
1 
Supporting Material  

Supporting Material for 
 
Classification of dynamical diffusion states in single molecule 
tracking microscopy 

P.J. Bosch†, J.S. Kanger‡ and V. Subramaniam†‡# 

† Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands 
‡ MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The 
Netherlands 
# Present address: FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands 

 

 

 

 

Contents 

Supporting Figures ................................................................................................................................... 2	  

Supporting Sections ............................................................................................................................... 12	  

Quantification measures .................................................................................................................... 12	  

Mean squared displacement (MSD) .............................................................................................. 12	  

Windowed MSD ............................................................................................................................ 13	  

Maximum Likelihood Estimation .................................................................................................. 13	  

Relative confinement ..................................................................................................................... 14	  

Radius of gyration evolution ......................................................................................................... 14	  

Live cell experiments methodology ................................................................................................... 16	  

Cell culture ..................................................................................................................................... 16	  

Microscopy .................................................................................................................................... 16	  

Tracking ......................................................................................................................................... 16	  

Accuracy of MSD methods and CDF fitting to obtain a one population diffusion coefficient ......... 17	  

Settings file for SPT tracking software .................................................................................................. 19	  

Supporting References ........................................................................................................................... 20	  

 

  



2 
Supporting Material  

Supporting Figures 

	  	   	  

 

 
	  
FIGURE	  S1:	  A	  conventional	  full-‐trajectory	  MSD	  analysis	  of	  	  a	  two-‐population	  diffusion	  systems	  leads	  
to	   an	   apparent	   distribution	   of	   diffusion	   values,	   easily	   resulting	   in	   erroneous	   conclusions	   for	   this	  
motion	   system.	   The	   true	   motion	   system	   is	   a	   two-‐population	   diffusion	   system	   with	   diffusion	  
coefficients	   	  of	  0.15	  and	  0.01	  µm2/s,	  as	   indicated	  by	   the	  arrows	   in	   the	  graph.	  For	   this	  graph,	  1000	  
trajectories	   consisting	   of	   500	   frames	   	   (hence	   relatively	   long	   trajectories)	   were	   simulated.	   The	  
trajectories	  are	  analyzed	  using	  the	  conventional	  full-‐trajectory	  MSD	  method,	  where	  the	  first	  4	  points	  
of	   the	  MSD	   curve	  were	   used	   following	   the	   “rule	   of	   thumb”	   rule	   to	   fit	   the	   diffusion	   constant.	   The	  
found	   diffusion	   constants	   and	   the	   apparent	   spread	   both	   incorrectly	   describe	   this	   two-‐population	  
situation.	   The	   MSD	   analysis	   should	   therefore	   only	   be	   used	   for	   homogeneous	   (one-‐population)	  
motion.	  The	  discussion	  further	  in	  the	  supplementary	  material	  discusses	  the	  accuracy	  of	  determining	  
the	  diffusion	  constant	  for	  a	  one-‐population	  system	  using	  the	  full-‐trajectory	  MSD	  method.	  
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FIGURE	  S2:	  Correctness	  dependence	  of	  window	  length	  and	  of	  the	  number	  of	  points	  in	  the	  MSD	  curve	  used	  to	  fit	  
the	  diffusion	  value.	  (A)	  Simulation	  case	  A	  has	  a	  localization	  inaccuracy	  σxy	  of	  40nm	  and	  short	  state	  lifetimes	  (τ1	  =	  
τ2	  =	  300	  ms).	  (B)	  This	  simulation	  case	  differs	  from	  case	  A	  only	  by	  a	  lowered	  localization	  inaccuracy	  σxy	  =	  20nm.	  (C)	  
This	  simulation	  case	  differs	  from	  case	  A	  only	  by	  having	  longer	  fast	  state	  lifetimes	  (τ1	  =	  900	  ms;	  τ2	  =	  300	  ms;	  σxy	  =	  
40nm).	  (D)	  This	  simulation	  case	  also	  has	  longer	  slow	  state	  lifetimes	  (τ1	  =	  900	  ms;	  τ2	  =	  900	  ms;	  σxy	  =	  40nm).	  The	  
color	  bar	  aids	  in	  reading	  the	  classification	  correctness	  percentage.	  
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FIGURE	   S3:	   Effect	   of	   a	   minimum	   state	   duration	   filter	   on	   classification	   correctness.	   Since	   all	   the	   above	  
methods	  make	  use	  of	  segments,	  the	  state	  classification	  does	  not	  allocate	  exact	  time	  points	  of	  a	  trajectory	  to	  
a	   state,	  but	   to	  a	  window	  of	   several	   time	  points.	   The	   state	  of	   this	  window	   is	   classified	  at	   the	   center	   time	  
point	   of	   the	   window,	   and	   thereby	   each	   time	   point	   has	   its	   own	   state	   allocation	   based	   on	   different	   but	  
correlated	  data	  sets.	  Now	  the	  state	  classification	   is	  defined	  at	  all	   timepoints	  except	  for	  the	  beginning	  and	  
end	  of	  a	  (sub)trajectory.	  Since	  the	  window	  is	  several	  frames	  long,	  state	  durations	  shorter	  than	  the	  segment	  
length	   (window	   size)	  may	  appear	   illogical,	   and	   therefore	  we	  also	   tested	  whether	   filtering	  out	   short	   state	  
durations	   leads	   to	   better	   correctness	   for	   different	   classification	   methods.	   In	   most	   simulation	   cases	   (as	  
described	   in	   the	  main	   text)	   this	  was	  not	   the	   case,	   and	  we	  have	   therefore	   looked	  only	   at	  unfiltered	   state	  
classifications	  in	  the	  main	  text.	  (A-‐D)	  Classification	  correctness	  for	  simulation	  case	  A-‐D.	  The	  color	  bar	  aids	  in	  
reading	  the	  classification	  correctness	  percentage.	  
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FIGURE	  S4:	  Correctness	  of	  the	  two-‐population	  classification	  for	  different	  ratios	  for	  D1	  and	  D2.	  D2	  was	  
kept	   fixed	   at	   0.015	   µm2/s.	   Shown	   are	   the	   results	   for	   a	   gyration	   and	  MLE	   based	   classification	   for	  
simulations	  of	  cases	  A	  and	  D	  (with	  changing	  D1).	  We	  find	  that	  ratio	  of	  4	  in	  our	  simulation	  cases	  was	  
indeed	  a	  challenging	  situation,	  and	  that	  with	  ratios	   larger	  than	  10	  the	  best	  achievable	  classification	  
are	  obtained.	  The	  classification	  also	  depends	  on	  other	   factors	  as	  shown	  by	  the	  different	  results	   for	  
the	  two	  cases	  shown.	  

