.00077 PAH NM_000277:1 chrl210324683 0.00% NA 0.01% NA 0.01% NA NA 0.00 0.000677 PAH NM_000277:1 chrl210324693 0.52% NA 0.01% NA 0.01% NA NA 0.01% NA NA 0.0180.00077 PAH NM_000277:1 chrl210324903 rs736427 1.06% NA 0.01% NA NA NA 0.0180.00077 PAH NM_000277:1 chrl210321203 rs736427 1.06% NA 0.01% NA NA 0.000077 PAH NM_000277.1 chrl210322120.										
PAH NM_00227:1 chrl2:103246701 rs8220734 0.02% NA 0.07% NA NA 0.06980 0.0270 PAH NM_0022771 chrl2:10324670 rs822067344 0.05% NA 0.01% NA NA 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.00160 0.01160 0.00160 0.01160 0.01160 0.01160 0.01160 0.01160 0.02270 0.1160 0.01160 0.01160 0.01160 0.000771 0.01160 0.000771 0.01160 0.000771 0.01160 0.01160 0.01160 0.010270 0.02270 0.0161 0.0160 0.000271 0.01160 0.00271 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 0.01160 <										
PAH NN_000277.1 chrl:103246713 pc25073.0 0.00% NA 0.01% NA NA 0.01% NA 0.01% PAH NN_000277.1 chrl:10324893 pc250738 pc3251612 0.00% NA 0.03% NA NA 0.0340 0.004540 0.01560 PAH NN_000277.1 chrl:10324893 pc3251612 0.00% NA 0.03% NA NA 0.0160000077 PAH NN_000277.1 chrl:10324993 pc34468030 0.02% NA 0.01% NA NA 0.01 0.01160.02.0771 PAH NN_000277.1 chrl:103269038 pc37554265 1.68% C-2% 0.00% NA 0.01% NA										
PAH NN_000277:1 chr1:210324892 re5251938 0.05% NA 0.00% NA NA 0.03% NA 0.03% PAH NN_000277:1 chr1:210324898 0 0.00% NA 0.01% NA 0.00% NA NA 0.00% NA 0.01% NA 0.00%										
PAH NM_000277:1 cht210324802 ms2516152. 0.00% NA 0.03% NA NA NA 0.03490.00.0231 PAH NM_000277.1 cht2103246091 0 0.00% NA 0.01% NA NA NA NA NA NA NA NA 0.01160.00.0077 PAH NM_000277.1 cht210324609 rs7446803 0.02% NA 0.05% NA NA NA NA NA 0.0002711 0.01160.02770.0174 PAH NM_000277.1 cht210324609 rs746803 0.02% NA 0.05% NA NA NA NA 0.0002711 0.001202710.0174 PAH NM_000277.1 cht2103264044 rs5216490 0.00% NA 0.01% NA NA NA NA 0.0160.00077 PAH NM_000277.1 cht210327123 rs52507321 0.02% NA 0.01% NA NA NA NA NA 0.0160.00077 PAH NM_000277.1										
PAH NM_000277.1 cht2103246698 0 0.00% NA 0.01% NA NA NA 0.01% NA 0.01% NA 0.01% NA 0.01% NA 0.01% NA 0.01% NA NA 0.01% NA NA NA 0.01% NA 0.01% NA NA 0.01% NA 0.01% NA 0.01% NA 0.01% NA NA 0.01% <										
PAH NM_00277.1 ch12:103240091 0 0.00% NA 0.01% NA NA 0.01% NA NA 0.01180.00.0077 PAH NM_00277.1 ch12:103240099 rs13808906 0.02% NA 0.00% NA NA 0.0005270.0077 PAH NM_00277.1 ch12:103280110 rs530843 0.00% NA 0.03% NA NA 0.0005111 0.018/10.2270.0077 PAH NM_00277.1 ch12:103280410 rs530843 0.00% NA 0.03% NA NA 0.015% 0.01% NA 0.03% NA 0.01% NA NA 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.01160.0007 0.00051 NA NA										
PAH NM_00277.1 chr12-10324003 s72448803 0.02% NA 0.01% NA NA 0.01010.02270.0154 PAH NM_00277.1 chr12-10326038 s77554825 1.66% C=2% 0.00% C=0% C=0.005/11 0.018341.0538 PAH NM_00277.1 chr12-10326038 s77554825 1.66% C=2% 0.00% NA NA NA 0.03491.00.0231 PAH NM_00277.1 chr12-10326101 s73564825 1.66% C=2% 0.00% NA NA NA 0.03491.00.0231 PAH NM_00277.1 chr12-103271239 s82517168 0.02% NA 0.01% NA NA 0.0180.0270.0154 PAH NM_00277.1 chr12-103278357 s14233887 0.05% NA 0.01% NA NA 0.01180.0270.0154 PAH NM_00277.1 chr12-10328565 s14533887 0.05% NA 0.05% NA NA 0.01180.0270.0154 PAH NM_00277.1 chr12-10328576 s1453780										
PAH NM_00277.1 chr12:103240999 ris8809906 0.02% NA 0.00% NA NA 0.00% PAH NM_00277.1 chr12:10326041 ris503043 0.00% NA 0.03% NA NA 0.03490.00.0231 PAH NM_000277.1 chr12:10326041 ris503043 0.00% NA 0.01% NA NA 0.01% PAH NM_000277.1 chr12:10326044 ris52514909 0.00% NA 0.01% NA NA 0.01% PAH NM_000277.1 chr12:10327123 ris62517166 0.00% NA 0.01% NA 0.01% PAH NM_000277.1 chr12:10327123 ris62517166 0.00% NA 0.01% NA										
PAH NNL D0277.1 chrl2:10326043 sr7564925 1.66% C=2% 0.00% C=0.05% C=0.05/11 0.01/85/10.5536 PAH NNL 0.00277.1 chrl2:10326041 rs7564925 0.00% NA 0.01% NA NA 0.01160.00.0077 PAH NNL 0.00277.1 chrl2:10326046 rs82514909 0.00% NA 0.01% NA NA NA 0.01160.00.0077 PAH NNL 0.00277.1 chrl2:10327123 rs82507321 0.00% NA 0.01% NA NA NA 0.0180.00077 PAH NNL 0.00277.1 chrl2:103271247 rs140175766 0.02% NA 0.01% NA NA 0.0160.00.0077 PAH NNL 0.00277.1 chrl2:10328576 rs142516271 0.20% NA 0.05% NA NA 0.00% NA 0.00% NA 0.00% NA 0.000/1 0.002330.0692 PAH NNL 0.00277.1 <thchrl2:10330657< th=""> <thr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thr<></thchrl2:10330657<>										
PAH NNL_00277.1 chrl2:103260410 rss5030843 0.00% NA 0.03% NA NA 0.03490.00.0231 PAH NNL_00277.1 chrl2:10326046 rss2514909 0.00% NA 0.01% NA NA 0.0160.0277.0154 PAH NNL_00277.1 chrl2:10326046 rss2514909 0.00% NA 0.01% NA NA 0.01% NA 0.00% NA 0.01% NA 0.00010.00.0070										
PAH NM_00277.1 chrl2:103280411 rs75166491 0.02% NA 0.01% NA NA NA O.01160.00270.0154 PAH NM_000277.1 chrl2:10327132 rs62507321 0.00% NA 0.01% NA NA NA O.01160.00077 PAH NM_000277.1 chrl2:10327132 rs62507321 0.00% NA 0.01% NA NA NA O.01160.00077 PAH NM_000277.1 chrl2:103271427 rs62507321 0.00% NA 0.01% NA NA NA 0.0160.0077 PAH NM_000277.1 chrl2:10327147 rs140175766 0.02% NA 0.01% NA NA NA 0.0160.007 PAH NM_000277.1 chrl2:10328657 rs142516271 0.20% NA 0.01% NA NA NA 0.00% NA NA 0.000013 0.00381.00.00										
PAH NM_000277.1 chrl2:10320446 rs62514909 0.00% NA 0.01% NA NA 0.01% NA 0.01% NA 0.01% NA 0.0160.00.0077 PAH NM_000277.1 chrl2:10327123 rs6251768 0.00% NA 0.01% NA NA 0.0160.00.0077 PAH NM_000277.1 chrl2:103271247 rs143033887 0.05% NA 0.05% NA NA 0.04650.04540.04640 PAH NM_000277.1 chrl2:10328567 rs143033887 0.20% NA 0.05% NA NA 0.04650.04540.04640 PAH NM_000277.1 chrl2:10328567 rs148033817 0.20% NA 0.01% NA NA 0.0160.00.0077 PAH NM_000277.1 chrl2:103306597 rs11802776 0.00% C=0% 0.09% T=0% T=0.006/13 0.093/0.00.0151 PAH NM_000277.1 chrl2:103306597 rs11802776 0.00% NA 0.01% NA 0.0160.00.0077 PAH										
PAH NN_000277:1 chrl2:103271239 rs62517166 0.00% NA 0.01% NA NA 0.0116(0.00277) PAH NN_000277.1 chrl2:103271427 rs14017579 0.02% NA 0.05% NA NA 0.0455(0.04510.0461 PAH NN_000277.1 chrl2:10328856 rs142518271 0.20% NA 0.05% NA NA 0.0455(0.04510.0461 PAH NN_000277.1 chrl2:10328850 rs52514903 0.00% NA 0.01% NA NA 0.01% NA 0.0										
PAH NM_000277.1 chrl2:102271247 rst40176796 0.0% NA 0.01% NA NA 0.01460/02270.0154 PAH NM_000277.1 chrl2:103288676 rst4393382 0.0% NA 0.005% NA NA 0.004650.04540 0.04650.04540 0.004610 PAH NM_000277.1 chrl2:103288677 rst5193786 0.00% Ca 0.01% NA NA NA 0.002010 0.05810.00340 0.00810 0.01160.00.0077 PAH NM_000277.1 chrl2:10330659 rst1809277 0.00% T=0% 0.09% T=0% 0.0061 0.03930.00.0615 PAH NM_000277.1 chrl2:10330659 rs5214930 0.0% C=0% 0.07% NA NA NA 0.01160.004507 PAH NM_000277.1 chrl2:10330679 rs11809277 0.05% NA 0.01% NA NA NA 0.01160.004507 PAH NM_00027.2 chrl2:10330620 rs52149807 NA C=0% 0.07% NA NA	PAH	NM_000277.1	chr12:103271235	rs62507321	0.00%	NA	0.01%	NA	NA	0.0233/0.0/0.0154
PAH NM_000277.1 chrl2:103288566 rs142518211 0.20% NA 0.05% NA NA NA 0.046240.0461 PAH NM_000277.1 chrl2:103288570 rs1251121 0.20% NA 0.01% NA NA 0.0120430.00592 PAH NM_000277.1 chrl2:10328857 rs75193786 0.00% G=0% 0.09% G=0.006/13 0.008/13 0.09810.00.0384 PAH NM_000277.1 chrl2:103306579 rs18092776 0.00% T=0% 0.09% T=0% T=0% T=0% 0.006/13 0.09810.00.00.0384 PAH NM_000277.1 chrl2:10330679 rs1819154 0.00% NA 0.01% NA NA NA 0.01160.00.0077 PAH NM_000221.2 chrl2:103310877 rs121913015 0.00% NA 0.02% NA NA 0.02330.00.0154 PCCA1 NM_000281.2 chrl3:10116771 rs1425437 0.22% NA 0.00% NA NA NA 0.002320.00.0154 PCCA	PAH	NM_000277.1	chr12:103271239	rs62517166	0.00%	NA	0.01%	NA	NA	0.0116/0.0/0.0077
PAH NM_000277.1 chrl2:103288576 rst42516271 0.20% NA 0.00% NA NA 0.00% PAH NM_000277.1 chrl2:103288671 rs55193766 0.00% G=0% 0.06% G=0.000/1 0.0581/0.00.0374 PAH NM_000277.1 chrl2:103306579 rs5193766 0.00% T=0% 0.09% T=0% G=0.000/1 0.0581/0.00.0374 PAH NM_000277.1 chrl2:103306594 rs5030411 0.00% NA 0.01% NA NA 0.0116/0.04615 PAH NM_000277.1 chrl2:103306629 rs5024226 0.05% NA 0.01% NA NA 0.0116/0.04610 PAH NM_00027.1 chrl2:103306629 rs5242326 0.05% NA 0.01% NA 0.02% NA 0.0160 0.0160/0.0077 PAH NM_000221.2 chrl3:1017614 rs145428347 0.02% NA 0.00% NA NA 0.000.02270.0077 PCCA NM_00032.4 chrl3:10076414 rs145428347 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
PAH NM D00277.1 chrl2:03288590 rs62514903 0.00% NA D.01% NA NA NA D.01% D.01% D.01% D.000/1 D.000/1 D.01% D.000/1 D.01% D.000/1 D.000/13 D.093/D.00077 PAH NM_000277.1 chrl2:103306579 rs18092776 0.00% T=0% 0.09% T=0% T=0.006/13 0.093/D.00.0077 PAH NM_000277.1 chrl2:103306579 rs5030841 0.00% NA 0.01% NA NA NA 0.0116/D.000077 PAH NM_000277.1 chrl2:103306579 rs1801145 0.00% NA 0.01% NA NA 0.016/D.00073 0.0230.00.0154 PCBD1 NM_000281.2 chrl0:72643759 rs15117837 0.02% NA 0.00% NA 0.0230.00.0154 PCCA NM_000282.3 chrl3:10161714 rs14371306 0.02% NA 0.00% NA 0.0002270.0077 PCCA NM_000282.4 chrl3:1016120.20 rs143871306 0										
PAH NM_000277.1 chrl2:10326871 rs75193786 0.00% G=0% 0.69% T=0% T=0.006/13 0.093/0.00.615 PAH NM_000277.1 chrl2:103306594 rs5030841 0.00% NA 0.01% NA NA 0.001/10 0.093/0.00.615 PAH NM_000277.1 chrl2:103306594 rs5030841 0.00% NA 0.01% NA NA 0.01160.00.0017 PAH NM_000277.1 chrl2:103306594 rs5030841 0.00% C=0% 0.07% C=0.000/1 0.06980.00.02461 PCAD NM_000281.2 chrl3:1036759 rs118191373 0.16% T=1% 0.01% T=0.01/3 0.0160.15890.0615 PCCA NM_000282.3 chrl3:101167714 rs145428347 0.02% NA 0.00% NA NA 0.000.0227/1.0077 PCCA NM_00032.4 chrl3:10167040 rs141737366 0.23% T=0% 0.81% T=1% T=0.001/3 0.000.0227/1.0077 PCCA NM_00032.4 chrl3:10102073 rs61749995 0										
PAH NM_000277.1 chr12:103306579 rs118002776 0.00% T=0% 0.09% T=0% N=006/13 0.093/0.00.0615 PAH NM_000277.1 chr12:103306620 rs62642926 0.05% NA 0.01% NA NA NA 0.0116/0.000077 PAH NM_000277.1 chr12:10330620 rs62642926 0.05% NA 0.01% NA NA NA 0.0116/0.000077 PCBD1 NM_000281.2 chr12:103310879 rs1801145 0.00% NA 0.02% NA NA NA 0.003/3 0.0116/0.0454/0.0231 PCCA NM_00281.2 chr10:72643759 rs115117837 0.16% T=1% 0.01% NA NA 0.000 NA NA 0.000/27/0.0077 PCCA NM_000282.3 chr13:101674140 rs144282347 0.2% NA 0.00% NA NA 0.000/227/0.0077 PCCA NM_000532.4 chr3:136016902 rs7820367 0.16% NA 0.00% NA NA 0.00% NA										
PAH NN_000277.1 chr12:103306504 rs5030841 0.00% NA 0.01% NA NA NA 0.01% PAH NM_000277.1 chr12:103306504 rs62642926 0.05% NA 0.01% NA NA 0.01%0.00271 PAH NM_000277.1 chr12:10330679 rs1801145 0.00% C=0% C=0% C=0.000/1 0.06880.00.04611 PCBD1 NM_000281.2 chr10:72643730 rs15117837 0.16% T=1% 0.01% T=0% T=0% T=0% 0.011%0.002.0154 PCCA NM_000282.3 chr13:10167714 rs14542847 0.02% NA 0.00% NA NA 0.00.02271.0077 PCCA NM_000282.3 chr13:101020733 rs61749895 0.23% T=0% 0.81% T=1% T=0.003/7 0.8023/0.22710.6074 PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.001/2 0.2907/0.1589/0.246 PCCB NM_000532.4 chr3:136016902 rs7										
PAH NN_000277.1 chrl:103306620 rs6264226 0.05% NA 0.01% NA NA NA DA PAH NM_000277.1 chrl:10330670 rs121913015 0.00% NA 0.02% NA NA 0.0233/0.00.0154 PCBD1 NM_000281.2 chrl0:72643730 rs121913015 0.00% NA 0.02% NA NA 0.0233/0.00.0154 PCCA NM_000281.2 chrl0:72643759 rs15117837 0.16% T=1% 0.01% T=0.001/3 0.0116/0.1589/0.0615 PCCA NM_000282.3 chrl3:100764140 rs14371306 0.02% NA 0.00% NA NA 0.00.0227/0.0077 PCCA NM_000282.3 chrl3:100764140 rs1439730 0.23% T=0% 0.81% T=1% T=0.003/7 0.803/0.227/0.0077 PCCB NM_000532.4 chr3:36016902 rs77820367 0.16% A=0 0.01% NA 0.01 0.012/2.0037 0.83/0.227/0.0077 PCCB NM_000532.4 chr3:136016902 rs778										
PAH NM_000271.1 chr12:103310879 rs1801145 0.00% C=0% 0.07% C=0% C=0.00/1 0.06980.0/0.0461 PCBD1 NM_000281.2 chr10:72643730 rs121913015 0.00% NA 0.02% NA NA 0.0233/0.0/0.0154 PCBD1 NM_000281.2 chr10:72643759 rs115117837 0.16% T=1% 0.01% T=0% T=0.001/3 0.0116/0.1589/0.00154 PCCA NM_000282.3 chr13:101167714 rs141371306 0.02% NA 0.00% NA NA 0.00 PCCA NM_000282.3 chr13:10102073 rs1414895 0.23% T=0% 0.81% T=1% T=0.001/3 0.8023/0.227/0.0077 PCCB NM_000532.4 chr3:136016902 rs7782087 0.16% A=0% 0.29% A=0% A=0.001/2 0.2907/0.1589/0.246 PCCB NM_000532.4 chr3:136016902 rs121964961 0.02% NA 0.01% NA NA 0.016/0.00.0077 PTS NM_000317.2 chr1:112103293 rs145										
PCBD1 NM_000281.2 chr10:72643730 rs121913015 0.00% NA 0.02% NA NA 0.0233/0.00.0154 PCBD1 NM_000281.2 chr10:72643759 rs11117837 0.16% T=1% 0.01% T=0% T=0.01/3 0.016/0.1589/0.0615 PCCA NM_000282.3 chr13:1016711 rs145428347 0.02% NA 0.00% NA NA 0.000/0.027/0.0077 PCCA NM_000282.3 chr13:10120733 rs61749895 0.23% T=0% 0.81% T=1% T=0.001/2 0.2027/0.0077 PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.001/2 0.207/0.1589/0.246 PCCB NM_00532.4 chr3:136016802 rs12164961 0.02% NA 0.01% NA 0.00% NA 0.00% NA 0.016/0.00077 PCCB NM_000532.4 chr3:13601480 rs12164961 0.02% NA 0.01% NA 0.016/0.0/0.0077 PTS NM_000532.4 chr										
PCBD1NM_000281.2chr10:72643759rs1151178370.16%T=1%0.01%T=0%T=0.001/30.0116/0.1589/0.0615PCCANM_000282.3chr13:101167714rs143283470.02%NA0.00%NANA0.00PCCANM_000282.3chr13:101076140rs1413713060.02%NA0.00%NANA0.00/0.0227/0.0077PCCANM_000282.3chr13:101020733rs617498950.23%T=0%0.81%T=1%T=1%T=0.003/70.8023/0.227/0.6074PCCBNM_000532.4chr3:1360126200.00%NA0.01%NANA0.0116/0.00.0077PCCBNM_000532.4chr3:1360126200.00%NA0.01%NANA0.0116/0.00.0077PCCBNM_000317.2chr1:11210393rs1458827090.00%NA0.01%NANA0.0116/0.00.0077PTSNM_00317.2chr1:11210392rs139203630.00%NA0.01%NANA0.0116/0.00.0077PTSNM_00360.3chr5:13170598rs1392033630.00%AA0.01%NANA0.0116/0.00.0077SLC2245NM_00360.3chr5:131721962rs112908880.00%NA0.01%NANANANASLC2245NM_00360.3chr5:131721062rs114584820.00%NA0.01%NANANA0.0116/0.00.0077SLC2245NM_00360.3chr5:13172162rs114584820.00%NA0.01%NA										
PCCA NN_000282.3 chr13:101167714 rs145428347 0.02% NA 0.00% NA NA 0.00 0.02270.0077 PCCA NM_000282.3 chr13:100764140 rs141371306 0.02% NA 0.00% NA NA 0.00.02270.0077 PCCA NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.001/2 0.2907/0.1589/0.246 PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.01% NA NA 0.01/2 0.2907/0.1589/0.246 PCCB NM_000532.4 chr3:136016480 rs121964961 0.02% NA 0.01% NA NA 0.010.0227/0.0077 PCCB NM_000317.2 chr11:11210329 rs145882709 0.00% NA 0.01% NA NA 0.0116/0.00.0077 PTS NM_000317.2 chr11:11210382 rs145882709 0.00% NA 0.01% NA 0.016/0.00.0077 PTS NM_003060.3 chr5:131705698 rs13920353										
PCCANM_000282.3chr13:100764140rs1413713060.02%NA0.00%NANANA0.000.0227/0.0077PCCANM_00052.3chr13:10102073rs617488950.23%T=0%0.81%T=1%T=0.003/70.8023/0.227/0.0074PCCBNM_00053.4chr3:36016902rs778203670.16%A=0%0.29%A=0%A=0.001/20.2927/0.0077PCCBNM_00053.4chr3:13601262600.00%NA0.01%NANA0.01PCCBNM_00053.2.4chr3:136046480rs1219649610.02%NA0.01%NANA0.01PCCBNM_000317.2chr1:1:1210399rs1458827090.00%NA0.01%NANA0.0116/0.0/0.0077PTSNM_000317.2chr1:1:1210136200.00%NA0.01%NANA0.0116/0.0/0.0077PTSNM_000317.2chr1:1:12104210rs1507269320.00%NA0.01%NANA0.0116/0.0/0.0077PTSNM_00306.3chr5:131721968rs139203630.00%NA0.01%NANA0.0116/0.0/0.0077SLC22A5NM_003060.3chr5:131721062rs1142694820.00%NA0.01%NANA0.001/20.0233/0.0/0.0154SLC22A5NM_003060.3chr5:131721062rs1142694820.00%NA0.01%NANA0.0116/0.0/0.0077SLC22A5NM_003060.3chr5:131721600.00%NA0.01%NANA0.0116/0.0										
PCCA NM_000282.3 chr13:101020733 rs61749895 0.23% T=0% 0.81% T=1% T=0.003/7 0.8023/0.227/0.6074 PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.001/2 0.2907/16.509/0.246 PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.00% A 0.10% NA 0.011/2 0.2907/16.509/0.246 PCCB NM_000532.4 chr3:136046480 rs121964961 0.02% NA 0.01% NA NA 0.010/0.027/0.0077 PTS NM_000317.2 chr1:11210339 rs145882709 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 PTS NM_000317.2 chr1:112104210 rs150726932 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_00306.3 chr5:13170598 rs13920363 0.00% A=0% 0.17% A=0.01/2 0.01628/0.0/0.01076 SLC22A5 </td <td></td>										
PCCB NM_000532.4 chr3:136016902 rs77820367 0.16% A=0% 0.29% A=0% A=0.001/2 0.297/0.1589/0.246 PCCB NM_000532.4 chr3:136012620 0 0.00% NA 0.01% NA NA 0.01% NA 0.01% NA NA 0.0116/0.027/0.0077 PCCB NM_000532.4 chr3:13604640 rs121964961 0.02% NA 0.00% NA NA 0.01% NA NA 0.0116/0.0/0.0077 PTS NM_000317.2 chr11:112103939 rs145882709 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 PTS NM_000317.2 chr11:112104210 rs150726932 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_03080.3 chr5:131705698 rs139203363 0.00% A=0% 0.17% A=0% A=0.01/2 0.1628/0.0/0.0077 SLC22A5 NM_03080.3 chr5:13172062 rs114269482 0.00% NA 0.01% NA NA										
PCCB NM_000532.4 chr3:136012626 0 0.00% NA 0.01% NA NA 0.01/0.0277 PTS NM_000317.2 chr11:112103939 rs145882709 0.00% NA 0.01% NA NA 0.01%/0.00077 PTS NM_000317.2 chr11:11210420 rs150726932 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 PTS NM_00360.3 chr5:131705698 rs19203863 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_00360.3 chr5:131721937 rs12190888 0.00% NA 0.01% NA NA NA NA SLC22A5 NM_003060.3 chr5:13172162 rs114269482 0.00% NA 0.01% <										
PCCB NN_000332.4 chr3:136046480 rs121964961 0.02% NA 0.00% NA NA NA 0.00% DA NA 0.00 0.027/0.0077 PTS NM_000317.2 chr1:112103939 rs145882709 0.00% NA 0.01% NA NA 0.01% NA 0.01% NA 0.0116/0.00.0077 PTS NM_000317.2 chr1:112104210 rs150726932 0.00% NA 0.01% NA NA 0.0116/0.00.0077 SLC22A5 NM_003060.3 chr5:131705693 0.00% NA 0.01% NA NA 0.0116/0.00.0077 SLC22A5 NM_003060.3 chr5:131705973 rs121908388 0.00% NA 0.01% NA NA 0.01628/0.00/0.0164 SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% NA 0.01% NA NA NA SLC22A5 NM_003060.3 chr5:13172136 0 0.00% NA 0.01% NA NA 0.0116/0.00.0077										
PTS NM_000317.2 chr11:112101362 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 PTS NM_000317.2 chr11:112104210 rs150726932 0.00% NA 0.01% NA NA 0.01% NA NA 0.01% NA NA 0.0116/0.0/0.0077 SLC2245 NM_003060.3 chr5:13170598 rs159023633 0.00% A=0% 0.11% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131719973 rs12190888 0.00% NA 0.01% NA NA NA SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% T=0% 0.03% T=0.001/2 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131722736 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5	PCCB		chr3:136046480	rs121964961	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077
PTS NM_000317.2 chr11:112104210 rs150726932 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131705698 rs13920363 0.00% A=0% 0.17% A=0% A=0.001/2 0.1628/0.0/0.1076 SLC22A5 NM_003060.3 chr5:131719973 rs12190888 0.00% NA 0.01% NA NA NA SLC22A5 NM_003060.3 chr5:13171062 rs114269482 0.00% T=0% 0.03% T=0% 0.023/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% NA 0.01% NA NA 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs114269482 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs121908886 0.00%		NM_000317.2								
SLC22A5 NM_003060.3 chr5:131705698 rs139203363 0.00% A=0% 0.17% A=0% A=0.001/2 0.1628/0.0/0.1076 SLC22A5 NM_003060.3 chr5:131719973 rs121908888 0.00% NA 0.01% NA NA NA SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% T=0% 0.03% T=0.001/2 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% NA 0.01% NA 0.012/2 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:13172136 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs121908866 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722730 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172652 rs145457521 0.02%<				-						
SLC22A5 NM_003060.3 chr5:131719973 rs121908888 0.00% NA 0.01% NA NA NA SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% T=0% 0.03% T=0% T=0.001/2 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131721736 0 0.00% NA 0.01% NA NA 0.018/0.0/0.0172 SLC22A5 NM_003060.3 chr5:131722736 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172273 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172652 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.0277/0.0154 SLC22A5 NM_003060.3 chr5:131728202 rs14568514 0.36% </td <td></td>										
SLC22A5 NM_003060.3 chr5:131721062 rs114269482 0.00% T=0% 0.03% T=0% T=0.001/2 0.0233/0.0/0.0154 SLC22A5 NM_003060.3 chr5:131721136 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs12190886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722731 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722731 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172252 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/207/0.0154 SLC22A5 NM_03060.3 chr5:13172802 rs11568514 0.36% G=0% 0.00% G=0.000/1 0.0/0.3631/0.123										
SLC22A5 NM_003060.3 chr5:131721136 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722736 rs121908886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722731 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131722731 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131726522 rs144547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131726522 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/2.027/0.0154 SLC22A5 NM_03060.3 chr5:131728202 rs11568514 0.36% G=0% 0.00% G=0.000/1 0.0/0.3631/0.123										
SLC22A5 NM_003060.3 chr5:131722736 rs121908886 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172273 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172652 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172652 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:13172622 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.02770.0154 SLC22A5 NM_003060.3 chr5:131728202 rs11568514 0.36% G=0% 0.00% G=0.000/1 0.0/0.3631/0.123										
SLC22A5 NM_003060.3 chr5:131722731 0 0.00% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131726522 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0/0.0077 SLC22A5 NM_003060.3 chr5:131726522 rs14547521 0.02% NA 0.01% NA NA 0.0116/0.0227/0.0154 SLC22A5 NM_003060.3 chr5:131728202 rs11568514 0.36% G=0% 0.00% G=0,000/1 0.0/0.3631/0.123										
SLC22A5 NM_003060.3 chr5:131726522 rs144547521 0.02% NA 0.01% NA NA 0.0116/0.0227/0.0154 SLC22A5 NM_003060.3 chr5:131728202 rs11568514 0.36% G=0% 0.00% G=0% G=0.000/1 0.0/0.3631/0.123										
SLC22A5 NM_03060.3 chr5:131728202 rs11568514 0.36% G=0% 0.00% G=0% G=0.000/1 0.0/0.3631/0.123				-						
SLO22AD ININ_00000.3 CHID.151729373 U 0.0070 INA 0.0170 INA NA 0.0110/0.00007/										
	31622	2/10 11/1_003000.3	0110.101/293/9	v	0.00%	INA	0.01%	INA	INA	0.0110/0.0/0.0077

