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Overview 

In the following subsections, we provided 1) the set up of the all atom (AA) molecular dynamics 
(MD) simulation in the "All atom simulation of p53 linker region" subsection, 2) the detailed 
procedure of the virtual-system coupled multi-canonical MD (VMcMD) simulation in the 
"Details for the V-McMD method" and "Multicanonical force and energy distribution" 
subsection, 3) the potential energy function for the coarse-grained (CG) simulation in the " 
Coarse-grained simulation of p53 linker region" subsection, and 4) CG model parameter 
calibration procedure for inter-core domain interaction in the "Coarse-grained simulation of two 
core domains" subsection.  
 

All atom simulation of p53 linker region 

Here we describe the AA MD simulation method for the p53 linker. The system consists of the 
p53 linker segment with a few residue extensions in both ends (a 40-residue long, Residue ID: 
288-327), which is solvated with water molecules. The amino-acid sequence is: 
Ace-NLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGET-Nme, where Ace and Nme 
are, respectively, the N-terminal acetyl and C-terminal N-methyl groups introduced to cap the 
segment termini. 
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    We generated a random conformation of the linker segment for the initial conformation, and 
put it into a sphere (sphere 1; diameter = 82 Å), setting the center of mass at the center of the 
sphere 1. The water buffer had been equilibrated in advance at 1.0 g/cc and 300 K. Then, we 
randomly replaced 66 water molecules with 36 chlorine and 30 sodium ions to realize 
physiological ion concentration. The mismatch of the positive and negative ions neutralized the 
net charge of the linker. The system finally consisted of 30937 atoms (640 polypeptide atoms, 36 
Cl-, 30 Na+, and 10077 water molecules). To avoid evaporation of the solvent from the sphere 1, 
a restoring force (harmonic potential) was applied to water-oxygen atoms or ions only when they 
were outside of the sphere 1. Another harmonic potential was applied to the linker heavy atoms 
when those atoms were outside of a smaller sphere (sphere2; diameter = 80 Å) concentric to the 
sphere 1. The sphere 2 was smaller than the sphere 1 because the linker should not be exposed to 
the sphere 1 surface. We fixed the linear and the angular momenta to zero by re-scaling 
velocities. The momentum and the angular momentum of the linker were fixed to zero during 
simulation. We did not use the periodic boundary condition in this study because the periodicity 
may cause artificially inter-chain entangling among the different periodic boxes. The solvent 
sphere (sphere 1) was set as large as possible, yet small enough so that the multi-canonical 
sampling can be done within a feasible simulation time. 

    We used PRESTO ver. 3 (Morikami et al., Biopolymers Computers Chem, 16:243, 1992) 
with which we implemented V-McMD (Higo et al., J Chem Phys, ���138:184106, 2013). For time 
integration, we used the leap flog method (Hockney and Eastwood, Computer Simulation using 
particles, 1994). The MD time step was 1.0 fs. SHAKE (Ryckaert et al., J Comput Phys, 23:327, 
1977) was used to constrain the covalent bonds between heavy atoms and hydrogen atoms. 
Long-range electrostatic interactions were calculated using a cell-multipole expansion (Ding et 
al., J Chem Phys, 97:4309, 1992). One of the advantages of the cell-multipole method is that we 
can apply it irrespective of the boundary condition. The temperature was controlled using a 
constant-temperature method (Schmidt et al., J Phys Chem B, 113:11959, 2009). The force field 
parameters for the polypeptides were from an AMBER-based hybrid force field (Kamiya et al., 
Chem Phys Lett, 401:312, 2005) defined as 𝑉!!"#$% = 0.25𝑉!" + 0.75𝑉!", where 𝑉!" and 𝑉!" 

respectively denote the AMBER parm94 (Cornell et al., J Am Chem Soc, 118:2309, 1995) and 
parm96 force fields (Kollman et al., Computer Simulation of Biomolecular Systems, 1997) 
Previous McMD simulations with Vhybrid revealed that a peptide with a helical propensity folds 
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into an α-helix, whereas a peptide with a β-hairpin propensity forms a β-hairpin (Kamiya et 
al., Chem Phys Lett, 401:312, 2005). Therefore, we used Vhybrid for the current study. We have 
successfully applied this force field to protein folding (Ikebe et al., Chem Phys Lett, 443:364, 
2007; Ikebe et al. Protein Sci, 20:187, 2011; Ikebe et al., J Comput Chem, ���32:1286, 2011) and an 
ensemble modeling of an IDP (Higo et al., J Am Chem Soc, 133:10448, 2011). Although there is 
no perfect atomistic force filed that can be applicable to any amino-acid sequence, our preceding 
works (Higo et al., J Am Chem Soc, 133:10448, 2011; Kamiya et al., Chem Phys Lett, 401:312, 
2005) have suggested that the currently used force field does not have an apparent bias in 
secondary structure formation and is appropriate for IDR study. We used the TIP3P water model 
(Jorgensen et al., J Chem Phys, 79:926, 1983) for the water molecules. 