 

FIGURE	  S5:	  The	  distribution	  of	  lifetimes	  found	  by	  the	  gyration	  based	  classification	  method	  simulation	  
case	   A.	   The	   simulation	   consisted	   of	   20	   trajectories	   and	   was	   repeated	   1,000	   times	   to	   yield	   the	  
distribution	   of	   lifetimes	   of	   the	   slow	   state	   (A)	   and	   the	   fast	   state	   (B).	   The	   gyration	  method	   used	   a	  
segment	   length	  of	  7	   frames.	  The	  arrows	   indicate	   the	   true	   lifetime	  of	  both	   states.	   (C)	  Example	  of	  a	  
lifetime	  fit	  of	  the	  fast	  state	  from	  one	  simulation.	  This	   fit	   is	  only	  performed	  over	  state	  events	   larger	  
than	   5	   frames.	   (D)	   Example	   of	   a	   fit	   of	   the	   slow	   state.	   This	   fit	   is	   only	   performed	   over	   state	   events	  
larger	  than	  5	  frames.	  Although	  the	  lifetimes	  found	  are	  not	  too	  far	  off	  in	  this	  case,	  in	  cases	  with	  longer	  
state	  durations	  (such	  as	  case	  D),	  the	  lifetimes	  found	  are	  significantly	  underestimated.	   	  
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FIGURE	  S6:	   Image	  reconstruction	  of	  the	  state	  classification	  distribution	  of	  simulation	  case	  A.	  In	  this	  
case	  there	  were	  as	  many	  slow	  as	  fast	  states.	  The	  dimension	  of	  the	  image	  is	  55x55µm,	  and	  the	  image	  
is	  reconstructed	  at	  60nm/pixel.	  
 