	SLC22A5	NM_003060.3	chr5:131729380	rs28383481	0.18%	A=0%	0.52%	A=0%	A=0.004/8	0.5233/0.1816/0.4075
Age related	ABCA4	NM_000350.2	chr1:94463425	rs61748521	0.00%	0.00%	C=0%	0.01%	C=0%	C=0.000/1
macular	ABCA4	NM_000350.2	chr1:94463617	rs1800555	0.20%	0.20%	T=0%	1.24%	T=2%	T=0.007/15
degeneration	ABCA4	NM_000350.2	chr1:94473287	rs28938473	0.20%	0.20%	A=0%	0.52%	A=1%	A=0.003/6
(ARMD)	ABCA4	NM_000350.2	chr1:94473807	rs1800553	0.11%	0.11%	T=0%	0.42%	T=0%	T=0.002/5
	ABCA4	NM_000350.2	chr1:94476377	rs1800552	0.05%	0.05%	T=0%	0.26%	T=0%	T=0.001/2
	ABCA4	NM_000350.2	chr1:94487443	rs1800551	0.00%	0.00%	NA	0.01%	NA	NA
	ABCA4	NM_000350.2	chr1:94487490	rs1762111	0.02%	0.02%	G=0%	0.20%	G=0%	G=0.001/2
	ABCA4	NM_000350.2	chr1:94496053	rs1800549	0.02%	0.02%	A=0%	0.01%	A=0%	A=0.010/22
	ABCA4	NM_000350.2	chr1:94496666	rs61750130	0.00%	0.00%	NA	0.02%	NA	NA
	ABCA4	NM_000350.2	chr1:94508969	rs61751374	0.07%	0.07%	A=0%	0.22%	A=0%	A=0.001/2
	ABCA4	NM_000350.2	chr1:94512565	rs1801581	1.43%	1.43%	T=0%	4.09%	T=4%	T=0.015/32
	ABCA4	NM 000350.2	chr1:94512574	rs144995371	0.00%	0.00%	NA	0.06%	NA	NA
	ABCA4	NM_000350.2	chr1:94514466	rs139655975	0.02%	0.02%	C=0%	0.26%	C=0%	C=0.001/2
	ABCA4	NM_000350.2	chr1:94543389	rs1800548	0.00%	0.00%	NA	0.13%	NA	NA
	ABCA4	NM_000350.2	chr1:94564483	rs6657239	7.06%	7.06%	T=7%	3.46%	T=5%	T=0.051/112
	ABCA4	NM_000350.2	chr1:94461676	0	0.00%	0.00%	NA	0.01%	NA	NA
	ABCA4	NM_000350.2	chr1:94466426	rs140142529	0.00%	0.00%	NA	0.01%	NA	NA
	ABCA4	NM_000350.2	chr1:94508343	0	0.00%	0.00%	NA	0.01%	NA	NA
	ABCA4	NM_000350.2	chr1:94544906	rs150686179	0.00%	0.00%	NA	0.01%	NA	NA
	C3	NM_000064.2	chr19:6718387	rs2230199	4.81%	4.81%	C=4%	20.90%	C=20%	C=0.098/213
	CFH	NM_000186.3	chr1:196642233	rs800292	70.71%	70.71%	A=78%	22.21%	A=26%	A=0.435/947
	CFH	NM 000186.3	chr1:196659237	rs1061170	36.32%	36.32%	C=38%	38.21%	C=37%	C=0.278/605
	CFH	NM 000186.3	chr1:196682947	rs2274700	46.86%	46.86%	A=45%	40.53%	A=41%	A=0.437/951
	CFH	NM 000186.3	chr1:196709774	rs1065489	6.62%	6.62%	T=4%	17.47%	T=18%	T=0.233/508
	CFH	NM 000186.3	chr1:196716375	rs121913059	0.00%	0.00%	NA	0.02%	NA	NA
Drug	ABCB1	NM 000927.4	chr7:87138645	rs1045642	22.71%	77.29%	G=85%	47.75%	G=47%	A=0.397/864
response	ABCB1	NM 000927.4	chr7:87160561	rs2032583	17.11%	17.11%	G=22%	13.25%	G=13%	G=0.132/287
(PGx)	ABCB1	NM 000927.4	chr7:87160618	rs2032582	10.75%	10.75%	A=3%	43.13%	A=43%	A=0.340/741
(* =)	ABCB1	NM 000927.4	chr7:87179601	rs1128503	21.55%	21.55%	A=14%	42.94%	A=43%	A=0.422/919
	ABCB1	NM 000927.4	chr7:87199564	rs2235015	34.35%	34.35%	A=39%	19.69%	A=20%	A=0.202/440
	ABCC2	NM 000392.3	chr10:101563815	rs2273697	18.69%	18.69%	A=20%	19.43%	A=20%	A=0.174/378
	ABCC2	NM 000392.3	chr10:101595996	rs17222723	5.97%	5.97%	A=7%	6.17%	A=6%	A=0.043/93
	ABCC2	NM 000392.3	chr10:101604207	rs3740066	26.02%	26.02%	T=21%	37.16%	T=36%	T=0.304/663
	ABCC2	NM 000392.3	chr10:101611294	rs8187710	15.72%	15.72%	A=17%	6.19%	A=6%	A=0.070/152
	ABCC2	NM 000392.3	chr10:101594183	0	0.00%	0.00%	NA	0.01%	NA	NA
	ABCC2	NM 000392.3	chr10:101591385	rs17222547	0.02%	0.02%	NA	0.00%	NA	NA
	ABCC2	NM 000392.3	chr10:101610372	rs145715632	0.02%	0.02%	NA	0.00%	NA	NA
	ABCG2	NM 004827.2	chr4:89052323	rs2231142	3.22%	3.22%	T=2%	11.14%	T=10%	T=0.139/303
	COMT	NM 000754.3	chr22:19951271	rs4680	68.36%	68.36%	G=69%	47.79%	G=48%	A=0.390/850
	COMT	NM 000754.3	chr22:19956180	0	0.00%	0.00%	NA	0.01%	NA	NA
	CYP2C19	NM 000769.1	chr10:96540410	rs4986893	0.05%	0.05%	A=0%	0.02%	A=0%	A=0.014/31
	CYP2C19	NM 000769.1	chr10:96535278	0	0.00%	0.00%	NA	0.01%	NA	NA
	CYP2C9	NM 000771.3	chr10:96702047	rs1799853	2.68%	2.68%	T=2%	13.03%	T=12%	T=0.068/149
	CYP2C9	NM 000771.3	chr10:96702066	rs7900194	5.81%	5.81%	A=5%	0.05%	A=0%	A=0.012/27
	CYP2C9	NM 000771.3	chr10:96740981	rs28371685	1.91%	1.91%	A=3%	0.19%	A=0%	T=0.006/14
	CYP2C9	NM 000771.3	chr10:96741053	rs1057910	1.43%	1.43%	C=1%	6.61%	C=6%	C=0.042/92
	CYP2C9	NM 000771.3	chr10:96741058	rs28371686	1.07%	1.07%	G=2%	0.01%	G=0%	G=0.005/11
	DPYD	NM 000110.3	chr1:97915614	rs3918290	0.09%	0.09%	T=0%	0.58%	T=1%	T=0.003/6
	DPYD	NM 000110.3	chr1:97981395	rs1801159	15.51%	15.51%	C=20%	19.77%	C=17%	C=0.205/446
	DPYD	NM 000110.3	chr1:97981421	rs1801158	0.45%	0.45%	T=1%	2.02%	T=3%	T=0.014/31
	DPYD	NM 000110.3	chr1:98165091	rs2297595	4.10%	4.10%	C=5%	9.90%	C=12%	C=0.066/144
	DPYD	NM 000110.3	chr1:98348885	rs1801265	39.97%	39.97%	G=45%	22.50%	G=22%	G=0.230/502
	DPYD	NM 000110.3	chr1:97770839	0	0.02%	0.02%	NA	0.00%	NA	NA
	DPYD	NM 000110.3	chr1:98164926	rs146170505	0.00%	0.00%	NA	0.01%	NA	NA
	DPYD	NM 000110.3	chr1:98293695	rs141597515	0.00%	0.00%	NA	0.01%	NA	NA
	DRD2	NM 000795.3	chr11:113283459	rs6277	85.69%	85.69%	G=96%	45.40%	G=46%	A=0.273/595
	EPHX1	NM 000120.3	chr1:226019633	rs1051740	17.63%	17.63%	C=16%	29.96%	C=30%	C=0.316/689
	EPHX1	NM 000120.3	chr1:226019653	rs2292566	14.59%	14.59%	A=13%	14.43%	A=15%	A=0.179/389
	EPHX1	NM_000120.3	chr1:226026406	rs2234922	33.69%	33.69%	G=34%	20.41%	G=17%	G=0.185/402
	EPHX1	NM 000120.3	chr1:226026525	0	0.00%	0.00%	NA	0.01%	NA	NA
	EPHX1	NM 000120.3	chr1:226033029	0	0.02%	0.02%	NA	0.00%	NA	NA
	SLCO1B1	NM 006446.4	chr12:21329738	rs2306283	23.38%	76.62%	G=80%	40.27%	G=40%	A=0.405/882
	SLCO1B1 SLCO1B1	NM 006446.4	chr12:21329738	rs11045819	8.62%	8.62%	A=5%	16.16%	A=14%	A=0.079/171
	SLCO1B1	NM 006446.4	chr12:21329813	rs4149056	3.63%	3.63%	C=3%	15.48%	C=17%	C=0.123/268
		NM_006446.4	chr12:21294563	0	0.02%	0.02%	C=3%	0.00%		C=0.123/268 NA
	SLCO1B1 TPMT	NM 000367.2	chr6:18130918	u rs1142345	5.26%	5.26%	C=10%	4.24%	NA C=3%	C=0.046/100