    The AA simulation procedure consists of two stages (For detail of the method, see the 
supporting information): the pre-V-McMD stage where 128 canonical MD runs were done at 
various temperatures, and the V-McMD stage, where 128 McMD runs were done. The first 128 
pre-V-McMD simulations were performed with a high-temperature (719 K) for for each of the 
128 runs starting from the random conformation generated above with different random seeds for 
the atomic velocity generation. Then, the second 128 pre-V-McMD simulations were performed 
at 671 K starting from the last snapshots of the first pre-V-McMD simulation. We repeated this 
procedure with decreasing temperatures to 296 K. After the pre-V- McMD simulations, the 
biased potential was computed for the first V-McMD simulation. Then, we started the first 
V-McMD simulations using the biased potential, where 128 runs were done independently 
starting from the first 128 pre-V-McMD simulations at 719 K. We repeated the V-McMD 
simulations for 16 times, where the iterations from the first to fifteenth V-McMD simulations 
were performed for the refinement of the biasing potential for the conformational sampling and 
the last iteration was the production run. The initial conformations of the 128 runs for the i th 
V-McMD simulation were the last snapshots of those for the i+1 th V-McMD simulation. The 
simulation length for the first to fifteenth V-McMD simulations ranged from 1.0×10!  to 
2.6×10! steps. Length of the production run was 1.2×10! steps for each of the 128 runs. 
Finally, we assigned a statistical weight at 300 K to each snapshot of the production run 
according to the re-weighting technique (Higo et al., J Chem Phys, 138:184106, 2013). We note 
that the V-McMD simulation is a generalized ensemble method, which is designed to obtain a 
wide conformational distribution by performing such short production simulation. We calculated 
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the root mean square deviation (RMSD) between the initial structure of the production V-McMD 
run and each snapshot in the trajectories, and plotted it for four representative cases in Fig. S4. 
From these plots, we see that, right after the beginning of simulations, the conformation rapidly 
changed drastically suggesting that it is unlikely that the initial conformation affected the 
sampling. 

 

Details for the V-McMD method 

Here we describe the methodology for the V-McMD method. More details are given in the paper 
(Higo et al., J Chem Phys ���138, 184106, 2013). In the pre-V-McMD stage, temperature T 
decreased as 629 K, 559 K, 503 K, 457 K, 419 K, 387 K, 359 K, 335 K, 315 K, and 296 K, 

where the inversed temperature T −1  was changed with the same interval: ΔT −1 = 0.2 . The 
pre-V-McMD stage covered an energy range of [–102300.0 kcal/mol, –69300.0 kcal/mol]. This 
energy range is called the entire energy range. 

 In the V-McMD stage, the entire energy range was divided into some energy zones 
(see Table S1), whose energy ranges are listed in Table S2. The number of energy partitioning 
decreased as proceeding with the V-McMD iterations in accordance with the original V-McMD 
method. The introduction of the zones is rationalized theoretically assuming that a virtual system 
interacts with the molecular system to be studied. Each of zones is assigned to a discrete state 
(i.e., the virtual state) of the virtual system. 
    In a V-McMD run, the molecular system confined in a virtual state (i.e., a zone) for a given 
period of simulation, and the molecular system moves to another virtual state at the end of the 
period. The virtual-state move is achieved with satisfying the detailed balance condition. An 
advantage of the V-McMD algorithm is: one can control arbitrarily the inter-virtual-state 
transition probability by setting the density of states for the virtual system.  
    A benefit of multicanonical sampling is that a canonical energy distribution at 300 K is 
derived from the sampling:P(E,T )  where E is the energy of a conformation and T = 300 K. The 

production run of the V-McMD sampling produced an ensemble of conformations, which have 
various energies. One can construct a canonical conformational distribution by assigning the 
statistical weight to the sampled conformations: i.e., the statistical weight of a conformation, 
whose energy is E ' , is P(E ',T ) . Those weighted conformations are used for analyses. 
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Multicanonical force and energy distribution 
In the V-McMD simulation (Higo et al., J Chem Phys ���138, 184106, 2013), the force 𝒇!"(𝑟!) 
acting on the atom 𝑖 is given by 