8 
Supporting Material  

 

 

  

FIGURE	  S7:	  Image	  reconstructions	  of	  the	  state	  classification	  distribution	  of	  a	  simulation	  with	  spatially	  
defined	  diffusion	  states.	  (A)	  Simulation	  (actual)	   image	  of	  fast	  state.	  (B)	  Simulation	  (actual)	   image	  of	  
slow	  state.	  (C)	  Fast	  state	  image	  found	  by	  MLE	  method.	  (D)	  Slow	  state	  image	  found	  by	  MLE	  method.	  
(E)	  Colour	   image	  of	   states	  map	  as	   found	  by	   the	  MLE	  method.	  Green	  represents	   fast	   state,	  and	  red	  
represents	   slow	   state.	   (F)	   Colour	   image	   of	   states	   map	   as	   found	   by	   the	   gyration	   method.	   Green	  
represents	  fast	  state,	  and	  red	  represents	  slow	  state.	  A	  segment	  length	  of	  4	  frames	  was	  used	  in	  both	  
classification	  methods	   (this	   value	   yielded	   the	   highest	   correctness).	   The	   dimension	   of	   the	   image	   is	  
15x15µm,	  and	  the	  image	  is	  reconstructed	  at	  30nm/pixel.	   	  

A B 

C D 

E F 
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FIGURE	  S8:	  The	  proposed	  approach	  for	  diffusion	  state	  classification	  applied	  to	  experimental	  data.	  (A)	  The	  CDF	  
fit,	  with	  corresponding	  PDF	  (B)	  and	  residuals	  (C),	  for	  the	  motion	  of	  EGF	  receptor	  in	  an	  MCF7	  cell	  shows	  that	  the	  
model	  of	   two-‐population	  Brownian	  diffusion	   is	  a	   suitable	  motion	  model.	   (D)	  An	  example	  of	  a	   single	  molecule	  
fluorescence	  frame	  recording	  of	  EGF	  receptor	  in	  an	  MCF7	  cell.	  The	  image	  has	  not	  been	  modified	  or	  filtered.	  
 
 
  

D 
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FIGURE	  S9:	  Histograms	  of	  unliganded	  EGF	  receptor	  state	  lifetimes	  for	  the	  fast	  state	  (upper)	  and	  the	  
slow	   state	   (lower)	   in	   frames	   (video	  was	   recorded	   at	   25	   fps),	   determined	   by	   gyration	   analysis.	   The	  
characteristic	  lifetime	  is	  determined	  from	  an	  exponential	  fit	  of	  state	  durations	  longer	  than	  5	  frames,	  
since	  the	  use	  of	  a	  segment	  length	  of	  7	  frames	  does	  not	  correctly	  resolve	  shorter	  lifetimes.	  The	  state	  
duration	  will	  be	  underestimated	  because	  of	  random	  incorrect	  state	  classification.	  
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FIGURE	  S10:	   Image	  reconstructions	  of	  the	  distribution	  of	  states	  exhibited	  by	   liganded	  EGF	  receptor	  
proteins	   in	   an	   MCF7	   cell.	   The	   resolution	   of	   the	   reconstructed	   images	   is	   30nm/pixel.	   (A)	   Image	  
showing	   the	   areas	   travelled	   by	   receptors	   in	   the	   fast	   diffusion	   state	   (green),	   and	   areas	   where	  
receptors	   in	   the	   slow	  diffusion	   state	  were	  detected	   (red).	   (B)	   Zoomed	   image	  of	   the	   indicated	  area	  
(white	  box)	  in	  A.	  	  
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Supporting Sections 

Quantification measures 

 

Mean squared displacement (MSD) 
The most straightforward way to determine the diffusion coefficient is by using the mean squared 
displacement (MSD) versus time lag curve (1). This provides an estimate of the diffusion coefficient, 
and also confinement (2), but the method requires that within the complete trajectory there is only one 
type of homogeneous motion. In short, the MSD is usually defined as the average of all squared 
distances between points within a certain lag time 𝜏 = 𝑛 ∙ ∆𝑡, with ∆𝑡 the time-delay between 
consecutive frames, and 𝑛 the interval of frames over which the distance is measured and averaged. 
For intervals larger than 1 frame, usually all available distances of a given duration 𝑛 ∙ ∆𝑡 are included, 
such that the distances are not statistically independent. Yet this way of averaging gives less variance 
to the average squared displacement value compared to taking only the independent distances (3). For 
pure Brownian motion, the relation between squared displacements (∆𝑅)! and the diffusion 
coefficient is a linear relation:  