TPMT	NM_000367.2	chr6:18131012	rs1800584	0.00%	0.00%	NA	0.01%	NA	NA
TPMT	NM 000367.2	chr6:18139228	rs1800460	1.00%	1.00%	T=1%	3.80%	T=3%	T=0.017/37
TPMT	NM_000367.2	chr6:18143955	rs1800462	0.00%	0.00%	G=0%	0.23%	G=0%	G=0.004/8
UGT1A10	NM_000463.2	chr2:234669144	rs4148323	0.14%	A=0%	0.13%	A=1%	A=0.052/114	0.1279/0.1362/0.1307
UGT1A10	NM_000463.2	chr2:234675792	0	0.02%	NA	0.00%	NA	NA	0.0/0.0227/0.0077

NA: not available

*EVS version: v.0.0.26

Condition	Estimated carrier frequency*	Revised carrier frequency**	Published carrier frequency^		
3-methylcrotonyl-CoA carboxylase deficiency	1/186	1/186	1/137		
Argininosuccinic aciduria	1/163	1/163	1/132		
B-ketothiolase deficiency	1/2172	1/2172	1/354		
Beta thalassemia (AA)	1/31	1/735	1/121		
Biotinidase deficiency	1/12	1/260**	1/124 profound biotinidase deficiency		
Carnitine uptake deficiency	170	1/168**	1/132		
Citrullinemia type 1	1/67	1/310**	1/224		
Congenital adrenal hyperplasia	1/80	0	1/61		
Cystic fibrosis (AA)	1/28	1/74** (non-delF508)	1/116 (non-delF508)		
Cystic fibrosis (EA)	1/27	1/68** (non-delF508)	1/89 (non-delF508)		
Galactosemia	1/7	1/116**	1/87 classic galactosemia		
Glutaric acidemia type 1	1/181	1/181	1/177		
Hemoglobin C disease (AA)	1/31	1/31	1/35		
Holocarboxylase deficiency	1/1086	1/1086	1/250		
Homocystinuria	1/69	1/119**	1/298		
Isovaleric acidemia	1/501	1/501	1/144		
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency	1/1086	1/1086	1/250		
Maple syrup urine disease	1/53	1/233**	1/215		
Medium chain acyl-coenzyme A dehydrogenase deficiency	1/54	1/60**	1/63		
Methylmalonic acidemia	1/148	1/148	1/158		
Phenylketonuria	1/23	1/61**	1/48		
Propionic acidemia	1/56	1/181**	1/158		
Sickle cell anemia (AA)	1/13	1/13	1/12		
Trifunctional protein deficiency	1/543	1/724**	1/354		
Tyrosinemia type 1	1/29	1/343**	1/150		
Very long chain acyl-coenzyme A dehydrogenase deficiency	1/100	1/100	1/87		

Table S6. Known and inferred prevalence of phenotypes associated with pathogenic NBS variant set

*Calculated by including all variants listed in Table S5 that are associated with the NBS condition **Calculated after removal of variants (see Table S7)

^Published carrier frequencies were extracted from Feuchtbaum, L., Carter, J., Dowray, S., Currier, R.J., and Lorey, F. (2012). Birth prevalence of disorders detectable through newborn screening by race/ethnicity. Genetics in medicine : official journal of the American College of Medical Genetics 14, 937-945, and GeneReviews.

Table S7. Variants requiring additional manual review when calculat	ing revised NBS carrier frequency estimates
Table eri fallante requiring adaltional manaal ferien milen ealeala	

Gene	Condition	Variants	ESP6500 AA MAF	ESP6500 EA MAF	HGMD DM?	Present as homozygote in ESP6500 EA or AA	>0.5% MAF in ESP6500 EA or AA	Included	Reason for inclusion*	Excluded	Reason for Exclusion**
ACADM	MCAD deficiency	c.199T>C	0.05%	0.11%	Х					Х	2
ACADM	MCAD deficiency	c.617G>A	0.00%	0.01%	Х					X X	2
ACADM	MCAD deficiency	c.985A>G	0.18%	0.52%			х	Х	Known pathogenic variant***		
ASS1	Citrullinemia type 1	c.323G>T	1.52%	0.16%	Х		Х			Х	5
BCKDHA	Maple syrup urine disease	c.452C>T	0.16%	1.06%		Х	Х			Х	5
BTD	Biotinidase deficiency	c.133G>A	0.18%	1.61%		Х	х			Х	5
BTD	Biotinidase deficiency	c.1330G>C	0.77%	4.15%		Х	Х			Х	2
CBS	Homocystinuria	c.833A>G	0.36%	0.28%		Х				Х	2
CFTR	Cystic fibrosis	c.3200C>T	0.00%	0.01%						x	- 1
CFTR	Cystic fibrosis	c.2620-26A>G	0.00%	0.14%						X	2
CFTR	Cystic fibrosis	c.3154T>G	0.00%	0.17%						x	1
CFTR	Cystic fibrosis	c.3205G>A	0.00%	0.08%						X	1
CFTR	Cystic fibrosis	c.3208C>T	0.00%	0.01%						X	4
CFTR	Cystic fibrosis	c.2260G>A	0.02%	0.27%						X	2
CFTR	Cystic fibrosis	c.715G>A	0.00%	0.01%						X	2,6
CFTR	Cystic fibrosis	c.853A>T	0.39%	0.00%						X	2,6
CFTR	Cystic fibrosis	c.1046C>T	0.00%	0.05%						X	1
CFTR	Cystic fibrosis	c.1558G>A	0.07%	0.00%						X	2, 6
CFTR	Cystic fibrosis	c.2506G>T	0.00%	0.01%						X	2,6
CFTR	Cystic fibrosis	c.4003C>T	0.02%	0.00%						X	2
CFTR	Cystic fibrosis	c.4333G>A	0.25%	0.03%						X	6
CFTR	Cystic fibrosis	c.221G>A	0.05%	0.12%						X	4
CFTR	Cystic fibrosis	c.328G>T	0.02%	0.00%						X	4
CFTR	Cystic fibrosis	c.601G>A	0.00%	0.01%						X	4
CFTR	Cystic fibrosis	c.650A>G	0.00%	0.05%						X	4, 6
CFTR	Cystic fibrosis	c.2597G>A	0.00%	0.01%						X	4
CFTR	Cystic fibrosis	c.2723C>A	0.00%	0.03%						X	4
CFTR	Cystic fibrosis	c.3274T>C	0.00%	0.01%						X	2, 6
CFTR	Cystic fibrosis	c.3503A>G	0.02%	0.00%						X	2,6
CFTR	Cystic fibrosis	c.4123C>A	0.00%	0.03%						X	4
CFTR	Cystic fibrosis	c.4426C>T	0.00%	0.01%						X	4
CFTR	Cystic fibrosis	c.274-6T>C	0.02%	0.05%						X	3
CFTR	Cystic fibrosis	c.890G>A	0.07%	0.18%						X	3
CFTR	Cystic fibrosis	c.1043T>A	0.00%	0.01%						Х	2, 6
CFTR	Cystic fibrosis	c.3764C>A	0.02%	0.00%						X	5
CFTR	Cystic fibrosis	c.3849+45G>A	0.02%	0.00%						X	1
CFTR	Cystic fibrosis	c.3718-24G>A	0.00%	0.01%						X	1
CFTR	Cystic fibrosis	c.1679+18G>A	0.00%	0.01%	Х					X	2, 6
CFTR	Cystic fibrosis	c.1393-42G>A	0.12%	0.01%	Х					Х	6
CFTR	Cystic fibrosis	c.3454G>C	0.00%	0.04%	Х					Х	4
CFTR	Cystic fibrosis	c.3209G>A	0.02%	0.00%				Х	А		
CFTR	Cystic fibrosis	c.2855T>C	0.00%	0.05%				X X	А		
CFTR	Cystic fibrosis	c.349C>T	0.00%	0.01%	Х			Х	В		
CFTR	Cystic fibrosis	c.4242+10T>C	0.46%	0.00%	Х			Х	А		
CFTR	Cystic fibrosis	c.125C>T	0.00%	0.03%				Х	A		
CFTR	Cystic fibrosis	c.165-3C>T	0.00%	0.01%				Х	А		
CFTR	Cystic fibrosis	c.178G>T	0.00%	0.01%				Х	А, В		
CFTR	Cystic fibrosis	c.489+1G>T	0.00%	0.01%				Х	B		
CFTR	Cystic fibrosis	c.535C>A	0.00%	0.01%				Х	А		
CFTR	Cystic fibrosis	c.617T>G	0.00%	0.01%				Х	A. B		
CFTR	Cystic fibrosis	c.1040G>C	0.00%	0.01%				Х	В		

CFTR	Cystic fibrosis	c.1400T>C	0.02%	0.00%				Х	В			
CFTR	Cystic fibrosis	c.1477C>T	0.00%	0.01%				Х	В			
CFTR	Cystic fibrosis	c.1585-1G>A	0.00%	0.05%				Х	A, B			
CFTR	Cystic fibrosis	c.1624G>T	0.02%	0.06%				X	B			
CFTR	Cystic fibrosis	c.1646G>A	0.02%	0.00%				x	B			
CFTR	Cystic fibrosis	c.1652G>A	0.00%	0.12%				x	B			
CFTR	Cystic fibrosis	c.1657C>T	0.00%	0.01%				X	B			
CFTR	Cystic fibrosis	c.200C>T	0.00%	0.01%				Х	А, В			
CFTR	Cystic fibrosis	c.2249C>T	0.02%	0.08%				Х	A			
CFTR	Cystic fibrosis	c.2353C>T	0.02%	0.00%				Х	A			
CFTR	Cystic fibrosis	c.2657+5G>A	0.00%	0.04%				Х	В			
CFTR	Cystic fibrosis	c.2739T>A	0.02%	0.00%				Х	A			
CFTR	Cystic fibrosis	c.2758G>A	0.00%	0.01%				Х	А			
CFTR	Cystic fibrosis	c.365A>G	0.00%	0.01%				X	A			
CFTR	Cystic fibrosis	c.2988+1G>A	0.05%	0.00%				x	A, B			
CFTR	Cystic fibrosis	c.3041A>G	0.00%	0.04%				X	A			
CFTR	Cystic fibrosis	c.3607A>G	0.02%	0.00%				Х	A			
CFTR	Cystic fibrosis	c.3846G>A	0.00%	0.06%				Х	A, B			
CFTR	Cystic fibrosis	c.3873+2T>C	0.00%	0.01%				Х	A			
CFTR	Cystic fibrosis	c.3909C>G	0.00%	0.01%				Х	A, B			
CFTR	Cystic fibrosis	c.4264C>T	0.00%	0.01%				Х	A			
CFTR	Cystic fibrosis	c.4242+1G>T	0.00%	0.01%				Х	А			
CYP21A2	Congenital adrenal	c.719T>A	1.83%	0.00%			Х	X	~~	Х	2, 5	
OTTETAL	hyperplasia	0.710197	1.00 /0	0.0070			~			A	2, 0	
			0.000/	0.000/	X					X	0.5	
CYP21A2	Congenital adrenal	c.1100G>A	0.02%	0.03%	Х					Х	2, 5	
	hyperplasia											
FAH	Tyrosinemia type 1	c.1021C>T	0.35%	2.28%		X X	Х			Х	2	
GALT	Galactosemia	c.940A>G	2.93%	9.36%		Х	X X			Х	2	
HBB	Sickle cell disease	c.20T>A	4.00%	0.02%		Х	Х	Х	Known			
									pathogenic			
									variant***			
HBB	Sickle cell disease	c.19C>T	1.61%	0.01%				х	Known			
1100		0.100-1	1.0170	0.0170				~	pathogenic			
									variant***			
			4 530/	0.000/		V	N/		variant	X		
BC	Beta thalassemia	c.93-23T>C	1.57%	0.00%		х	Х			X	1	
PAH	Phenylketonuria	c.1241T>C	0.00%	0.05%						х	2	
PAH	Phenylketonuria	c.1208G>A	0.00%	0.06%						Х	2	
PAH	Phenylketonuria	c.1169T>C	0.00%	0.01%						Х	2	
PAH	Phenylketonuria	c.1139G>A	0.00%	0.07%						Х	2	
PAH	Phenylketonuria	c.898C>A	0.00%	0.05%						х	2	
PAH	Phenylketonuria	c.823G>A	0.00%	0.01%						X	2	
PAH	Phenylketonuria	c.734A>G	0.02%	0.07%						X	2	
											2	
PAH	Phenylketonuria	c.688C>T	0.00%	0.03%						Х		
PAH	Phenylketonuria	c.527C>A	0.02%	0.01%						Х	2	
PAH	Phenylketonuria	c.442-5G>C	0.00%	0.01%						Х	2	
PAH	Phenylketonuria	c.289T>G	0.20%	0.00%						х	2	
PAH	Phenylketonuria	c.275G>A	0.00%	0.01%						Х	2	
PAH	Phenylketonuria	c.500T>C	1.66%	0.00%			Х			х	2	
PAH	Phenylketonuria	c.820T>C	1.63%	0.00%			X X			х	5	
HADHA	Trifunctional		0.00%	0.01%	Х					X	2	
	protein deficiency	c.919-2A>G	0.0070	0.0170						~	-	
HADHA			0.00%	0.01%	х					х	2	
ΠΑυπΑ	Trifunctional	c.731G>A	0.00%	0.01%	~					^	2	
	protein deficiency										_	
HADHB	Trifunctional	c.341A>G	0.00%	0.01%	Х					Х	2	
	protein deficiency	0.0417-0										
PCCA	Propionic acidemia	c.1651G>T	0.23%	0.81%			Х			Х	5	
SLC22A5												
JLUZZAJ	Carnitine uptake	C.1463G>A	0.18%	0.52%			Х			X	5	
3L022AJ	Carnitine uptake deficiency	c.1463G>A	0.18%	0.52%			х			х	5	

Methods:

We performed an additional step of manual review of variants listed in HGMD as DM? (n=12) or present as homozygotes in either EA or AA, and/or variants with a MAF > 0.5% in either EA or AA (n=15) (Table S8), as well as all variants in CFTR. (n=60)). We conducted an in-depth literature review and review of detailed data in any available LSDBs. We excluded variants based on any of the following criteria 1) no clinical information available in a LSDB, 2) partial phenotype/non-classical phenotype, 3) no phenotype/polymorphism, 4) other phenotype, 5) found in *cis* with another known pathogenic variant, or 6) found heterozygous, second variant indentified. For *CFTR* [MIM 602421] we included variants listed as "CF" in the LSDB (CFTR2@Johns Hopkins), or cases with at least one case of CF listed in either LSDB (CFTR2@johnshopkins or the Cystic Fibrosis Mutation Database, n=33). Three non-CFTR variants, either present as homozygotes or with MAF > 0.5%, were pathogenic variants listed in GeneReviews and were also included. All 99 reviewed variants and

reason for inclusion or exclusion are listed in Table S8. For *PAH* [MIM 261600], we excluded all variants listed in OMIM or HGMD with the phenotype hyperphenylalanemia [MIM 261600] (n=13). While hyperphenylalaninemia is identified by NBS, it is not associated with the phenotype of phenylketonuria [MIM 261600]. Overall, 63 variants were excluded in this additional review. Following this review, carrier frequencies for 14 of 26 NBS conditions changed (Table S6, Figure 2). Revised carrier frequencies for 4 conditions were slightly higher than corresponding published estimates, suggesting that our criteria may still not be excluding non-pathogenic variants for those conditions or there may be variable penetrance among some variants.