 𝒇!" 𝑟! = 𝑅𝑇
𝑑ln 𝑛 𝐸

𝑑𝐸 𝒇(𝒓!) 
(S3) 

where 𝑅 is gas constant, 𝑇 is temperature, and 𝒇(𝒓!) is force acting on atom 𝑖 based on the  
potential energy 𝐸. 𝑛(𝐸) is the density of states of the system, which we do not know a priori. 
In the actual process of McMD, instead of the 𝑛(𝐸), we obtain 𝑑ln 𝑛(𝐸) /𝑑𝐸  by the iterative 
simulations described above. We plotted 𝑑ln 𝑛(𝐸) /𝑑𝐸 obtained in the current work against 𝐸 
in Fig. S5. 
 
    If we accurately estimate 𝑑ln 𝑛(𝐸) /𝑑𝐸 and perform AA simulation using 𝒇!"(𝑟!) in eq. 
S3 instead of 𝒇(𝒓!), ideally, we obtain a flat distribution of the potential energy (i.e., 𝑃(𝐸) ≈
𝑐𝑜𝑛𝑠𝑡). Therefore, the flat distribution of the potential energy indicates the accurate estimation 
of 𝑑ln 𝑛(𝐸) /𝑑𝐸. We plotted the distribution of the potential energy in Fig. S6. From this figure, 
we can see fairly good flatness, showing the accurate estimation of 𝑑ln 𝑛(𝐸) /𝑑𝐸 and efficient 
conformational sampling. From this 𝑑ln 𝑛(𝐸) /𝑑𝐸,  we can obtain canonical energy 
distributions 𝑃!(𝐸,𝑇) , at an arbitral temperature 𝑇  as 𝑃!(𝐸,𝑇) ∝ 𝑛(𝐸)𝑒𝑥𝑝 −𝐸/𝑅𝑇 . We 
plotted the canonical energy distributions at 300 K and at 700 K in Fig. S6.  
 
Coarse-grained simulation of p53 linker region 
As a starting point of development of a new CG model, we began with a concise CG model that 
we developed previously (Terakawa et al., Biophys J, 101:1450, 2011). This model does not take 
into account long-range contacts. The potential energy function of that model is 

 𝑉! = 𝑉!"#!!"#  !"#$%!$ = 𝑉!"#$ + 𝑉!"#$% + 𝑉!"! + 𝑉!" (S3) 

where 𝑉!"#$ , 𝑉!"! , and 𝑉!"  are the bond stretching term, the electrostatics term, and the 
excluded volume effect term, respectively. 𝑉!"#$ is the potential energy for bond stretching and 
is defined as 

 𝑉!"#$ = 𝑘! 𝑟!" − 𝑏
! (S4) 

where parameters were set as 𝑘! = 110.4 (kcal/mol∙Å2) and 𝑏 = 3.8 (Å). 𝑟!" is the length of 
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the virtual bond. 𝑉!"#$% is the potential energy for two kinds of angles and is defined as 

 𝑉!"#$% = −𝑘!𝑇ln
𝑃 𝜃
sin𝜃 − 𝑘!𝑇ln𝑃(𝜂) 

(S5) 

where 𝜃  (𝜂) were virtual bond (dihedral) angles that were defined by the coordinates of three 
(four) consecutive CG particles. 𝑃 𝜃  (𝑃 𝜂 ) was the probability distribution of 𝜃  (𝜂) in loop 
regions of PDB structures. 𝑉!"! is the potential energy for electrostatics and is defined as 

 𝑉!"! =
𝑞!𝑞!

4𝜋𝜖!𝜖!𝑟!"!!!

exp   −
𝑟!"
𝜅!

 (S6) 

where 𝑞! is charge (charge is set as +1 for Lys, Arg, and His and -1 for Asp and Glu), 𝜖! is the 
dielectric constant of vacuum, 𝜖!   = 78.0 is the dielectric constant, and 𝜅! is the Debye length 
defined as 

 
𝜅! =

𝜖!𝜖!𝑘!𝑇
2𝑁!𝑒!𝐼

!
!
 