MSD 𝜏 = ∆𝑅! !   = 4  𝐷  𝜏 + 2 𝜎!! + 𝜎!! =   4  𝐷  𝜏  +  4  𝜎!"! (1) 
 
where 𝜎!" is the standard deviation of the localization inaccuracy in one dimension, which is 
independent of the time lag. The estimated diffusion coefficient 𝐷 is found from fitting a line through 
the points at the different lag times in the MSD curve. We emphasize that it is not straight forward 

 
FIGURE	   S11:	   Illustrations	   of	   	   various	   segment	   analysis	  methods	   as	   quantification	  measures	   for	   the	  
proposed	   diffusion	   state	   classification	   approach.	   (A)	   Simulated	   two-‐population	   diffusion	   trajectory	  
and	   examples	   of	   selected	   information	   for	   the	   relative	   confinement	   and	   the	   gyration	  method	   on	   a	  
trajectory	  segment.	  Relative	  confinement	  detection	  takes	  the	  variance	  of	  distances	  from	  the	  center	  
of	   the	   segment	   (indicated	   by	   the	   grey	   arrows).	   The	   gyration	   radius	   depends	   on	   the	   variance	   and	  
covariance	   of	   the	   coordinates	   (segment	   indicated	   in	   grey	   with	   a	   dashed	   line).	   (B)	   Cumulative	  
distribution	  function	  (CDF)	  values	  and	  fit	  of	  squared	  displacements	  from	  a	  set	  of	  trajectories	  with	  two	  
diffusion	   coefficients	   (upper),	   and	   the	   corresponding	   probability	   density	   function	   which	   is	   the	  
derivative	   of	   the	   CDF	   (lower).	   The	   simulated	   values	   are	   in	   grey,	   the	   fit	   is	   drawn	   in	   black.	   (C)	   A	  
conventional	  full	  trajectory	  MSD	  curve	  from	  pure	  one-‐population	  diffusion	  (first	  500	  frames	  shown).	  
(D)	  A	  windowed	  MSD	  provides	  an	  instantaneous	  diffusion	  coefficient	  for	  all	  timepoints	  of	  a	  trajectory	  
by	  performing	  an	  MSD	  analysis	  only	  on	  a	  segment	  (the	  window,	  as	  indicated	  with	  dashed	  grey	  lines	  in	  
panel	  A)	  of	  the	  trajectory,	  and	  sliding	  this	  window	  through	  the	  whole	  trajectory.	  
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how to perform the fitting of the MSD curve to obtain diffusion values. A more detailed insight on this 
is given in the section “Accuracy of MSD methods and CDF fitting to obtain a one population 
diffusion coefficient” in the Supporting Materials. Moreover, conclusions from MSD curves must 
always be tested against unconstrained diffusion, as the randomness of normal diffusion may result in 
apparent anomalous diffusion (4). 

A recurring question is which points in the MSD curve can still be considered reliable. Certainly the 
variance of larger time lags gets increasingly larger, such that the points of larger time lags do not 
provide any reliable information. In the literature the first 10% points of the curve are often assumed 
to have not too much variance in their values (5). However, the analytical expression for one 
population Brownian motion for the variances has been derived (3, 6). Following this expression, 
Michalet discussed what the optimal number of points is to be taken into the fit for determining the 
diffusion coefficient (7). The optimal number of points depends on the ratio 𝛽 = 𝜎! 𝐷  ∆𝑡 , with σ 
the standard deviation of the localization inaccuracy. In the limit of no (or relatively small) 
localization inaccuracy, i.e. for small 𝛽, it was shown that the most accurate value for D is obtained by 
fitting with only the first two points of the MSD curve. This result was already noted earlier (2). 
However, since we consider two population diffusion systems which have both high and low diffusion 
constants and correspondingly both low and high 𝛽 values, we do not readily know the optimal 
number of points of the MSD curve that should be used in the fit. We have checked how the 
correctness of the fit depends on the number points of the MSD curve used using simulations (Fig. 
S2).  

Windowed MSD 
Typically, the MSD curve is made up from all positions in a trajectory, which cannot resolve local 
changes in the diffusion coefficient. Windowed MSD tries to give the local or instantaneous diffusion 
coefficient at each timepoint of a trajectory by performing the MSD analysis on small segments of the 
trajectory. First an MSD curve is composed for w subsequent positions in a trajectory, and the 
estimated D value is obtained from the first three points in the curve for this segment. This value is 
taken as the measure W. Then the MSD curve is made for the next subsequent positions, until the full 
trajectory has been slid through, and D values have been obtained for each segment, see also Fig. 
S11D. The use of a moving window makes it possible to detect temporal changes in the mode of 
motion on the order of the segment length (window size). The resolution is limited by the averaging 
nature of the method, since reducing the segment length means that the MSD curve is made up from 
fewer points, therefore increasing the statistical uncertainty of the fitted diffusion coefficient. 