*Reason for Exclusion: 1: No clinical information in locus specific database, 2: Partial phenotype/non-classic phenotype, 3: No phenotype/polymorphism, 4: Other phenotype, 5: Found in cis with another known pathogenic variant, 6: Heterozygous for variant, second variant not identified.

LSDB: Cystic Fibrosis Mutation Database

LSDB2: CFTR2@Johns Hopkins

**Reasons for Inclusion for CFTR variants: A: At least one case of CF with the variant in either LSDB or LSDB2, B: Listed as CF in LDSB2.

***Cited in GeneReviews as known pathogenic variants

Table S8. Identified risk variants in Newborn screening (NBS), Age related macular degeneration (ARMD), and Drug response (PGx) genes

Category	Gene	transcript	chr.pos. (hg19)	rsID	amino-acid	cDNA_pos	protein_pos	Ref.allele	Alt.allele	ESP6500 AA Disease AF%	ESP6500 E Disease AF
Newborn	ACADM	NM_000016.4	chr1:76198337	rs147559466	GLU,LYS	127	43/422	G	А	0.05%	0.37%
screening	ACADM	NM_000016.4	chr1:76198409	rs121434280	TYR,HIS	199	67/422	Т	C	0.05%	0.11%
NBS)	ACADM	NM_000016.4	chr1:76205779	rs121434278	GLY,ARG	583	195/422	G	A	0.00%	0.02%
	ACADM	NM_000016.4	chr1:76211507	0	ARG,CYS	616	206/422	С	Ţ	0.00%	0.01%
	ACADM	NM_000016.4	chr1:76211508	0	ARG,HIS	617	206/422	G	A	0.00%	0.01%
	ACADM	NM_000016.4	chr1:76215194	rs121434274	GLY,ARG	799	267/422	G	A	0.00%	0.01%
	ACADM ACADM ACADM	NM_000016.4	chr1:76226846	rs77931234	LYS,GLU	985	329/422	A	G	0.14%	0.74%
	ACADM	NM_000016.4	chr1:76226906	rs148207467	ARG,stop	1045	349/422	С	Т	0.02%	0.00%
	ACADM	NM_000016.4	chr1:76215192	0	ASP,GLY	797	266/422	A	G	0.00%	0.01%
	ACADVL	NM_000018.2	chr17:7124982	0	TYR,stop	603	201/656	С	G	0.02%	0.00%
	ACADVL ACADVL ACADVL ACADVL ACADVL ACADVL	NM_000018.2	chr17:7126063	rs149467828	SER,stop	956	319/656	С	A	0.02%	0.00%
	ACADVL	NM_000018.2	chr17:7124899	0	VAL,MET	520	174/656	G	A	0.00%	0.01%
	ACADVL	NM_000018.2	chr17:7125285	rs140629318	ALA,PRO	637	213/656	G C	С	0.02%	0.00%
	ACADVL	NM 000018.2	chr17:7125522	rs113994168	THR,MET	779	260/656	С	Т	0.00%	0.01%
	ACADVL	NM_000018.2	chr17:7125591	rs113994167	VAL,ALA	848	283/656	Т	С	0.02%	0.13%
	ACADVL	NM_000018.2	chr17:7125608	0	GLY,ARG	865	289/656	G	A	0.02%	0.03%
	ACADVL	NM_000018.2	chr17:7126179	rs146589640	LYS,GLU	1072	358/656	А	G	0.00%	0.01%
	ACADVI	NM 000018.2	chr17:7127312	rs138058572	ARG,GLN	1358	453/656	G	A	0.05%	0.00%
	ACADVL ACADVL ACADVL ACAT1	NM_000018.2	chr17:7127359	rs113994170	ARG, TRP	1405	469/656	C	т	0.00%	0.01%
	ACADVI	NM_000018.2	chr17:7127698	rs146379816	ARG,TRP	1591	531/656	č	Ť	0.02%	0.07%
	ACADVI	NM_000018.2	chr17:7128292	rs148584617	ARG,GLN	1844	615/656	Ğ	Å	0.09%	0.34%
	ACAT1	NM 000019.3	chr11:108009661	rs148639841	ASN,ASP	472	158/428	A	Ĝ	0.00%	0.01%
	ACAT1	NM_000019.3	chr11:108010835	0	ARG,GLN	623	208/428	Ĝ	A	0.00%	0.01%
	ACAT1	NM 000019.3	chr11:108016927	rs145229472		NA	NA		ĉ	0.02%	0.00%
	ACATT	NM_000048.3		0	none			A C	T		0.00%
	ASL	NM_000048.3	chr7:65552367		ARG, stop	649	217/465			0.02%	0.00%
	ASL	NM_000048.3	chr7:65546812	rs145138923	ARG,GLN	35	12/465	G	A	0.05%	0.30%
	ASL	NM_000048.3	chr7:65547430	rs28940585	ARG,CYS	283	95/465	С	T	0.00%	0.01%
	ASL	NM_000048.3	chr7:65547906	rs138310841	ARG,TRP	331	111/465	С	Т	0.00%	0.01%
	ASL	NM_000048.3	chr7:65548107	rs143793815	THR,MET	392	131/465	С	Т	0.00%	0.08%
	ASL	NM_000048.3	chr7:65548162	rs142637046	none	NA	NA	G	A	0.00%	0.01%
	ASL	NM_000048.3	chr7:65557065	rs28940287	ARG,CYS	1135	379/465	С	Т	0.02%	0.00%
	ASS1	NM_000050.4	chr9:133327612	rs138350285	none	NA	NA	С	Т	0.14%	0.02%
	ASS1	NM_000050.4	chr9:133333869	rs121908644	ARG,CYS	256	86/413	С	Т	0.00%	0.01%
	ASS1	NM_000050.4	chr9:133333936	rs35269064	ARG,LEU	323	108/413	G	Т	1.52%	0.16%
	ASS1	NM_000050.4	chr9:133342161	rs121908637	ARG, HIS	470	157/413	G	А	0.00%	0.01%
	ASS1	NM 000050.4	chr9:133346260	rs121908646	TRP,ARG	535	179/413	Ť	C	0.00%	0.02%
	ASS1	NM 000050.4	chr9:133355791	rs148918985	ARG,CYS	793	265/413	ċ	Ť	0.02%	0.00%
	ASS1	NM 000050.4	chr9:133355803	0	VAL,MET	805	269/413	Ğ	Å	0.02%	0.00%
	1001	NM 000050.4	chr9:133355833	rs121908645	ARG, stop	835	279/413	c	т	0.00%	0.01%
	ASS1 ASS1	NM 000050.4	chr9:133355834	0	ARG,GLN	836	279/413	G	Å	0.02%	0.00%
	A007	NM 000050.4	chr9:133364810	0		929	310/413		G	0.00%	
	ASS1	NM_000050.4	CIII9. 133304610		LYS,ARG		310/413	A	G	0.00%	0.01%
	ASS1	NM_000050.4	chr9:133364800	rs183276875	ARG,CYS	919	307/413	С	T	0.02%	0.00%
	ASS1	NM_000050.4	chr9:133374932	rs121908641	GLY,ARG	1168	390/413	G	A	0.02%	0.02%
	BCKDHA	NM_000709.3	chr19:41916560	0	GLN,stop	127	43/446	С	Т	0.02%	0.00%
	BCKDHA	NM_000709.3	chr19:41916570	0	SER,stop	137	46/446	С	A	0.00%	0.01%
	BCKDHA	NM_000709.3	chr19:41920030	rs34442879	THR,MET	452	151/446	С	T	0.16%	1.06%
	BCKDHA	NM_000709.3	chr19:41928081	0	ALA,VAL	659	220/446	С	Т	0.00%	0.01%
	BCKDHA	NM_000709.3	chr19:41928183	0	ALA,ASP	761	254/446	С	A	0.00%	0.01%
	BCKDHA	NM_000709.3	chr19:41925055	0	ARG,GLN	500	167/446	G	A	0.02%	0.00%
	BCKDHA	NM 000709.3	chr19:41928569	rs145901144	ARG,CYS	889	297/446	С	Т	0.05%	0.01%
	BCKDHA	NM 000709.3	chr19:41928570	0	ARG, HIS	890	297/446	G	Α	0.02%	0.01%
	BCKDHA BCKDHB	NM_000709.3	chr19:41930487	rs137852870	TYR, ASN	1312	438/446	Т	Α	0.00%	0.02%
	BCKDHB	NM_000056.3	chr6:80838934	0	ARG, stop	331	111/393	C	Т	0.00%	0.01%
	BCKDHB	NM_000056.3	chr6:80878661	rs149766077	ARG,TRP	547	183/393	č	Ť	0.00%	0.02%
	BCKDHB	NM 000056.3	chr6:80878662	rs79761867	ARG,PRO	548	183/393	G	Ċ	0.00%	0.05%
	BCKDHB	NM 000056.3	chr6:80910740	rs150084361	GLY,SER	832	278/393	G	Ă	0.00%	0.01%
	BTD	NM 000060.2	chr3:15686178	rs148031701	TRP,stop	815	272/544	G	Â	0.00%	0.01%
	BTD	NM 000060.2	chr3:15677019	rs34885143	GLY,ARG	133	45/544	G	Â	0.18%	1.61%
	BTD	NM 000060.2	chr3:15683446	0	GLY,VAL	341	114/544	G	T	0.00%	0.01%
	BTD BTD			0					A		
		NM_000060.2	chr3:15683548		ARG,HIS	443	148/544	G		0.02%	0.00%
	BTD	NM_000060.2	chr3:15685833	rs146015592	ARG,HIS	470	157/544	G	A	0.00%	0.03%
	BTD	NM_000060.2	chr3:15685994	0	ARG,CYS	631	211/544	C	T	0.02%	0.00%
	BTD	NM_000060.2	chr3:15686568	0	ASN,SER	1205	402/544	A	G	0.00%	0.02%
	BTD	NM_000060.2	chr3:15686298	0	GLY,ASP	935	312/544	G	A	0.00%	0.01%
	BTD	NM_000060.2	chr3:15686693	rs13078881	ASP,HIS	1330	444/544	G	С	0.77%	4.15%
	BTD	NM 000060.2	chr3:15686731	rs80338685	GLN,HIS	1368	456/544	A	C	0.00%	0.15%
	BTD	NM 000060.2	chr3:15686732	rs146600671	VAL,MET	1369	457/544	G	Ā	0.00%	0.01%
	BTD	NM 000060.2	chr3:15686852	rs138818907	PRO,SER	1489	497/544	č	т	0.02%	0.00%