(S7) 

where 𝑘! is the Boltzmann constant, T = 300.0 (K) is temperature, 𝑁! is Avogadro number, 𝑒 
is the elementary electric charge, and 𝐼 is the ionic strength. The conformation of the IDRs 
changes dynamically. Accordingly, it is supposed that the protonation state of histidines 
continually changes. Ideally, it is desired to calculate pKa of the histidine in each MD time step 
calculation to decide the protonation state of histidines. However, the pKa calculation method is 
not established for CG protein model. Thus, in the current work, we performed the AA and CG 
MD simulation based on the assumption that histidine is always protonated. 𝑉!" is the excluded 
volume potential and is defined as 

 𝑉!" = 𝜖!"
𝐶
𝑟!"

!"!"!!!"#$%&

!!!!!

 (S8) 

where 𝜖!" = 0.2 (kcal/mol) and 𝐶 = 4.0 (Å) are constant parameters.��� This model reproduced 
the SAXS profile of the p53 N-terminal IDR whose conformational ensemble did not have 
extensive long-range contacts. However, the direct application to the system with fractional 
long-range contacts fails to reproduce the SAXS profile, as is shown below. 
     
    We used CafeMol 2.0 (Kenzaki et al., J Chem Theory Comput, 7:1979, 2011) for all the CG 
MD simulations in this work. Production runs for the CG simulations were performed by 
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Langevin dynamics for 108 MD steps with friction coefficient of 0.02 and with temperature of 
300 K. 
 
Coarse-grained simulation of two core domains 
Experimentally, it has been revealed that two p53 core domains form a loose dimer with the 
dissociation constant of 2 mM at 100 mM monovalent ion (Rippin et al., J Mol Biol, 319:351, 
2002). Using NMR spectroscopy, Tidow et al. revealed that transient interaction between core 
domains in solution involved the same interface as that observed in the crystal structure of the 
core domain–DNA complex (Tidow et al., Proc Natl Acad Sci USA, 104:12324, 2007). To model 
this inter-core-domain interaction so that the dissociation constant was essentially the same as 
that measured in the previous experiment, we performed the CG MD simulation of the system 
containing the two core domains (Fig. S1A). The initial coordinate of the core domain was taken 
from the X-ray crystal structure (Natan et al., J Mol Biol, 409:358, 2011) (PDB ID: 2XWR). We 
put two core domains into a sphere with the diameter of 50 Å. We used the 
one-bead-per-one-amino-acid CG model. We adopted recently developed state of the art Go-like 
AICG2 model (Li et al., Proc Natl Acad Sci USA, 109:17789, 2012) for the intra-molecular 
potential energy function that stabilizes the native structure (Natan et al., J Mol Biol, 409:358, 
2011) (PDB ID: 2XWR). The inter-core-domain potential energy function was defined as 

 

𝑉!"#$%_!"#$ = 𝑉!"! + 𝑉!"

+ 𝜖𝜖!" 5
𝑟!"!

𝑟!"

!"

− 6
𝑟!"!

𝑟!"

!"!"#$%&  !"#$%!$

!!!!!

 
(S9) 

where 𝑉!"! and 𝑉!" were electrostatics term and excluded volume effect term, respectively (see 
above for complete description of these terms. 𝑖 and 𝑗 run over the CG particle pairs that 
contacted in the experimentally indicated interface in the X-ray crystal structure in which the 
four core domains specifically bound to the recognition element (Chen et al., Structure, 18:246, 
2010) (PDB ID: 3KMD). We considered that two CG particles contacted if one of the heavy 
atoms represented by one CG particle was within 6.5 Å from that represented by the other 
particle. The 𝑟!"!  was the distance between two CG particles 𝑖 and 𝑗 in the native structure. 
The 𝜖!"s are the AICG2 model parameters (Li et al., Proc Natl Acad Sci USA, 109:17789, 2012). 
These parameters were tuned so that the fluctuation of isolated proteins was reproduced. Thus, 
there is no guarantee that these parameters reproduce the strength of inter-protein-interaction. 
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The 𝜖!"s were the AICG2 model parameters (Li et al., Proc Natl Acad Sci USA, 109:17789, 
2012) calibrated for intra-molecular interaction. Accordingly, to reproduce the dissociation 

constant, we scaled the inter-molecular native contact interaction by an additional factor 𝜖. The 
ion strength was set to the same value as that of the experiment (100 mM) (Rippin et al., J Mol 