Maximum Likelihood Estimation 
We have used a likelihood estimation approach here by comparing a window of measured squared 
displacements, a set of a few single steps ∆𝑅 ! , to the expectation value thereof given the 
distribution function of squared displacements originating from motion with a diffusion constant D. 
For one step of length ∆𝑅, we use 𝑃 ∆𝑅 ! 𝐷  to express the chance to find a certain squared 
displacement given Brownian motion with diffusion coefficient D. Since the expectation value of one 
squared displacement is independent of its predecessors, the chances for a tested D can be multiplied 
for each squared displacement ∆𝑅 !

!, hence the likelihood is given by: 

𝐿 ∆𝑅 !   |  𝐷 =   
1

4𝜋 𝐷𝜏 + 𝜎!"!
∙ exp −

∆𝑅 !
!

4 𝐷𝜏 + 𝜎!"!

!

!!!

 (2) 

 
where τ is the time lag, which is 1 frame, and N is the total number of steps in the window. The values 
for D are taken from the earlier CDF fit. In practice, the localization inaccuracy 𝜎!" must be 
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determined by other means first. Here we assumed that this value can be precisely obtained, and we 
used the true value as used in the generation of the trajectories. Here we determine the likelihood of 
both states, 𝐿! ∆𝑅 !   |  𝐷!  and 𝐿! ∆𝑅 !   |  𝐷! , and if 𝐿! > 𝐿!, the segment is classified as state 1.  
We could write this as a measure W by: 

𝑊 𝑡𝑟𝑎𝑐𝑘, 𝑓𝑟𝑎𝑚𝑒 =
𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 
(3) 

 
We have not taken exposure blur into account (8). Note that the MLE can also be used to estimate the 
value of the diffusion constant itself, by maximizing the expectation value by varying the tested D 
value; the maximum gives the most likely D value (9).  

Relative confinement 
Inspired by the confinement detection method of Simson (10), Meilhac used a slightly altered way to 
detect confinement (11), which we also use here. The relative confinement is defined by the parameter 
L as: 

𝐿 𝑡! +
!
!𝛿𝑡 =   𝛿𝑡 variance 𝑠  (4) 

 
𝑠 = 𝑟 𝑡 − 𝑟 𝑡! +

!
!𝛿𝑡   on  interval  𝑡 =    𝑡!. . 𝑡! + 𝛿𝑡  (5) 

 
An illustration of the distances s is given by arrows in Fig. S11A. Here we use the inverse of the value 
𝐿 for the motion quantification measure. 

Radius of gyration evolution 
The use of the radius of gyration has been first proposed by Saxton to measure asymmetry in single 
molecule trajectories (4), and it was demonstrated by Elliott et al. that it could also be used to detect 
confinement (12). The gyration radius is a measure of the space that is explored (defined by radius Rg) 
by the molecule within the segment, hence the radius will have a lower value for slow diffusion than 
for fast diffusion. Therefore the gyration radius is a local measure of the diffusion of a molecule, and 
can be used as a differentiation criterion in classification. We note that the expression in reference 12 
contains a typographical error, as the radius of gyration is defined as the square root of the non-
squared sum of the eigenvalues of the covariance matrix. However we followed Elliot et al. in an 
alternative measure, also called Rg. This alternative gyration radius Rg is defined as:  

 𝑅!! = 𝑅!! + 𝑅!! (6) 

where R1 and R2 are the eigenvalues of the gyration tensor T: 

𝑻 =

1
𝑁

𝑥! − 𝑥 !
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑦! − 𝑦 !
!

!!!

 (7) 

  
with i enumerating all subsequent positions (𝑥! , 𝑦!) in a segment of length N. We will use the value 𝑅! 
as a motion quantification measure. 	  
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Table	  S1:	  Motion	  quantification	  measures	  

Method Quantification measure W 

Windowed MSD fit of a MSD curve of a segment using first two points in curve 

Confinement 1
𝐿 𝑡! + !