CBS	NM 000071.2	chr21:44480585	0	VAL,MET	1111	371/552 0	; т	0.02%	0.00%
CBS	NM 000071.2	chr21:44480591	rs117687681	ARG,CYS	1105	369/552		0.12%	0.39%
CBS	NM_000071.2	chr21:44483098	rs121964962	GLY,SER	919	307/552 C	; т	0.02%	0.00%
CBS	NM_000071.2	chr21:44484053	rs149119723	THR,MET	785	262/552	a A	0.02%	0.01%
CBS	NM_000071.2	chr21:44484063	rs143124288	GLY,SER	775	259/552 C	; т	0.02%	0.00%
CBS	NM_000071.2	chr21:44483184	rs5742905	ILE,THR	833	278/552 A		0.36%	0.28%
CBS	NM_000071.2	chr21:44486389	rs121964965	GLY,ARG	415	139/552 C	; Т	0.00%	0.01%
CBS	NM_000071.2	chr21:44486463	rs121964964	ALA,VAL	341	114/552 G		0.02%	0.05%
CBS	NM_000071.2	chr21:44486353	0	GLY,ARG	451	151/552 C		0.00%	0.01%
CBS	NM_000071.2	chr21:44492158	rs148865119	PRO,LEU	146	49/552 0		0.02%	0.05%
CFTR	NM_000492.3	chr7:117144378	rs143456784	SER,PHE	125	42/1481 C		0.00%	0.03%
CFTR	NM_000492.3	chr7:117149085	0	none	NA	NA C		0.00%	0.01%
CFTR	NM_000492.3	chr7:117149101	rs77284892	GLU,stop	178	60/1481 G		0.00%	0.01%
CFTR	NM_000492.3	chr7:117149144	rs142540482	ARG,GLN	221	74/1481		0.05%	0.12%
CFTR	NM_000492.3	chr7:117170947	0	none	NA	NA T		0.02%	0.05%
CFTR	NM_000492.3	chr7:117171007	rs113993958	ASP,TYR	328	110/1481		0.02%	0.00%
CFTR	NM_000492.3	chr7:117171028	rs77834169	ARG,CYS	349	117/1481 C		0.00%	0.01%
CFTR	NM_000492.3 NM_000492.3	chr7:117171169	rs78756941	none	NA	NA G 179/1481 C		0.00%	0.01%
CFTR	NM_000492.3 NM_000492.3	chr7:117174375	0	GLN,LYS	535 601	179/1481 C 201/1481 G		0.00% 0.00%	0.01%
CFTR CFTR	NM_000492.3 NM_000492.3	chr7:117175323 chr7:117175339	rs138338446 rs121908752	VAL,MET LEU,TRP	617	206/1481 T		0.00%	0.01% 0.01%
CFTR	NM 000492.3	chr7:117175372	rs121909046	GLU,GLY	650	200/1481 A		0.00%	0.05%
CFTR	NM 000492.3	chr7:117175437	rs147432698	GLY,ARG	715	239/1481		0.00%	0.01%
CFTR	NM 000492.3	chr7:117176711	rs151073129	ILE,PHE	853	285/1481 A		0.39%	0.00%
CFTR	NM 000492.3	chr7:117180174	rs143486492	ARG,GLN	890	297/1481		0.07%	0.18%
CFTR	NM 000492.3	chr7:117180324	rs77932196	ARG,PRO	1040	347/1481		0.00%	0.01%
CFTR	NM 000492.3	chr7:117180327	rs142920240	MET,LYS	1043	348/1481 T		0.00%	0.01%
CFTR	NM 000492.3	chr7:117180330	rs121909021	ALA,VAL	1046	349/1481 C		0.00%	0.05%
CFTR	NM 000492.3	chr7:117227905	0	none	NA	NA G		0.00%	0.01%
CFTR	NM 000492.3	chr7:117199476	rs34906874	none	NA	NA G		0.12%	0.01%
CFTR	NM_000492.3	chr7:117199525	rs139573311	LEU,PRO	1400	467/1481 T	С	0.02%	0.00%
CFTR	NM_000492.3	chr7:117199602	rs77101217	GLN,stop	1477	493/1481 C	; т	0.00%	0.01%
CFTR	NM_000492.3	chr7:117199683	rs77646904	VAL,ILE	1558	520/1481 G		0.07%	0.00%
CFTR	NM_000492.3	chr7:117227792	rs76713772	none	NA	NA G		0.00%	0.05%
CFTR	NM_000492.3	chr7:117227832	rs113993959	GLY,stop	1624	542/1481 G		0.02%	0.06%
CFTR	NM_000492.3	chr7:117227854	rs121908755	SER,ASN	1646	549/1481 G		0.02%	0.00%
CFTR	NM_000492.3	chr7:117227860	rs75527207	GLY,ASP	1652	551/1481 G		0.00%	0.12%
CFTR	NM_000492.3	chr7:117227865	rs74597325	ARG, stop	1657	553/1481 C		0.00%	0.01%
CFTR	NM_000492.3	chr7:117149123	0	PRO,LEU	200	67/1481 C		0.00%	0.01%
CFTR	NM_000492.3	chr7:117232470	rs140455771	PRO,LEU	2249	750/1481		0.02%	0.08%
CFTR	NM_000492.3	chr7:117232481	rs150157202	VAL,MET	2260	754/1481		0.02%	0.27%
CFTR	NM_000492.3	chr7:117232574	0 0	ARG, stop	2353 2506	785/1481 C 836/1481 G		0.02%	0.00%
CFTR CFTR	NM_000492.3 NM_000492.3	chr7:117234999 chr7:117235090	0	ASP,TYR CYS,TYR	2500	836/1481 G 866/1481 G		0.00% 0.00%	0.01% 0.01%
CFTR	NM 000492.3	chr7:117242854	0	none	NA	NA A		0.00%	0.14%
CFTR	NM 000492.3	chr7:117242922	rs80224560	none	NA	NA		0.00%	0.04%
CFTR	NM 000492.3	chr7:117243651	0	THR,ASN	2723	908/1481		0.00%	0.03%
CFTR	NM 000492.3	chr7:117243667	rs149790377	TYR,stop	2739	913/1481 T		0.02%	0.00%
CFTR	NM 000492.3	chr7:117243686	0	VAL,MET	2758	920/1481		0.00%	0.01%
CFTR	NM_000492.3	chr7:117171044	0	TYR,CYS	365	122/1481 A		0.00%	0.01%
CFTR	NM_000492.3	chr7:117243783	rs142773283	MET,THR	2855	952/1481 T	С	0.00%	0.05%
CFTR	NM_000492.3	chr7:117246808	rs75096551	none	NA	NA G		0.05%	0.00%
CFTR	NM_000492.3	chr7:117250625	rs149279509	TYR,CYS	3041	1014/1481 A		0.00%	0.04%
CFTR	NM_000492.3	chr7:117251649	rs150212784	PHE,VAL	3154	1052/1481 T		0.00%	0.17%
CFTR	NM_000492.3	chr7:117251695	rs1800114	ALA,VAL	3200	1067/1481 C		0.00%	0.01%
CFTR	NM_000492.3	chr7:117251700	0	GLY,ARG	3205	1069/1481		0.00%	0.08%
CFTR	NM_000492.3	chr7:117251769	0	TYR,HIS	3274	1092/1481 T		0.00%	0.01%
CFTR	NM_000492.3	chr7:117254753	rs75541969	ASP,HIS	3454	1152/1481		0.00%	0.04%
CFTR	NM_000492.3	chr7:117267610	rs150326506	ASP,GLY	3503	1168/1481 A		0.02%	0.00%
CFTR	NM_000492.3	chr7:117251703 chr7:117267714	0 rs75647395		3208	1070/1481 C		0.00%	0.01%
CFTR CFTR	NM_000492.3 NM 000492.3	chr7:117267869	rs145743767	ILE,VAL	3607 NA	1203/1481 A NA G		0.02% 0.02%	0.00% 0.00%
CFTR	NM 000492.3	chr7:117282468	0	none	NA	NA G NA G		0.02%	0.01%
CFTR	NM_000492.3	chr7:117251704	rs78769542	ARG,GLN	3209	1070/1481 G		0.02%	0.00%
CFTR	NM_000492.3	chr7:117282538	rs76649725	SER,stop	3764	1255/1481 0		0.02%	0.00%
CFTR	NM 000492.3	chr7:117282620	rs77010898	TRP,stop	3846	1282/1481		0.02%	0.06%
CFTR	NM 000492.3	chr7:117282649	rs146795445	none	NA	NA T		0.00%	0.01%
CFTR	NM 000492.3	chr7:117292931	rs80034486	ASN,LYS	3909	1303/1481 C		0.00%	0.01%
CFTR	NM 000492.3	chr7:117304781	rs145545286	LEU,PHE	4003	1335/1481 0		0.02%	0.00%
CFTR	NM_000492.3	chr7:117304901	rs146947665	HIS,ASN	4123	1375/1481 C		0.00%	0.03%
CFTR	NM_000492.3	chr7:117306983	0	ARG,TRP	4264	1422/1481 C	; т	0.00%	0.01%
CFTR	NM_000492.3	chr7:117305628	rs138642693	none	NA	NA T	C	0.46%	0.00%
CFTR	NM_000492.3	chr7:117305619	0	none	NA	NA G		0.00%	0.01%
CFTR	NM_000492.3	chr7:117307052	rs148783445	ASP,ASN	4333	1445/1481 G		0.25%	0.03%
CFTR	NM_000492.3	chr7:117307145	0	GLN,stop	4426	1476/1481 C	; т	0.00%	0.01%

CYP21A2	NM 000500.7	chr6:32007593	rs6476	MET,LYS	719	240/496	Т	A	1.83%	0.00%
	NM 000500.7	chr6:32008343	0	ARG,HIS	1100	367/496	G	A	0.02%	0.03%
	NM 001918.2	chr1:100681586	0	SER,stop	725	242/483	G	C	0.00%	0.01%
	NM 001918.2	chr1:100680411	0	ARG,CYS	901	301/483	Ğ	Ă	0.00%	0.02%
	NM 001918.2	chr1:100681641	rs74103423	GLU,stop	670	224/483	č	A	0.05%	0.00%
	NM 001918.2	chr1:100680485	rs121964999	PHE,CYS	827	276/483	Ă	ĉ	0.00%	0.03%
	NM 000137.2	chr15:80460394	0	TRP,stop	456	152/420	G	A	0.00%	0.01%
	NM 000137.2					NA	G	Ť	0.00%	
	NM_000137.2	chr15:80460605	rs80338895	none	NA	NA	G		0.07%	0.03%
		chr15:80465355	rs149052294	none	NA			A		0.00%
	NM_000137.2	chr15:80465431	rs80338898	PRO,LEU	782	261/420	С	Т	0.00%	0.01%
	NM_000137.2	chr15:80467400	0	THR,PRO	880	294/420	A	С	0.00%	0.03%
	NM_000137.2	chr15:80472514	rs80338900	GLY,SER	1009	337/420	G	A	0.02%	0.00%
	NM_000137.2	chr15:80472526	rs11555096	ARG,TRP	1021	341/420	C	Ţ	0.35%	2.28%
	NM_000137.2	chr15:80472572	rs80338901	none	NA	NA	G	A	0.00%	0.07%
	NM_000137.2	chr15:80473411	rs121965076	GLU,stop	1090	364/420	G	T	0.02%	0.00%
	NM_000155.2	chr9:34647200	rs111033656	PRO,LEU	197	66/380	С	Т	0.00%	0.03%
	NM_000155.2	chr9:34647855	rs111033690	SER,LEU	404	135/380	С	Т	0.25%	0.00%
	NM_000155.2	chr9:34647864	rs111033686	THR,MET	413	138/380	С	Т	0.00%	0.01%
GALT	NM_000155.2	chr9:34647879	rs111033697	SER,LEU	428	143/380	С	Т	0.00%	0.01%
	NM_000155.2	chr9:34648167	rs75391579	GLN,ARG	563	188/380	A	G	0.09%	0.27%
GALT	NM_000155.2	chr9:34648373	rs111033736	GLU,LYS	607	203/380	G	A	0.00%	0.01%
GALT	NM_000155.2	chr9:34648433	rs111033750	ARG,SER	667	223/380	С	A	0.00%	0.01%
GALT	NM 000155.2	chr9:34648843	0	ARG,CYS	772	258/380	С	Т	0.00%	0.01%
GALT	NM_000155.2	chr9:34648885	rs111033766	ARG,CYS	814	272/380	С	Т	0.02%	0.00%
	NM 000155.2	chr9:34649029	rs111033773	LYS,ASN	855	285/380	G	Т	0.00%	0.06%
	NM 000155.2	chr9:34649442	rs2070074	ASN, ASP	940	314/380	A	G	2.93%	9.36%
	NM 000155.2	chr9:34649484	rs144993986	ARG,CYS	982	328/380	С	T	0.02%	0.01%
	NM 000155.2	chr9:34649499	rs111033800	ARG, TRP	997	333/380	C	Т	0.00%	0.01%
	NM 000155.2	chr9:34649532	rs111033814	GLN,LYS	1030	344/380	č	A	0.00%	0.01%
	NM 000155.2	chr9:34650438	rs111033819	ILE,VAL	1132	378/380	Ā	G	0.00%	0.03%
	NM 000159.2	chr19:13002779	rs142967670	ARG,CYS	262	88/439	C	T	0.00%	0.02%
	NM 000159.2	chr19:13004378	rs139851890	SER,LEU	416	139/439	č	Ť	0.02%	0.00%
	NM 000159.2	chr19:13006872	rs149120354	MET,THR	572	191/439	Ť	c	0.02%	0.05%
	NM 000159.2	chr19:13007063	rs121434373	ARG,PRO	680	227/439	G	č	0.02%	0.02%
	NM 000159.2	chr19:13007748	rs121434371	ALA,THR	877	293/439	G	A	0.05%	0.00%
	NM 000159.2	chr19:13007781	0	ALA,THR	910	304/439	G	A	0.02%	0.00%
	NM 000159.2	chr19:13008527	rs121434370	GLU,LYS	1093	365/439	G	A	0.00%	0.01%
	NM 000159.2	chr19:13008581	rs150938052	ARG,CYS	1147	383/439	C	Ť	0.02%	0.00%
	NM 000159.2	chr19:13008638	rs121434369	ARG,TRP	1204	402/439	c	T	0.02%	0.06%
	NM_000159.2					402/439		G	0.02%	
	NM_000159.2 NM_000159.2	chr19:13008647 chr19:13008674	rs141437721	MET,VAL GLU,LYS	1213 1240	405/439 414/439	A G	A	0.05%	0.00% 0.01%
		chr19:13010299	rs147611168	ALA,THR	1261	421/439	G	A	0.16%	0.00%
	NM_000159.2		rs151201155							
	NM_000161.2	chr14:55369176	rs56127440	PRO,LEU	206	69/251	G T	A	0.00%	0.07%
	NM_004004.5	chr13:20763104	rs111033294	ASN,SER	617	206/227	C	C T	0.00%	0.01%
	NM_004004.5	chr13:20763210	0	ALA,THR	511	171/227		T	0.00%	0.02%
	NM_004004.5	chr13:20763222	rs111033360	VAL,MET	499	167/227	C C	T	0.11%	0.00%
	NM_004004.5	chr13:20763246	0	ASP,ASN	475	159/227		•	0.00%	0.01%
	NM_004004.5	chr13:20763294	rs80338948	ARG,TRP	427	143/227	G	A	0.07%	0.00%
	NM_004004.5	chr13:20763305	rs76434661	SER,ASN	416	139/227	С	Ţ	0.00%	0.08%
	NM_004004.5	chr13:20763366	rs150529554	GLU,LYS	355	119/227	С	T	0.00%	0.03%
	NM_004004.5	chr13:20763423	rs143343083	HIS,TYR	298	100/227	G	A	0.02%	0.00%
	NM_004004.5	chr13:20763452	rs80338945	LEU,PRO	269	90/227	A	G	0.02%	0.06%
	NM_004004.5	chr13:20763471	rs104894409	VAL,LEU	250	84/227	С	G	0.02%	0.00%
	NM_004004.5	chr13:20763480	rs145216882	LEU,VAL	241	81/227	G	С	0.05%	0.01%
	NM_004004.5	chr13:20763483	0	GLN,stop	238	80/227	G	A	0.02%	0.00%
	NM_004004.5	chr13:20763490	rs80338944	TRP,stop	231	77/227	C	Ţ	0.00%	0.01%
	NM_004004.5	chr13:20763552	rs111033297	GLN,stop	169	57/227	G	A	0.00%	0.01%
	NM_004004.5	chr13:20763395	0	GLY,GLU	326	109/227	С	Т	0.00%	0.01%
	NM_004004.5	chr13:20763611	rs141774369	VAL,ALA	110	37/227	A	G	0.05%	0.00%
	NM_004004.5	chr13:20763612	rs72474224	VAL,ILE	109	37/227	С	Т	0.02%	0.19%
	NM_004004.5	chr13:20763627	0	ARG,CYS	94	32/227	G	A	0.02%	0.00%
	NM_004004.5	chr13:20763633	0	ILE,VAL	88	30/227	Т	С	0.00%	0.01%
	NM_004004.5	chr13:20763710	rs111033222	GLY,ASP	11	4/227	С	Т	0.21%	0.00%
	NM_004004.5	chr13:20763534	0	VAL,MET	187	63/227	С	Т	0.00%	0.01%
GJB2	NM_004004.5	chr13:20763602	rs111033296	ALA,GLU	119	40/227	G	Т	0.00%	0.01%
	NM_000182.4	chr2:26414191	rs142120825	TYR,stop	2220	740/764	A	Т	0.02%	0.00%
	NM_000182.4	chr2:26418053	rs137852769	GLU,GLN	1528	510/764	С	G	0.02%	0.05%
	NM 000182.4	chr2:26435497	0	none	NA	NA	Т	C	0.00%	0.01%
	NM 000182.4	chr2:26437990	0	ALA,VAL	731	244/764	G	Ā	0.00%	0.01%
	NM 000183.2	chr2:26486320	rs121913132	ARG,HIS	182	61/475	G	A	0.00%	0.02%
	NM 000183.2	chr2:26496605	rs146328300	ASN,SER	341	114/475	A	G	0.00%	0.01%
	NM 000183.2	chr2:26508339	0	PHE,SER	1289	430/475	Т	C	0.00%	0.01%
	NM 000518.4	chr11:5246908	rs33946267	GLU,GLN	364	122/148	Ċ	G	0.00%	0.02%
	NM 000518.4	chr11:5246959	rs33913413	none	NA	NA	G	T	0.02%	0.01%
	NM 000518.4	chr11:5247806	rs33945777	none	NA	NA	č	Ť	0.00%	0.01%
	-									