Biol, 319:351, 2002). The 𝜖 in the equation above was varied from 0.1 to 1.0 with a step of 0.1 
and from 0.6 to 0.7 with a step of 0.01. 
    Each production run was performed by Langevin dynamics for 109 MD steps with friction 
(damping) coefficient of 0.02 and with temperature of 300 K. For time integration, we used a 
simple algorithm developed by Honneycutt and Thirumalai (Honeycutt and Thirumalai, 
Biopolymers, 32:695, 1992) to solve an approximated Langevin equation. More sophisticated 
algorithm was proposed by Paterlini and Ferguson (Paterlini and Ferguson, Chemical Physics, 
236:243, 1998) to solve the generalized Langevin equation. The integration time step was 0.1. 
The friction force was uniformly and independently applied to all the CG beads. 
    In Fig. S1B, we illustrate a time trajectory of the Q-score of inter-molecular contacts in the 

case where the 𝜖 is set to 0.65. The Q-score represents the ratio of the transiently formed 
contacts to the contacts formed in the reference crystal structure (Chen et al., Structure, 18:246, 
2010). With this interaction strength, the core domains repeatedly associate (Q-score is around 
1.0) and dissociate (Q-score is around 0.0) each other.��� The probability distribution of the 
interaction energy, shown in Fig. S1C, is composed of a broad peak around -13.0 kcal/mol and a 
sharp peak around 0.0 kcal/mol, which correspond to the bound and unbound states, respectively. 
This bimodal distribution allows us to set a threshold (-3.0 kcal/mol) between these two states 
and to calculate the fraction of the bound state (𝑓!) (Ganguly et al., Proteins, 79:1251, 2011; 
Okazaki et al., J Am Chem Soc, 134:8918, 2012). Using this 𝑓!, we can estimate the 𝐾! by the 
equation, 

 𝐾! =
2𝐶(1− 𝑓!)!

𝑓!
 (S10) 

where 𝐶 is the concentration of the core domains (6.3 mM based on the radius of the sphere). 
We plot the calculated 𝐾!s against the 𝜖s in Fig. S1D. From this figure, we can see that, when 
the 𝜖 is set to 0.65, the order of magnitude of the dissociation constant agrees with the 
experimentally measured dissociation constant (red horizontal line in Fig. S1D). Therefore, we 
utilized the potential energy function 𝑉!"#$%_!"#$  (eq. S9) with the 𝜖  of 0.65 for 
inter-core-domain interaction in all the simulations described below. 
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Table S1. Virtual state setting and simulation length. 
Iteration No. Number of virtual states Simulation length (×106 steps)a 

#1-5 7 1.0 

#6 7 1.2 

#7-8 7 1.4 

#9 5 2.0 

#10-11 4 2.0 

#12 4 2.4 
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#13-15 4 2.6 

#16b 4 12.0 

aSimulation length (number of MD steps) for each of 128 runs. 

bThe sixteenth simulation is the production run. 

 
 
 

Table S2. Energy zone for virtual states. 
Iteration No. Energy zonea 

#1-8 
[0.0, 0.25], [0.125, 0.375], [0.25, 0.5], [0.375, 0.625], [0.5, 0.75], 

[0.625, 0.875], [0.75, 1.0] 

#9 [0.0, 0.15], [0.075, 0.27], [0.15, 0.39], [0.27, 0.58], [0.39, 1.0] 

#10-16 [0.0, 0.125], [0.0625, 0.25], [0.125, 0.5], [0.25,1.0] 

aEnergy zone [𝐸!!"# ,𝐸!
!"] for the i-th virtual state is given in a normalized form as [𝜆!!"# , 𝜆!

!"], where 𝐸!!"# = 𝜆!!"#Δ𝐸 + 𝐸!"#  and 𝐸!
!" =

𝜆!
!"Δ𝐸 + 𝐸!"# . The quantity Δ𝐸 is the width for the entire energy range: Δ𝐸 = 𝐸!" − 𝐸!"# , where 𝐸!" and 𝐸!"#  are the upper and lower 

value for the entire energy range: 𝐸!"# ,𝐸!" = [−102300  kcal/mol, 69300  kcal/mol]. 