!𝛿𝑡
 

Gyration Rg 

MLE 𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 

 

 

FIGURE	  S12	  	  	  Distribution	  of	  found	  quantification	  measure	  values	  for	  pure	  one-‐population	  diffusion.	  
The	  histograms	  of	  three	  different	  diffusion	  constants	  are	  shown,	  where	  in	  all	  cases	  we	  added	  a	  
localization	  inaccuracy	  σxy	  of	  40	  nm	  to	  the	  positions	  in	  the	  simulations.	  (A)	  Histograms	  of	  values	  
found	  using	  a	  windowed	  MSD.	  	  The	  broadening	  in	  the	  slower	  diffusion	  distributions	  are	  due	  to	  the	  
convolution	  with	  the	  localization	  inaccuracy.	  (B)	  Histogram	  of	  values	  found	  using	  relative	  
confinement.	  (C)	  Histogram	  of	  values	  found	  using	  gyration.	  
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Live cell experiments methodology 

Cell culture 
All cell culture materials were obtained from PAA Laboratories (Pasching, Austria) unless stated 
otherwise. MCF7 cells, a human breast cancer cell line, and plasmid coding for SNAP-EGFR were a 
gift from Jenny Ibach (Max Planck Institute in Dortmund, Germany). Cells were cultured in 
Dulbecco’s Modified Eagle’s medium supplemented with 10% FBS and penicillin/streptomycin at 
37°C with 5% CO2.  Before measurements, the cells were transferred to CellView dishes product 
#627870  (Greiner Bio-one, Alphen aan den Rijn, The Netherlands), grown overnight, transfected with 
SNAP-EGFR using Effectene (Qiagen, Venlo, The Netherlands), and then starved overnight the day 
after transfection in medium without FBS. Labeling of the SNAP-EGFR proteins was done by 
incubating the cells for 1 minute with 400nM of SNAP-Surface 549 (New England BioLabs, Ipswich, 
MA, USA) in 0.5% BSA. Measurements were performed in PBS buffer with added magnesium and 
calcium (PAA Laboratories, product H15-001). 

Microscopy 
Measurements were performed on a microscope with an Olympus PlanApo 100x/1,45 Oil TIRF 
objective using TIRF illumination. For excitation a 532nm laser (400mW) from Pegasus Shanghai 
Optical Systems (Pegasus Lasersysteme, Wallenhorst, Germany ) was used. All the light filters were 
obtained from SemRock (Rochester, NY). The infrared light produced by the laser was not sufficiently 
suppressed, therefore the green laser light passed an FF01-543/22 filter. The excitation and emission is 
split by an FF494/540/650-Di01 dichroic mirror. The emission light is filtered with an NF03-
532/1064E notch filter and an FF01-580/60 bandpass filter. Fluorescence images were acquired using 
an Andor iXon EM+ DU-897 back illuminated EMCCD with an acquisition time of 9ms and a kinetic 
cycle time of 38ms (25.8 fps). The microscope stage was heated with a sample heating plate and the 
objective was heated with a ring heater to 35-37°C. 

Tracking 
To obtain the trajectories from the raw videos, we used tracking software developed by others (13, 
14). The settings used for the cost matrices in this software can be found at the end of the Supporting 
Materials.  
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Accuracy of MSD methods and CDF fitting to obtain a one 
population diffusion coefficient 
 

It might seem, and it is often stated, that the CDF method is more accurate in determining the diffusion 
coefficient for a one population diffusion system compared to simply averaging the stepsizes as in 
MSD methods (15), as it considers the whole distribution of stepsizes. In practice however, this is not 
always correct. Also the number of points from an MSD curve taken into the fit to determine the 
diffusion coefficient are often based on a “rule of thumb” concept, such as taking the first three or four 
or the first 10% of the curve. However the accuracy to find the diffusion coefficient can simply be 
found by simulation and also by calculation (3). We show a simulation approach here to determine the 
spread of found diffusion coefficients from CDF and MSD methods.  