HBB	NM_000518.4	chr11:5247859	rs33993568	THR,ILE	263	88/148	G	A	0.00%	0.02%
HBB	NM_000518.4	chr11:5247860	rs35553496	THR,PRO	262	88/148	Т	G	0.00%	0.01%
HBB	NM_000518.4	chr11:5248004	rs76728603	GLN,stop	118	40/148	G	A	0.00%	0.01%
HBB	NM_000518.4	chr11:5248050	rs35004220	none	NA	NA	С	Т	0.00%	0.02%
HBB	NM_000518.4	chr11:5248052	rs111851677	none	NA	NA	A	G	1.57%	0.00%
HBB	NM_000518.4	chr11:5248159	rs33971440	none	NA	NA	С	Ţ	0.00%	0.01%
HBB	NM_000518.4	chr11:5248170	rs35424040	ALA,SER	82	28/148	С	A	0.02%	0.00%
HBB	NM_000518.4	chr11:5248177	rs75680770	none	75	25/148	A	Ţ	0.02%	0.00%
HBB	NM_000518.4	chr11:5248232	rs334	GLU,VAL	20	7/148	Т	A	4.00%	0.02%
HBB	NM_000518.4	chr11:5248233	rs33930165	GLU,LYS	19	7/148	С	T	1.61%	0.01%
HBB	NM_000518.4	chr11:5248282	rs63750628	none	NA	NA	G	A	0.00%	0.01%
HLCS	NM_000411.6	chr21:38309329	rs144572349	LEU,stop	416	139/727	A	Ţ	0.00%	0.01%
HLCS	NM_000411.6	chr21:38128859	rs146448211	ARG,stop	1993	665/727	G	A	0.00%	0.02%
HLCS	NM_000411.6	chr21:38128865	rs140951243	TYR,HIS	1987	663/727	A	G	0.02%	0.00%
HLCS	NM_000411.6	chr21:38128952	rs149399432	ASP,ASN	1900	634/727	С	Т	0.02%	0.00%
HLCS	NM_000411.6	chr21:38132079	0	GLY,ARG	1744	582/727	С	Т	0.00%	0.01%
IVD	NM_001159508.1	chr15:40708531	0	GLN,stop	1027	343/397	С	T	0.02%	0.00%
IVD	NM_001159508.1	chr15:40702898	rs142761835	GLY,ARG	277	93/397	G	A	0.02%	0.00%
IVD	NM_001159508.1	chr15:40707154	0	ARG,GLN	770	257/397	G	A	0.02%	0.00%
IVD	NM_001159508.1	chr15:40707653	rs28940889	ALA,VAL	851	284/397	С	Т	0.07%	0.07%
IVD	NM_001159508.1	chr15:40710364	0	ARG,CYS	1093	365/397	С	Т	0.02%	0.00%
MCCC1	NM_020166.3	chr3:182763210	0	TRP,stop	1074	358/726	С	Т	0.00%	0.01%
MCCC1	NM_020166.3	chr3:182763310	rs119103212	MET,ARG	974	325/726	Α	С	0.00%	0.02%
MCCC2	NM_022132.4	chr5:70898412	rs141030969	ARG,TRP	463	155/564	С	Т	0.00%	0.02%
MCCC2	NM_022132.4	chr5:70936845	rs150591260	VAL,MET	1015	339/564	G	A	0.02%	0.09%
MCCC2	NM_022132.4	chr5:70942096	rs142887940	ASN,SER	1208	403/564	A	G	0.00%	0.06%
MCCC2	NM_022132.4	chr5:70945029	rs139852818	ILE,THR	1322	441/564	Т	С	0.05%	0.12%
MCCC2	NM 022132.4	chr5:70948566	rs150327768	TYR,SER	1559	520/564	Α	С	0.00%	0.01%
MCCC2	NM 022132.4	chr5:70895499	rs119103219	GLU,GLN	295	99/564	G	Č	0.02%	0.02%
MMAA	NM 172250.2	chr4:146560724	rs104893851	ARG, stop	433	145/419	С	Т	0.00%	0.05%
MMAB	NM 052845.3	chr12:109994886	0	GLN,stop	700	234/251	G	A	0.00%	0.01%
MMAB	NM 052845.3	chr12:109998858	0	ARG, TRP	571	191/251	G	A	0.00%	0.01%
MMADHC	NM 015702.2	chr2:150432296	0	GLN,stop	538	180/297	G	A	0.02%	0.00%
MUT	NM 000255.3	chr6:49399544	rs121918252	GLY,VAL	2150	717/751	č	A	0.07%	0.00%
MUT	NM 000255.3	chr6:49403194	rs140600746	MET,LYS	2099	700/751	Ă	Ť	0.00%	0.01%
MUT	NM 000255.3	chr6:49403260	rs147094927	HIS,ARG	2033	678/751	т	Ċ	0.02%	0.00%
MUT	NM 000255.3	chr6:49407986	rs143023066	GLY,GLU	1889	630/751	ċ	Ť	0.00%	0.01%
MUT	NM 000255.3	chr6:49408008	rs121918254	GLY,ARG	1867	623/751	č	Ť	0.02%	0.00%
MUT	NM 000255.3	chr6:49407995	0	HIS,ARG	1880	627/751	T	Ċ	0.00%	0.01%
MUT	NM 000255.3	chr6:49425601	rs148331800	MET,VAL	556	186/751	Ť	c	0.00%	0.01%
MUT	NM 000255.3	chr6:49419403	0	THR,PRO	1108	370/751	Ť	Ğ	0.02%	0.00%
MUT	NM 000255.3	chr6:49426975	rs115923556	ILE,VAL	205	69/751	Ť	C	0.14%	0.38%
PAH	NM 000277.1	chr12:103234177	rs5030861	none	NA	NA	Ċ	Т	0.02%	0.10%
PAH	NM 000277.1	chr12:103234252	rs5030860	TYR,CYS	1241	414/453	т	Ċ	0.00%	0.05%
PAH	NM 000277.1	chr12:103234232	rs5030858	ARG,TRP	1222	408/453	G	A	0.00%	0.17%
PAH	NM 000277.1	chr12:103234285	rs5030857	ALA,VAL	1208	403/453	G	A	0.00%	0.06%
PAH				ALA, VAL		395/453	G	Ĉ	0.00%	0.01%
	NM_000277.1	chr12:103237439	rs62508736		1184					
PAH	NM_000277.1	chr12:103237454	rs5030856	GLU,GLY	1169	390/453	Т	C T	0.00%	0.01%
PAH	NM_000277.1	chr12:103237461	rs62516101	VAL,MET	1162	388/453	C	C	0.02%	0.00%
PAH	NM_000277.1	chr12:103237466	rs62516141	TYR,CYS	1157	386/453	•		0.00%	0.01%
PAH	NM_000277.1	chr12:103237484	rs62642937	THR,MET	1139	380/453	G	A	0.00%	0.07%
PAH	NM_000277.1	chr12:103237557	rs62507320	TYR,HIS	1066	356/453	A	G	0.00%	0.03%
PAH	NM_000277.1	chr12:103237568	rs5030855	none	NA	NA	С	Т	0.00%	0.06%
PAH	NM_000277.1	chr12:103238137	rs62516092	LEU,VAL	1042	348/453	G	C	0.00%	0.01%
PAH	NM_000277.1	chr12:103240716	rs62642935	ALA,VAL	926	309/453	G	A	0.00%	0.01%
PAH	NM_000277.1	chr12:103245464	rs62514956	none	NA	NA	С	T	0.00%	0.02%
PAH	NM_000277.1	chr12:103245479	rs5030853	ALA,SER	898	300/453	C	A	0.00%	0.05%
PAH	NM_000277.1	chr12:103245481	rs62642933	PHE,CYS	896	299/453	A	C	0.00%	0.03%
PAH	NM_000277.1	chr12:103246588	rs62516146	none	NA	NA	С	Ţ	0.00%	0.01%
PAH	NM_000277.1	chr12:103246593	rs5030851	PRO,LEU	842	281/453	G	A	0.00%	0.01%
PAH	NM_000277.1	chr12:103246597	rs62508698	GLU,LYS	838	280/453	С	Т	0.00%	0.02%
PAH	NM_000277.1	chr12:103246612	rs62508691	PRO,SER	823	275/453	G	A	0.00%	0.01%
PAH	NM_000277.1	chr12:103246615	rs142934616	LYS,GLU	820	274/453	Т	C	1.63%	0.00%
PAH	NM_000277.1	chr12:103246624	rs62517164	HIS,TYR	811	271/453	G	A	0.00%	0.01%
PAH	NM_000277.1	chr12:103246653	rs5030849	ARG,GLN	782	261/453	С	Т	0.05%	0.06%
PAH	NM_000277.1	chr12:103246681	rs5030847	ARG,TRP	754	252/453	G	A	0.00%	0.02%
PAH	NM_000277.1	chr12:103246701	rs76212747	VAL,ALA	734	245/453	A	G	0.02%	0.07%
PAH	NM_000277.1	chr12:103246713	rs62508730	ARG, HIS	722	241/453	С	Т	0.00%	0.01%
PAH	NM_000277.1	chr12:103248926	rs62507348	GLN,stop	694	232/453	G	А	0.05%	0.00%
PAH	NM 000277.1	chr12:103248932	rs62516152	VAL,ILE	688	230/453	č	Т	0.00%	0.03%
PAH	NM 000277.1	chr12:103246698	0	ALA,VAL	737	246/453	G	A	0.00%	0.01%
	NM 000277.1	chr12:103249091	0	VAL,LEU	529	177/453	č	G	0.00%	0.01%
PAH										
PAH PAH		chr12:103249093	rs74486803	ARG.LEU	527	176/453	С	A	0.02%	0.01%
PAH PAH PAH	NM_000277.1 NM_000277.1	chr12:103249093 chr12:103249099	rs74486803 rs138809906	ARG,LEU ILE,ASN	527 521	176/453 174/453	C A	A T	0.02% 0.02%	0.01% 0.00%

	PAH PAH	NM_000277.1 NM_000277.1	chr12:103260410 chr12:103260411	rs5030843 rs75166491	ARG,GLN ARG,TRP	473 472	158/453 158/453	C G	T A	0.00% 0.02%	0.03% 0.01%
	PAH	NM 000277.1	chr12:103260446	rs62514909	none	NA	NA	Ğ	C	0.00%	0.01%
	PAH	NM 000277.1	chr12:103271235	rs62507321	none	NA	NA	c	Ă	0.00%	0.01%
	PAH	NM 000277.1	chr12:103271239	rs62517166		NA	NA	č	T	0.00%	0.01%
		NM 000277.1			none ASP,VAL			т	•	0.02%	
	PAH		chr12:103271247	rs140175796		434	145/453	÷	A		0.01%
	PAH	NM_000277.1	chr12:103288566	rs148393887	HIS,ARG	299	100/453	•	С	0.05%	0.05%
	PAH	NM_000277.1	chr12:103288576	rs142516271	ILE,LEU	289	97/453	T	G	0.20%	0.00%
	PAH	NM_000277.1	chr12:103288590	rs62514903	THR,ILE	275	92/453	G	A	0.00%	0.01%
	PAH	NM_000277.1	chr12:103288671	rs75193786	ILE,THR	194	65/453	A	G	0.00%	0.06%
	PAH	NM_000277.1	chr12:103306579	rs118092776	ARG,HIS	158	53/453	С	Т	0.00%	0.09%
	PAH	NM_000277.1	chr12:103306594	rs5030841	LEU,SER	143	48/453	A	G	0.00%	0.01%
	PAH	NM_000277.1	chr12:103306620	rs62642926	PHE,LEU	117	39/453	G	С	0.05%	0.01%
	PAH	NM_000277.1	chr12:103310879	rs1801145	none	30	10/453	G	С	0.00%	0.07%
	PCBD1	NM_000281.2	chr10:72643730	rs121913015	GLN,stop	292	98/105	G	A	0.00%	0.02%
	PCBD1	NM 000281.2	chr10:72643759	rs115117837	ARG,GLN	263	88/105	С	Т	0.16%	0.01%
	PCCA	NM 000282.3	chr13:101167714	rs145428347	GLU,stop	1933	645/729	G	Т	0.02%	0.00%
	PCCA	NM_000282.3	chr13:100764140	rs141371306	ARG, TRP	229	77/729	С	Т	0.02%	0.00%
	PCCA	NM_000282.3	chr13:101020733	rs61749895	VAL, PHE	1651	551/729	G	т	0.23%	0.81%
	PCCB	NM 000532.4	chr3:136016902	rs77820367	CYS,TYR	872	291/540	G	Â	0.16%	0.29%
	PCCB	NM 000532.4	chr3:136012626	0	PRO,LEU	683	228/540	č	Ť	0.00%	0.01%
	PCCB	NM 000532.4	chr3:136046480	rs121964961	TYR,CYS	1304	435/540	Ă	Ġ	0.02%	0.00%
	PTS	NM 000317.2	chr11:112103939	rs145882709	TYR,stop		99/146	ĉ	A	0.00%	0.01%
	PTS			0	THR,MET	297 200		c	Ť	0.00%	
		NM_000317.2	chr11:112101362				67/146		Ť		0.01%
	PTS	NM_000317.2	chr11:112104210	rs150726932	VAL,LEU	370	124/146	G	•	0.00%	0.01%
	SLC22A5	NM_003060.3	chr5:131705698	rs139203363	GLY,SER	34	12/558	G	A	0.00%	0.17%
	SLC22A5	NM_003060.3	chr5:131719973	rs121908888	TYR,CYS	632	211/558	A	G	0.00%	0.01%
	SLC22A5	NM_003060.3	chr5:131721062	rs114269482	THR,MET	695	232/558	С	Т	0.00%	0.03%
	SLC22A5	NM_003060.3	chr5:131721136	0	ARG,TRP	769	257/558	С	Т	0.00%	0.01%
	SLC22A5	NM_003060.3	chr5:131722736	rs121908886	ARG,stop	844	282/558	С	Т	0.00%	0.01%
	SLC22A5	NM_003060.3	chr5:131722731	0	SER,PHE	839	280/558	С	Т	0.00%	0.01%
	SLC22A5	NM 003060.3	chr5:131726522	rs144547521	PRO,LEU	1193	398/558	С	Т	0.02%	0.01%
	SLC22A5	NM_003060.3	chr5:131728202	rs11568514	TYR, ASP	1345	449/558	Т	G	0.36%	0.00%
	SLC22A5	NM_003060.3	chr5:131729379	0	ARG,CYS	1462	488/558	С	Т	0.00%	0.01%
	SLC22A5	NM 003060.3	chr5:131729380	rs28383481	ARG, HIS	1463	488/558	G	А	0.18%	0.52%
Age related	ABCA4	NM 000350.2	chr1:94463425	rs61748521	LEU,VAL	6721	2241/2274	G	C	0.00%	0.37%
nacular	ABCA4	NM 000350.2	chr1:94463617	rs1800555	ASP,ASN	6529	2177/2274	č	Ť	0.20%	0.11%
degeneration	ABCA4	NM 000350.2	chr1:94473287	rs28938473	LEU,PHE	5908	1970/2274	Ğ	Å	0.20%	0.02%
ARMD)	ABCA4 ABCA4	NM 000350.2	chr1:94473807	rs1800553	GLY,GLU	5882	1961/2274	C	Ť		
ARIVID)									Ť	0.11%	0.01%
	ABCA4	NM_000350.2	chr1:94476377	rs1800552	ARG,HIS	5693	1898/2274	C	÷	0.05%	0.01%
	ABCA4	NM_000350.2	chr1:94487443	rs1800551	GLY,ARG	4732	1578/2274	С	•	0.00%	0.01%
	ABCA4	NM_000350.2	chr1:94487490	rs1762111	ILE,THR	4685	1562/2274	A	G	0.02%	0.74%
	ABCA4	NM_000350.2	chr1:94496053	rs1800549	THR,MET	4283	1428/2274	G	A	0.02%	0.00%
	ABCA4	NM_000350.2	chr1:94496666	rs61750130	PRO,LEU	4139	1380/2274	G	A	0.00%	0.01%
	ABCA4	NM_000350.2	chr1:94508969	rs61751374	ALA,VAL	3113	1038/2274	G	A	0.07%	0.00%
	ABCA4	NM_000350.2	chr1:94512565	rs1801581	ARG,GLN	2828	943/2274	С	Т	1.43%	0.00%
	ABCA4	NM_000350.2	chr1:94512574	rs144995371	PRO,ARG	2819	940/2274	G	С	0.00%	0.01%
	ABCA4	NM 000350.2	chr1:94514466	rs139655975	THR,ALA	2701	901/2274	Т	С	0.02%	0.00%
	ABCA4	NM_000350.2	chr1:94543389	rs1800548	GLU,LYS	1411	471/2274	С	Т	0.00%	0.01%
	ABCA4	NM_000350.2	chr1:94564483	rs6657239	ARG, HIS	635	212/2274	С	Т	7.06%	0.13%
	ABCA4	NM_000350.2	chr1:94461676	0	ARG, stop	6805	2269/2274	G	А	0.00%	0.03%
	ABCA4	NM 000350.2	chr1:94466426	rs140142529	ARG, stop	6445	2149/2274	Ğ	A	0.00%	0.01%
	ABCA4	NM 000350.2	chr1:94508343	0	TRP,stop	3302	1101/2274	č	Т	0.00%	0.00%
	ABCA4	NM 000350.2	chr1:94544906	rs150686179	SER,stop	1211	404/2274	G	Ċ	0.00%	0.01%
	C3	NM 000064.2	chr19:6718387	rs2230199	ARG,GLY	304	102/1664	G	č	4.81%	0.07%
	CFH	NM 000186.3	chr1:196642233	rs800292	VAL,ILE	184	62/1232	G	A	70.71%	0.34%
		NM 000186.3						C	C		
	CFH		chr1:196659237	rs1061170 rs2274700	HIS,TYR	1204	402/1232			36.32%	0.01%
	CFH	NM_000186.3	chr1:196682947		none	1419	473/1232	G	A	46.86%	0.01%
	CFH	NM_000186.3	chr1:196709774	rs1065489	GLU,ASP	2808	936/1232	G	T	6.62%	0.00%
	CFH	NM_000186.3	chr1:196716375	rs121913059	ARG,CYS	3628	1210/1232	ç	T	0.00%	0.00%
Drug	ABCB1	NM_000927.4	chr7:87138645	rs1045642	none	3435	1145/1281	A	G	22.71%	47.75%
esponse	ABCB1	NM_000927.4	chr7:87160561	rs2032583	none	NA	NA	A	G	17.11%	13.25%
PGx)	ABCB1	NM_000927.4	chr7:87160618	rs2032582	SER,ALA	2677	893/1281	A	С	10.75%	43.13%
	ABCB1	NM_000927.4	chr7:87179601	rs1128503	none	1236	412/1281	A	G	21.55%	42.94%
	ABCB1	NM_000927.4	chr7:87199564	rs2235015	none	NA	NA	С	А	34.35%	19.69%
	ABCC2	NM 000392.3	chr10:101563815	rs2273697	VAL,ILE	1249	417/1546	G	А	18.69%	19.43%
	ABCC2	NM 000392.3	chr10:101595996	rs17222723	VAL,GLU	3563	1188/1546	Ť	A	5.97%	6.17%
	ABCC2	NM 000392.3	chr10:101604207	rs3740066	none	3972	1324/1546	ċ	Т	26.02%	37.16%
	ABCC2	NM 000392.3	chr10:101611294	rs8187710	CYS,TYR	4544	1515/1546	G	Å	15.72%	6.19%
	ABCC2 ABCC2	NM 000392.3	chr10:101594183	0	TRP,stop	3305	1102/1546	G	A	0.00%	0.01%
	ABCC2	NM_000392.3	chr10:101591385	rs17222547	TYR, stop	2901	967/1546	С	A	0.02%	0.00%
	ABCC2	NM_000392.3	chr10:101610372	rs145715632	GLN,stop	4327	1443/1546	С	Ţ	0.02%	0.00%
	ABCG2	NM_004827.2	chr4:89052323	rs2231142	GLN,LYS	421	141/656	G	T	3.22%	11.14%
	COMT	NM_000754.3	chr22:19951271	rs4680	VAL,MET	472	158/272	G	A	68.36%	47.79%
	COMT	NM 000754.3	chr22:19956180	0	SER,stop	737	246/272	С	A	0.00%	0.01%