 
 
 
 
 
 

 
 

Table S3. Prominent contact in all atom simulation of linker region 
 

Rank Residue 1 Residue 2 Prob.  Rank Residue 1 Residue 2 Prob. 

1 ASN23 SER27 0.978047  26 PRO13 GLN30 0.565987 

2 ASN24 SER28 0.953985  27 GLY6 TYR40 0.565547 

3 PRO22 SER27 0.715654  28 GLY6 GLU39 0.565313 

4 LEU21 SER26 0.645219  29 LYS4 ASP37 0.561774 

5 ASN23 SER28 0.630158  30 LYS4 LEU36 0.561774 
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6 SER16 ALA20 0.610774  31 LYS4 PRO35 0.561774 

7 THR17 LEU21 0.610753  32 LYS5 GLU39 0.561083 

8 LYS34 GLY38 0.607818  33 PRO13 THR17 0.560192 

9 LEU12 SER16 0.601879  34 LEU2 LEU36 0.553724 

10 GLY15 ARG19 0.601842  35 LYS5 ASP37 0.550361 

11 LEU12 THR17 0.600647  36 ASN24 PRO29 0.542103 

12 LYS5 GLY38 0.596418  37 GLU7 PRO35 0.538107 

13 PRO14 LYS18 0.592074  38 HIS10 GLN30 0.537345 

14 GLY6 GLY38 0.583776  39 GLU7 TYR40 0.534104 

15 GLY6 SER28 0.583504  40 LEU2 PRO35 0.533431 

16 THR17 PRO22 0.581628  41 SER27 PRO31 0.526967 

17 LYS18 PRO22 0.568143  42 THR17 SER27 0.518567 

18 HIS10 PRO31 0.566331  43 HIS10 LYS32 0.518497 

19 LYS18 ASN23 0.566127  44 PRO8 ASP37 0.503605 

20 PRO13 PRO29 0.566097  45 GLY6 ASP37 0.503605 

21 GLY6 PRO35 0.566007  46 GLU7 ASP37 0.503589 

22 GLY6 LYS34 0.566007  47 LYS5 SER27 0.490885 

23 LYS5 PRO35 0.566007  48 PRO8 GLY38 0.488531 

24 ARG3 PRO35 0.566007  49 ARG3 LYS34 0.479736 

25 ARG3 LEU36 0.566004  50 GLY6 LEU36 0.479611 
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Fig. S1 The determination of the parameters of the inter-core-domain interaction. (A) The initial 

structure of the coarse-grained simulation for the determination of the ε in eq. 4. (B) The time 
trajectory of the inter-core-domain Q-score (Time is not physical time, but reduced time, i.e. time 
step of MD simulation). Q-score represents the ratio of the transiently formed contacts to the 
natively formed contacts. Natively formed contacts are defined using the X-ray crystal structure 
in which four core domains bind to its specific DNA (60) (PDB ID: 3KMD). (C) Probability 
distribution of the inter-core-domain interaction energy. (D) The inter-core-domain dissociation 

constant versus ε. The red line represents the experimentally measured value (2 mM) 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. S2 Ahelical propensity (the population of structures with a helical structure) for each 
residue calculated from the obtained atomistic conformational ensemble (red) and 
estimated from only the amino acid sequence using the AGADIR (grey). 
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Fig. S3 The probability distributions of the distance between the nitrogen atom of 
LYS 292 and the oxygen atom of ASP 324 (Green) and between the nitrogen atom of 
LYS 292 and the oxygen atom of GLU 326 (purple). (Inset) The representative 
structures of the largest cluster. The blue (red) sphere represents Cα atoms of the 
positively (negatively) charged residues. The green (purple) line is depicted between 
the nitrogen atom of LYS 292 and the oxygen atom of ASP 324 (GLU 326). 
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Fig. S4 Root mean square deviation of each snapshot in the representative AA V-McMD 
simulation. The reference structure is the initial structure of each production simulation.  
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Fig. S5 The horizontal axis represents potential energy and the vertical axis 
represents the 𝑑ln 𝑛 (𝐸)./𝑑𝐸 in eq. S3 
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Fig. S6 Energy distributions in log scale. Each colored line represents the energy 
distribution in each virtual state (v1, v2, v3, and v4 ). Black solid and dashed line 
represent the canonical energy distributions 𝑃!(𝐸,𝑇)  at 300 K and at 700 K, 
respectively. 
 