CYP2C19	NM_000769.1	chr10:96540410	rs4986893	TRP,stop	636	212/491	G	А	0.05%	0.02%
CYP2C19	NM_000769.1	chr10:96535278	0	GLU,stop	463	155/491	G	Т	0.00%	0.01%
CYP2C9	NM_000771.3	chr10:96702047	rs1799853	ARG,CYS	430	144/491	С	Т	2.68%	13.03%
CYP2C9	NM_000771.3	chr10:96702066	rs7900194	ARG,HIS	449	150/491	G	A	5.81%	0.05%
CYP2C9	NM_000771.3	chr10:96740981	rs28371685	ARG,TRP	1003	335/491	С	Т	1.91%	0.19%
CYP2C9	NM_000771.3	chr10:96741053	rs1057910	ILE,LEU	1075	359/491	A	С	1.43%	6.61%
CYP2C9	NM_000771.3	chr10:96741058	rs28371686	ASP,GLU	1080	360/491	С	G	1.07%	0.01%
DPYD	NM_000110.3	chr1:97915614	rs3918290	none	NA	NA	С	Т	0.09%	0.58%
DPYD	NM_000110.3	chr1:97981395	rs1801159	ILE,VAL	1627	543/1026	Т	С	15.51%	19.77%
DPYD	NM_000110.3	chr1:97981421	rs1801158	SER,ASN	1601	534/1026	С	Т	0.45%	2.02%
DPYD	NM_000110.3	chr1:98165091	rs2297595	MET,VAL	496	166/1026	Т	С	4.10%	9.90%
DPYD	NM_000110.3	chr1:98348885	rs1801265	ARG,CYS	85	29/1026	G	A	39.97%	22.50%
DPYD	NM_000110.3	chr1:97770839	0	ARG,stop	2275	759/1026	G	A	0.02%	0.00%
DPYD	NM_000110.3	chr1:98164926	rs146170505	GLU,stop	661	221/1026	С	A	0.00%	0.01%
DPYD	NM_000110.3	chr1:98293695	rs141597515	ARG,stop	208	70/1026	G	A	0.00%	0.01%
DRD2	NM_000795.3	chr11:113283459	rs6277	none	957	319/444	G	A	85.69%	45.40%
EPHX1	NM_000120.3	chr1:226019633	rs1051740	TYR,HIS	337	113/456	Т	С	17.63%	29.96%
EPHX1	NM_000120.3	chr1:226019653	rs2292566	none	357	119/456	G	Α	14.59%	14.43%
EPHX1	NM_000120.3	chr1:226026406	rs2234922	HIS,ARG	416	139/456	A	G	33.69%	20.41%
EPHX1	NM_000120.3	chr1:226026525	0	GLU,stop	535	179/456	G	Т	0.00%	0.01%
EPHX1	NM_000120.3	chr1:226033029	0	SER,stop	1349	450/456	С	A	0.02%	0.00%
SLCO1B1	NM_006446.4	chr12:21329738	rs2306283	ASN,ASP	388	130/692	A	G	23.38%	40.27%
SLCO1B1	NM_006446.4	chr12:21329813	rs11045819	PRO,THR	463	155/692	С	A	8.62%	16.16%
SLCO1B1	NM_006446.4	chr12:21331549	rs4149056	VAL,ALA	521	174/692	Т	С	3.63%	15.48%
SLCO1B1	NM_006446.4	chr12:21294563	0	LYS,stop	55	19/692	A	Т	0.02%	0.00%
TPMT	NM_000367.2	chr6:18130918	rs1142345	TYR,CYS	719	240/246	Т	С	5.26%	4.24%
TPMT	NM_000367.2	chr6:18131012	rs1800584	none	NA	NA	С	Т	0.00%	0.01%
TPMT	NM_000367.2	chr6:18139228	rs1800460	ALA,THR	460	154/246	С	Т	1.00%	3.80%
TPMT	NM_000367.2	chr6:18143955	rs1800462	ALA,PRO	238	80/246	С	G	0.00%	0.23%
UGT1A10	NM_000463.2	chr2:234669144	rs4148323	GLY,ARG	211	71/534	G	A	0.14%	0.13%
UGT1A10	NM_000463.2	chr2:234675792	0	LEU,stop	977	326/534	Т	A	0.02%	0.00%

Supplemental Acknowledgments

HeartGO:

Atherosclerosis Risk in Communities (ARIC): NHLBI (N01 HC-55015, N01 HC-55016, N01HC-55017, N01 HC-55018, N01 HC-55019, N01 HC-55020, N01 HC-55021); Cardiovascular Health Study (CHS): NHLBI (HHSN268201200036C, HHSN268200800007C, N01-HC-85239, N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, and grant HL080295), with additional support from NINDS and from NIA (AG-023629, AG-15928, AG-20098, and AG-027058); Coronary Artery Risk Development in Young Adults (CARDIA): NHLBI (N01-HC95095 & N01-HC48047, N01-HC48048, N01-HC48049, and N01-HC48050); Framingham Heart Study (FHS): NHLBI (N01-HC-25195 and grant R01 NS17950) with additional support from NIA (AG08122 and AG033193); Jackson Heart Study (JHS): NHLBI and the National Institute on Minority Health and Health Disparities (N01 HC-95170, N01 HC-95171 and N01 HC-95172); Multi-Ethnic Study of Atherosclerosis (MESA): NHLBI (N01-HC-95159 through N01-HC-95169 and RR-024156).

Lung GO:

Cystic Fibrosis (CF): Cystic Fibrosis Foundation (GIBSON07K0, KNOWLE00A0, OBSERV04K0, RDP R026), the NHLBI (R01 HL-068890, R02 HL-095396), NIH National Center for Research Resources (UL1 RR-025014), and the National Human Genome Research Institute (NHGRI) (5R00 HG-004316). **Chronic Obstructive Pulmonary Disease (COPDGene):** NHLBI (U01 HL-089897, U01 HL-089856), and the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, and Sunovian. The COPDGene clinical centers and investigators are available at www.copdgene.org. **Acute Lung Injury (ALI)**: NHLBI (RC2 HL-101779). **Lung Health Study (LHS)**: NHLBI (RC2 HL-066583), the NHGRI (HG-004738), and the NHLBI Division of Lung Diseases (HR-46002). **Pulmonary Arterial Hypertension (PAH):** NIH (P50 HL-084946, K23 AR-52742), and the NHLBI (F32 HL-083714). **Asthma:** NHLBI (RC2 HL-101651), and the NIH (HL-077916, HL-69197, HL-76285, M01 RR-07122).

SWISS and ISGS:

Siblings with Ischemic Stroke Study (SWISS): National Institute of Neurological Disorders and Stroke (NINDS) (R01 NS039987); Ischemic Stroke Genetics Study (ISGS): NINDS (R01 NS042733)

WHISP:

Women's Health Initiative (WHI): The WHI Sequencing Project is funded by the National Heart, Lung, and Blood Institute (HL-102924) as well as the National Institutes of Health (NIH), U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at:

https://cleo.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short %20List.pdf

NHLBI GO Exome Sequencing Project

BroadGO

Stacey B. Gabriel (Broad Institute)^{4, 5, 11, 16, 17}, David M. Altshuler (Broad Institute, Harvard Medical School, Massachusetts General Hospital)^{1, 5, 7, 17}, Gonçalo R. Abecasis (University of Michigan)^{3, 5, 9, 13, 15, 17}, Hooman Allayee (University of Southern California)⁵, Sharon Cresci (Washington University School of Medicine)⁵, Mark J. Daly (Broad Institute, Massachusetts General Hospital), Paul I. W. de Bakker (Broad Institute, Harvard Medical School, University Medical Center Utrecht)^{3, 15}, Mark A. DePristo (Broad Institute)^{4, 13, 15, 16}, Ron Do (Broad Institute)^{5, 9, 13, 15}, Peter Donnelly (University of Oxford)⁵, Deborah N. Farlow (Broad Institute)^{3, 4, 5, 12, 14, 16, 17}, Tim Fennell (Broad Institute), Kiran Garimella (University of Oxford)^{4, 16}, Stanley L. Hazen (Cleveland Clinic)⁵, Youna Hu (University of Michigan)^{3, 9, 15}, Daniel M. Jordan (Harvard Medical School, Harvard University)¹³, Goo Jun (University of Michigan)¹³, Sekar Kathiresan (Broad Institute, Harvard Medical School, Massachusetts General Hospital)^{5, 8, 9, 12, 14, 15, 17, 20}, Hyun Min Kang (University of Michigan)^{9, 13, 16}, Adam Kiezun (Broad Institute)^{5, 13, 15}, Guillaume Lettre (Broad Institute, Montreal Heart Institute, Université de Montréal)^{1, 2, 13, 15}, Bingshan Li (University of Michigan)³, Mingyao Li (University of Pennsylvania)⁵, Christopher H. Newton-Cheh (Broad Institute, Massachusetts General Hospital, Harvard Medical School)^{3, 8, 15}, Sandosh Padmanabhan (University of Glasgow School of Medicine)^{3, 12, 15}, Gina Peloso (Broad Institute, Harvard Medical School, Massachusetts General Hospital)⁵, Sara Pulit (Broad Institute)^{3, 15}, Daniel J. Rader (University of Pennsylvania)⁵, David Reich (Broad Institute, Harvard Medical School)¹⁵, Muredach P. Reilly (University of Pennsylvania)⁵, Manuel A. Rivas (Broad Institute, Massachusetts General Hospital)⁵, Steve Schwartz (Fred Hutchinson Cancer Research Center)^{5, 12}, Laura Scott (University of Michigan)¹, David S. Siscovick (University of Washington)^{5, 1, 25}, John A. Spertus (University of Missouri Kansas City)⁵, Nathan O. Stitziel (Brigham and Women's Hospital)^{5, 15}, Nina Stoletzki (Brigham and Women's Hospital, Broad Institute, Harvard Medical School)¹³, Shamil R. Sunyaev (Brigham and Women's Hospital, Broad Institute, Harvard Medical School)¹, ^{3, 5, 13, 15}, Benjamin F. Voight (Broad Institute, Massachusetts General Hospital), Cristen J. Willer (University of Michigan)^{1,9,13,15}

HeartGO

Stephen S. Rich (University of Virginia)^{2, 4, 7, 8, 9, 11,14, 15, 17, 18, 31}, Ermeg Akylbekova (Jackson State University, University of Mississippi Medical Center)²⁹, Larry D. Atwood* (Boston University)^{1, 11, 28}, Christie M. Ballantyne (Baylor College of Medicine, Methodist DeBakey Heart Center)^{9, 22}, Maja Barbalic (University of Texas Health Science Center Houston)^{9, 14, 15, 17, 22}, R. Graham Barr (Columbia University Medical Center)^{10, 31}, Emelia J. Benjamin (Boston University)^{14, 20, 28}, Joshua Bis (University of Washington)^{15, 23}, Eric Boerwinkle (University of Texas Health Science Center Houston)^{3, 5, 9, 13, 15, 17, 22}, Donald W. Bowden (Wake Forest University)^{1, 31}, Jennifer Brody (University of Washington)^{3, 5, 15, 23}, Matthew Budoff (Harbor-UCLA Medical Center)³¹, Greg Burke (Wake Forest University)^{5, 31}, Sarah Buxbaum (Jackson State University)^{3, 13, 15, 29}, Jeff Carr (Wake Forest University)^{25, 29, 31}, Donna T. Chen (University of Virginia)^{6, 11}, Ida Y. Chen (Cedars-Sinai Medical Center)^{1, 31}, Wei-Min Chen (University of Virginia)^{13, 15, 18}, Pat Concannon (University of Virginia)¹¹, Jacy Crosby (University of Texas Health Science Center Houston)²², L. Adrienne Cupples (Boston University)^{1, 3, 5}, 9, 13, 15, 18, 28</sup>, Ralph D'Agostino (Boston University)²⁸, Anita L. DeStefano (Boston University)^{1, 28}, J. Peter Durda (University of Mississippi Medical Center)^{3, 29}, Josée Dupuis (Boston University)^{1, 28}, J. Peter Durda (University of Minesota)⁵, ²², Myriam Fornage (University of Texas Health Science Center Houston)^{3, 18, 25}, Caroline S. Fox (National Heart, Lung, and Blood Institute)^{1, 28}, Ervin Fox (University of Mississippi Medical Center)³, ^{9, 29}, Vincent Funari (Cedars-Sinai Medical Center)^{1, 11, 31}, Santhi K. Ganesh (University of Michigan)^{2, 22},

Julius Gardin (Hackensack University Medical Center)²⁵, David Goff (Wake Forest University)²⁵, Ora Gordon (Cedars-Sinai Medical Center)^{11, 31}, Wayne Grody (University of California Los Angeles)^{11, 31}, Myron Gross (University of Minnesota)^{1, 5, 14, 25}, Xiuqing Guo (Cedars-Sinai Medical Center)^{3, 15, 31}, Ira M. Hall (University of Virginia), Nancy L. Heard-Costa (Boston University)^{1, 11, 28}, Susan R. Heckbert (University of Washington)^{10, 14, 20, 23}, Nicholas Heintz (University of Vermont), David M. Herrington (Wake Forest University)^{5,31}, DeMarc Hickson (Jackson State University, University of Mississippi Medical Center)²⁹, Jie Huang (National Heart, Lung, and Blood Institute)^{5, 28}, Shih-Jen Hwang (Boston University, National Heart, Lung, and Blood Institute)^{3, 28}, David R. Jacobs (University of Minnesota)²⁵, Nancy S. Jenny (University of Vermont)^{1, 2, 23}, Andrew D. Johnson (National Heart, Lung, and Blood Institute)^{2, 5, 11, 28}, Craig W. Johnson (University of Washington)^{15, 31}, Steven Kawut (University of Pennsylvania)^{10,31}, Richard Kronmal (University of Washington)³¹, Raluca Kurz (Cedars-Sinai Medical Center)^{11, 31}, Ethan M. Lange (University of North Carolina Chapel Hill)^{3, 5, 9, 13, 34}, Leslie A. Lange (University of North Carolina Chapel Hill)^{1, 2, 3, 5, 9, 12, 13, 15, 17, 18, 20, 25, 34}, Martin G. Larson (Boston University)^{3, 15, 28}, Mark Lawson (University of Virginia), Cora E. Lewis (University of Alabama at Birmingham)^{25,34}, Daniel Levy (National Heart, Lung, and Blood Institute)^{3, 15, 17, 28}, Dalin Li (Cedars-Sinai Medical Center)^{11, 15, 31}, Honghuang Lin (Boston University)^{20, 28}, Chunyu Liu (National Heart, Lung, and Blood Institute)^{3, 28}, Jiankang Liu (University of Mississippi Medical Center)^{1, 29}, Kiang Liu (Northwestern University)²⁵, Xiaoming Liu (University of Texas Health Science Center Houston)^{15, 22}, Yongmei Liu (Wake Forest University)^{2, 5, 31}, William T. Longstreth (University of Washington)^{18, 23}, Cay Loria (National Heart, Lung, and Blood Institute)²⁵, Thomas Lumley (University of Auckland)^{9, 23}, Kathryn Lunetta (Boston University)²⁸, Aaron J. Mackey (University of Virginia)^{16, 18}, Rachel Mackey (University of Pittsburgh)^{1, 23, 31}, Ani Manichaikul (University of Virginia)^{8, 15, 18, 31}, Taylor Maxwell (University of Texas Health Science Center Houston)²², Barbara McKnight (University of Washington)^{15, 23}, James B. Meigs (Brigham and Women's Hospital, Harvard Medical School, Massachusetts General Hospital)^{1, 28}, Alanna C. Morrison (University of Texas Health Science Center Houston)^{3, 15, 17}, Solomon K. Musani (University of Mississippi Medical Center)^{3, 29}, Josyf C. Mychaleckyj (University of Virginia)^{13, 15, 31}, Jennifer A. Nettleton (University of Texas Health Science Center Houston)^{9, 22}, Kari North (University of North Carolina Chapel Hill)^{1, 3, 9, 10, 13, 15, 17, 34}, Christopher J. O'Donnell (Massachusetts General Hospital, National Heart, Lung, and Blood Institute)^{2, 5, 9, 11, 12, 14, 15, 17, 20, 28}, Daniel O'Leary (Tufts University School of Medicine)^{25, 31}, Frank S. Ong (Cedars-Sinai Medical Center)^{3, 11, 31}, Walter Palmas (Columbia University)³, ^{15, 31}, James S. Pankow (University of Minnesota)^{1, 22}, Nathan D. Pankratz (Indiana University School of Medicine)^{15, 25}, Shom Paul (University of Virginia), Marco Perez (Stanford University School of Medicine), Sharina D. Person (University of Alabama at Birmingham, University of Alabama at Tuscaloosa)²⁵, Joseph Polak (Tufts University School of Medicine)³¹, Wendy S. Post (Johns Hopkins University)^{3, 9, 11, 14, 20, 31}, Bruce M. Psaty (Group Health Research Institute, University of Washington)^{3, 5, 9, 11, 14, 15, 23}, Aaron R. Quinlan (University of Virginia)^{18, 19}, Leslie J. Raffel (Cedars-Sinai Medical Center)^{6, 11, 31}, Vasan S. Ramachandran (Boston University)^{3, 28}, Alexander P. Reiner (Fred Hutchinson Cancer Research Center, University of Washington)^{1, 2, 3, 5, 9, 11, 12, 13, 14, 15, 20, 25, 34}, Kenneth Rice (University of Washington)^{15, 23}, Jerome I. Rotter (Cedars-Sinai Medical Center)^{1, 3, 6, 8, 11, 15, 31}, Jill P. Sanders (University of Vermont)²³, Pamela Schreiner (University of Minnesota)²⁵, Sudha Seshadri (Boston University)^{18, 28}, Steve Shea (Brigham and Women's Hospital, Harvard University)²⁸, Stephen Sidney (Kaiser Permanente Division of Research, Oakland, CA)²⁵, Kevin Silverstein (University of Minnesota)²⁵, David S. Siscovick (University of Washington)^{5, 1, 25}, Nicholas L. Smith (University of Washington)^{2, 15, 20, 23}, Nona Sotoodehnia (University of Washington)^{3, 15, 23}, Asoke Srinivasan (Tougaloo College)²⁹, Herman A. Taylor (Jackson State University, Tougaloo College, University of Mississippi Medical Center)^{5, 29}, Kent Taylor (Cedars-Sinai Medical Center)³¹, Fridtjof Thomas (University of Texas Health Science Center Houston)^{3, 22}, Russell P. Tracy (University of Vermont)^{5, 9, 11, 12, 14, 15, 17, 20, 23}, Michael Y. Tsai (University of Minnesota)^{9, 31}, Kelly A. Volcik (University of Texas Health Science Center Houston)²², Chrstina L Wassel (University of California San Diego)^{9, 15, 31}, Karol Watson (University of California Los Angeles)³¹, Gina Wei (National Heart, Lung, and Blood Institute)²⁵, Wendy White (Tougaloo College)²⁹, Kerri L. Wiggins (University of Vermont)²³, Jemma B. Wilk (Boston University)^{10, 28}, O. Dale Williams (Florida International University)²⁵, Gregory Wilson (Jackson State University)²⁹, James G. Wilson (University of Mississippi Medical Center)^{1, 2, 5, 8, 9, 11, 12, 14, 17, 20, 29}, Phillip Wolf (Boston University)²⁸, Neil A. Zakai (University of Vermont)^{2, 23}

ISGS and SWISS

John Hardy (Reta Lila Weston Research Laboratories, Institute of Neurology, University College London)¹⁸, James F. Meschia (Mayo Clinic)¹⁸, Michael Nalls (National Institute on Aging)^{2, 18}, Stephen S. Rich (University of Virginia)^{2, 4, 7, 8, 9, 11, 14, 15, 17, 18, 31}, Andrew Singleton (National Institute on Aging)¹⁸, Brad Worrall (University of Virginia)¹⁸

LungGO

Michael J. Bamshad (Seattle Children's Hospital, University of Washington)^{4, 6, 7, 8, 10, 11, 13, 15, 17, 27}, Kathleen C. Barnes (Johns Hopkins University)^{2, 10, 12, 14, 15, 17, 20, 24, 30, 32}, Ibrahim Abdulhamid (Children's Hospital of Michigan)²⁷, Frank Accurso (University of Colorado)²⁷, Ran Anbar (Upstate Medical University)²⁷, Terri Beaty (Johns Hopkins University)^{24, 30}, Abigail Bigham (University of Washington)^{13, 15, 27}, Phillip Black (Children's Mercy Hospital)²⁷, Eugene Bleecker (Wake Forest University)³³, Kati Buckingham (University) of Washington)²⁷, Anne Marie Cairns (Maine Medical Center)²⁷, Wei-Min Chen (University of Virginia)¹³, ^{15, 18}, Daniel Caplan (Emory University)²⁷, Barbara Chatfield (University of Utah)²⁷, Aaron Chidekel (A.I. Dupont Institute Medical Center)²⁷, Michael Cho (Brigham and Women's Hospital, Harvard Medical School)^{13, 15, 24}, David C. Christiani (Massachusetts General Hospital)²¹, James D. Crapo (National Jewish Health)^{24, 30}, Julia Crouch (Seattle Children's Hospital)6, Denise Daley (University of British Columbia)³⁰, Anthony Dang (University of North Carolina Chapel Hill)²⁶, Hong Dang (University of North Carolina Chapel Hill)²⁶, Alicia De Paula (Ochsner Health System)²⁷, Joan DeCelie-Germana (Schneider Children's Hospital)²⁷, Allen Dozor (New York Medical College, Westchester Medical Center)²⁷, Mitch Drumm (University of North Carolina Chapel Hill)²⁶, Maynard Dyson (Cook Children's Med. Center)²⁷, Julia Emerson (Seattle Children's Hospital, University of Washington)²⁷, Mary J. Emond (University of Washington)^{10, 13, 15, 17, 27}, Thomas Ferkol (St. Louis Children's Hospital, Washington University School of Medicine)²⁷, Robert Fink (Children's Medical Center of Dayton)²⁷, Cassandra Foster (Johns Hopkins University)³⁰, Deborah Froh (University of Virginia)²⁷, Li Gao (Johns Hopkins University)^{24, 30, 32}, William Gershan (Children's Hospital of Wisconsin)²⁷, Ronald L. Gibson (Seattle Children's Hospital, University of Washington)^{10, 27}, Elizabeth Godwin (University of North Carolina Chapel Hill)²⁶, Magdalen Gondor (All Children's Hospital Cystic Fibrosis Center)²⁷, Hector Gutierrez (University of Alabama at Birmingham)²⁷, Nadia N. Hansel (Johns Hopkins University, Johns Hopkins University School of Public Health)^{10, 15, 30} Paul M. Hassoun (Johns Hopkins University)^{10, 14, 32}, Peter Hiatt (Texas Children's Hospital)²⁷, John E. Hokanson (University of Colorado)²⁴, Michelle Howenstine (Indiana University, Riley Hospital for Children)²⁷, Laura K. Hummer (Johns Hopkins University)³², Seema M. Jamal (University of Washington)¹¹, Jamshed Kanga (University of Kentucky)²⁷, Yoonhee Kim (National Human Genome Research Institute)^{24, 32}, Michael R. Knowles (University of North Carolina Chapel Hill)^{10, 26}, Michael Konstan (Rainbow Babies & Children's Hospital)²⁷, Thomas Lahiri (Vermont Children's Hospital at Fletcher Allen Health Care)²⁷, Nan Laird (Harvard School of Public Health)²⁴, Christoph Lange (Harvard School of Public Health)²⁴, Lin Lin (Harvard Medical School)²¹, Xihong Lin (Harvard School of Public Health)²¹, Tin L. Louie (University of Washington)^{13, 15, 27}, David Lynch (National Jewish Health)²⁴, Barry Make (National Jewish Health)²⁴, Thomas R. Martin (University of Washington, VA Puget Sound Medical Center)^{10, 21}, Steve C. Mathai (Johns Hopkins University)³², Rasika A. Mathias (Johns Hopkins University)^{10, 13, 15, 30, 32}, John McNamara (Children's Hospitals and Clinics of Minnesota)²⁷, Sharon

McNamara (Seattle Children's Hospital)²⁷, Deborah Meyers (Wake Forest University)³³, Susan Millard (DeVos Children's Butterworth Hospital, Spectrum Health Systems)²⁷, Peter Mogayzel (Johns Hopkins University)²⁷, Richard Moss (Stanford University)²⁷, Tanda Murray (Johns Hopkins University)³⁰, Dennis Nielson (University of California at San Francisco)²⁷, Blakeslee Noyes (Cardinal Glennon Children's Hospital)²⁷, Wanda O'Neal (University of North Carolina Chapel Hill)²⁶, David Orenstein (Children's Hospital of Pittsburgh)²⁷, Brian O'Sullivan (University of Massachusetts Memorial Health Care)²⁷, Rhonda Pace (University of North Carolina Chapel Hill)²⁶, Peter Pare (St. Paul's Hospital)³⁰, H. Worth Parker (Dartmouth-Hitchcock Medical Center, New Hampshire Cystic Fibrosis Center)²⁷, Mary Ann Passero (Rhode Island Hospital)²⁷, Elizabeth Perkett (Vanderbilt University)²⁷, Adrienne Prestridge (Children's Memorial Hospital)²⁷, Nicholas M. Rafaels (Johns Hopkins University)³⁰, Bonnie Ramsey (Seattle Children's Hospital, University of Washington)²⁷, Elizabeth Regan (National Jewish Health)²⁴, Clement Ren (University of Rochester)²⁷, George Retsch-Bogart (University of North Carolina Chapel Hill)²⁷, Michael Rock (University of Wisconsin Hospital and Clinics)²⁷, Antony Rosen (Johns Hopkins University)³², Margaret Rosenfeld (Seattle Children's Hospital, University of Washington)²⁷, Ingo Ruczinski (Johns Hopkins University School of Public Health)^{13, 15, 30}, Andrew Sanford (University of British Columbia)³⁰, David Schaeffer (Nemours Children's Clinic)²⁷, Cindy Sell (University of North Carolina Chapel Hill)²⁶, Daniel Sheehan (Children's Hospital of Buffalo)²⁷, Edwin K. Silverman (Brigham and Women's Hospital, Harvard Medical School)^{24, 30}, Don Sin (Children's Medical Center of Dayton)³⁰ Terry Spencer (Elliot Health System)²⁷, Jackie Stonebraker (University of North Carolina Chapel Hill)²⁶, Holly K. Tabor (Seattle Children's Hospital, University of Washington)^{6, 10, 11, 17, 27}, Laurie Varlotta (St. Christopher's Hospital for Children)²⁷, Candelaria I. Vergara (Johns Hopkins University)³⁰, Robert Weiss ³⁰, Fred Wigley (Johns Hopkins University)³², Robert A. Wise (Johns Hopkins University)³⁰, Fred A. Wright (University of North Carolina Chapel Hill)²⁶, Mark M. Wurfel (University of Washington)^{10, 14, 21}, Robert Zanni (Monmouth Medical Center)²⁷, Fei Zou (University of North Carolina Chapel Hill)²⁶

SeattleGO

WHISP

Rebecca Jackson (Ohio State University)^{1, 2, 4, 5, 8, 12, 14, 15, 17, 18, 20, 34}, Kari North (University of North Carolina Chapel Hill)^{1, 3, 9, 10, 13, 15, 17, 34}, Ulrike Peters (Fred Hutchinson Cancer Research Center)^{1, 3, 11, 12, 13}, ^{15, 17, 18, 34}, Christopher S. Carlson (Fred Hutchinson Cancer Research Center, University of Washington)^{1, 2,} ^{3, 5, 12, 13, 14, 15, 16, 17, 18, 19, 34}, Garnet Anderson (Fred Hutchinson Cancer Research Center)³⁴, Hoda Anton-Culver (University of California at Irvine)³⁴, Themistocles L. Assimes (Stanford University School of Medicine)^{5, 9, 11, 34}, Paul L. Auer (Fred Hutchinson Cancer Research Center)^{1, 2, 3}, ^{5, 11, 12, 13, 15, 16, 18, 34}, Shirley Beresford (Fred Hutchinson Cancer Research Center)³⁴, Chris Bizon (University of North Carolina Chapel Hill)^{3, 9, 13, 15, 34}, Henry Black (Rush Medical Center)³⁴, Robert Brunner (University of Nevada)³⁴, Robert Brzyski (University of Texas Health Science Center San Antonio)³⁴, Dale Burwen (National Heart, Lung, and Blood Institute WHI Project Office)³⁴, Bette Caan (Kaiser Permanente Division of Research, Oakland, CA)³⁴, Cara L. Carty (Fred Hutchinson Cancer Research Center)^{18, 34}, Rowan Chlebowski (Los Angeles Biomedical Research Institute)³⁴, Steven Cummings (University of California at San Francisco)³⁴, J. David Curb* (University of Hawaii)^{9, 18, 34}, Charles B. Eaton (Brown University, Memorial Hospital of Rhode Island)^{12, 34}, Leslie Ford (National Heart, Lung, and Blood Institute, National Heart, Lung, and Blood Institute WHI Project Office)³⁴, Nora Franceschini (University of North Carolina Chapel Hill)^{2, 3, 9, 10, 15, 34}, Stephanie M. Fullerton (University of Washington)^{6, 11, 34}, Margery Gass (University of Cincinnati)³⁴, Nancy Geller (National Heart, Lung, and Blood Institute WHI Project Office)³⁴, Gerardo Heiss (University of North Carolina Chapel Hill)^{5, 34}, Barbara V. Howard (Howard University, MedStar Research Institute)34, Li Hsu (Fred Hutchinson Cancer Research Center)^{1, 13, 15, 18, 34}, Carolyn M. Hutter (Fred Hutchinson Cancer Research Center)^{13, 15, 18, 34}, John Ioannidis (Stanford University School of Medicine)^{11, 34}, Shuo Jiao (Fred Hutchinson Cancer Research Center)³⁴, Karen C. Johnson (University of Tennessee Health Science Center)^{3, 34}, Charles Kooperberg (Fred Hutchinson Cancer Research Center)^{1, 5, 9, 13, 14, 15, 17}, ^{18, 34}, Lewis Kuller (University of Pittsburgh)³⁴, Andrea LaCroix (Fred Hutchinson Cancer Research Center)³⁴, Kamakshi Lakshminarayan (University of Minnesota)^{18, 34}, Dorothy Lane (State University of New York at Stony Brook)³⁴, Ethan M. Lange (University of North Carolina Chapel Hill)^{3, 5, 9, 13, 34}, Leslie A. Lange (University of North Carolina Chapel Hill)^{1, 2, 3, 5, 9, 12, 13, 15, 17, 18, 20, 25, 34}, Norman Lasser (University of Medicine and Dentistry of New Jersey)³⁴, Erin LeBlanc (Kaiser Permanente Center for Health Research, Portland, OR)³⁴, Cora E. Lewis (University of Alabama at Birmingham)^{25,34}, Kuo-Ping Li (University of North Carolina Chapel Hill)^{9, 34}, Marian Limacher (University of Florida)³⁴, Dan-Yu Lin (University of North Carolina Chapel Hill)^{1, 3, 9, 13, 15, 34}, Benjamin A. Logsdon (Fred Hutchinson Cancer Research Center)^{2, 34}, Shari Ludlam (National Heart, Lung, and Blood Institute WHI Project Office)³⁴, JoAnn E. Manson (Brigham and Women's Hospital, Harvard School of Public Health)³⁴, Karen Margolis (University of Minnesota)³⁴, Lisa Martin (George Washington University Medical Center)^{9, 34}, Joan McGowan (National Heart, Lung, and Blood Institute WHI Project Office)³⁴, Keri L. Monda (Amgen, Inc.)^{1, 15, 34}, Jane Morley Kotchen (Medical College of Wisconsin)³⁴, Lauren Nathan (University of California Los Angeles)³⁴, Judith Ockene (Fallon Clinic, University of Massachusetts)³⁴, Mary Jo O'Sullivan (University of Miami)³⁴, Lawrence S. Phillips (Emory University)³⁴, Ross L. Prentice (Fred Hutchinson Cancer Research Center)³⁴, Alexander P. Reiner (Fred Hutchinson Cancer Research Center, University of Washington)^{1, 2, 3, 5, 9, 11, 12, 13, 14, 15, 20, 25, 34}, John Robbins (University of California at Davis)³⁴, Jennifer G. Robinson (University of Iowa)^{9, 11, 18, 34}, Jacques E. Rossouw (National Heart, Lung, and Blood Institute, National Heart, Lung, and Blood Institute WHI Project Office)^{5, 14, 17, 20, 34}, Haleh Sangi-Haghpeykar (Baylor College of Medicine)³⁴, Gloria E. Sarto (University of Wisconsin)³⁴, Sally Shumaker (Wake Forest University)³⁴, Michael S. Simon (Wayne State University)³⁴, Marcia L. Stefanick (Stanford University School of Medicine)³⁴, Evan Stein (Medical Research Labs)³⁴, Hua Tang (Stanford University)², ³⁴, Kira C. Taylor (University of Louisville)^{1, 3, 13, 15, 20, 34}, Cynthia A. Thomson (University of Arizona)³⁴ Timothy A. Thornton (University of Washington)^{13, 15, 18, 34}, Linda Van Horn (Northwestern University)³⁴, Mara Vitolins (Wake Forest University)³⁴, Jean Wactawski-Wende (University of Buffalo)³⁴, Robert

Wallace (University of Iowa)^{2, 34}, Sylvia Wassertheil-Smoller (Boston University)^{18, 34}, Donglin Zeng (University of North Carolina Chapel Hill)^{9, 34} *deceased

NHLBI GO ESP Project Team

Deborah Applebaum-Bowden (National Heart, Lung, and Blood Institute)^{4, 7, 12, 17}, Michael Feolo (National Center for Biotechnology Information)¹², Weiniu Gan (National Heart, Lung, and Blood Institute)^{7, 8, 16, 17}, Dina N. Paltoo (National Heart, Lung, and Blood Institute)^{4, 6, 11, 17}, Jacques E. Rossouw (National Heart, Lung, and Blood Institute, National Heart, Lung, and Blood Institute WHI Project Office)^{5, 14, 17, 20, 34}, Phyliss Sholinsky (National Heart, Lung, and Blood Institute)^{4, 12, 17}, Anne Sturcke (National Center for Biotechnology Information)¹²

ESP Groups

¹Anthropometry Project Team, ²Blood Count/Hematology Project Team, ³Blood Pressure Project Team, ⁴Data Flow Working Group, ⁵Early MI Project Team, ⁶ELSI Working Group, ⁷Executive Committee, ⁸Family Study Project Team, ⁹Lipids Project Team, ¹⁰Lung Project Team, ¹¹Personal Genomics Project Team, ¹²Phenotype and Harmonization Working Group, ¹³Population Genetics and Statistical Analysis Working Group, ¹⁴Publications and Presentations Working Group, ¹⁵Quantitative Analysis Ad Hoc Task Group, ¹⁶Sequencing and Genotyping Working Group, ¹⁷Steering Committee, ¹⁸Stroke Project Team, ¹⁹Structural Variation Working Group, ²⁰Subclinical/Quantitative Project Team

ESP Cohorts

²¹Acute Lung Injury (ALI), ²²Atherosclerosis Risk in Communities (ARIC), ²³Cardiovascular Health Study (CHS), ²⁴Chronic Obstructive Pulmonary Disease (COPDGene), ²⁵Coronary Artery Risk Development in Young Adults (CARDIA), ²⁶Cystic Fibrosis (CF), ²⁷Early Pseudomonas Infection Control (EPIC), ²⁸Framingham Heart Study (FHS), ²⁹Jackson Heart Study (JHS), ³⁰Lung Health Study (LHS), ³¹Multi-Ethnic Study of Atherosclerosis (MESA), ³²Pulmonary Arterial Hypertension (PAH), ³³Severe Asthma Research Program (SARP), ³⁴Women's Health Initiative (WHI)