We simulated one-population unconstrained diffusion for 100 trajectories of various lengths, with a 
relatively small localization error compared to the diffusion coefficient, so for  𝛽 = 𝜎! 𝐷  ∆𝑡  ratio 
smaller than 1, see (7). We found that, for all lengths of trajectories, a CDF fit with only 1 stepsize is 
indeed, but only slightly, more accurate compared to the best MSD based fit; the value is of course 
wrong when not corrected for the added localization inaccuracy to the real diffusion coefficient. In 
practice this means we have to use the CDF of 2 steps too, and use the difference for CDF 2 steps and 
CDF 1 step to determine the diffusion coefficient. This 2 steps CDF methods has been described in 
detail in the methods section. Using this last method however, we found to be less accurate compared 
to the best MSD based fit where we take only the first two points in the curve (also the 1-steps and 2-
steps). Using only the first two points in the MSD curve was the best MSD based fit for this ratio of β. 
Therefore the CDF was not taken as a method for classification, as the MSD is preferred for one 
population diffusion therefore. Nevertheless, the CDF method has a known PDF for a distribution with 
multiple diffusion constants unlike the windowed MSD distribution, so this is still a straight forward 
method to find the global diffusion constant values and fractions when there are enough datapoints to 
build a reliable CDF.  
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FIGURE	  S13	  	  	  	  Error	  and	  standard	  deviation	  of	  MSD	  methods	  to	  obtain	  a	  one	  population	  diffusion	  coefficient.	  
For	  100	  simulated	  trajectories	  exhibiting	  one-‐population	  Brownian	  motion	  	  (D=0.1	  um2/s,	  25fps)	  of	  various	  
lengths	  (3,5,8,..,100	  steps)	  as	  plotted	  on	  the	  x-‐axis,	  the	  diffusion	  value	  was	  determined	  from	  fitting	  the	  MSD	  
curves	  of	  all	  trajectories.	  We	  added	  localization	  inaccuracy	  of	  σxy	  =	  40nm	  to	  the	  simulated	  trajectories	  (C,D).	  
This	  fit	  was	  done	  using:	  the	  full	  curve	  (a),	  full	  curve	  weighted	  using	  the	  variance	  of	  each	  point	  (b),	  the	  first	  10%	  
(c),	  only	  the	  first	  two	  points	  (d),	  and	  using	  cumulative	  distribution	  function	  (CDF)	  fitting	  of	  steps	  (e),	  and	  using	  
CDF	  of	  one-‐step	  and	  two-‐step	  distances	  (f).	  We	  repeated	  this	  1,000	  times,	  and	  looked	  at	  the	  standard	  
deviation	  σ	  (A,C),	  and	  the	  average	  mismatch	  <ε>	  (B,D)	  in	  the	  fitted	  diffusion	  values.	  The	  1	  step	  CDF	  method	  
has	  the	  lowest	  standard	  deviation	  in	  the	  fitted	  values,	  but	  gives	  the	  wrong	  value	  when	  there	  is	  a	  localization	  
inaccuracy	  as	  in	  practice.	  The	  most	  accurate	  way	  of	  using	  the	  points	  in	  the	  MSD	  curve,	  is	  to	  only	  use	  the	  first	  
two	  points	  of	  the	  MSD	  curve.	  
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Settings file for SPT tracking software 
 
Dat.PixelSize = .119;  
Dat.TimeStep = 0.03868; 
Dat.ch_bin = [1];  
Params.verbose = 1;  
Params.frames = []; 
Params.psf = [0.84034 0.84034]; 
Params.imMask = []; 
Params.wvMask = [];  
Params.CCDGain = 63.8298; 
Params.CCDOffset = 0; 
Params.Intensity = 1.90; 
Params.FitBoxSize = [7];  
Params.Iterations = 10;  
Params.MaxCudaFits = 30000;  
Params.MinCRLBSigma = 0.5;  
Params.MinPValue = 0.01;  
Params.MinPhotons = [10];  
Params.ConnectParams.costMatF2Fparams = costMatFrame2FrameSetOptions; 
Params.ConnectParams.costMatGCparams = costMatCloseGapsSetOptions; 
%%% set parameters for frame 2 frame connections %%% 
Params.ConnectParams.costMatF2Fparams.funcName = 
'costMatFrame2FrameDensity'; 
Params.ConnectParams.costMatF2Fparams.density = []; 
Params.ConnectParams.costMatF2Fparams.D = 
[0.06*Dat.TimeStep/Dat.PixelSize^2 0.06*Dat.TimeStep/Dat.PixelSize^2 ]; 
Params.ConnectParams.costMatF2Fparams.maxSearchDist = [4 4]; 
Params.ConnectParams.costMatF2Fparams.kon = 0.1; 
Params.ConnectParams.costMatF2Fparams.koff = 0.0001; 
Params.ConnectParams.costMatF2Fparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatF2Fparams.wvJump = []; 
%%% set parameters for gap closing %%% 
Params.ConnectParams.costMatGCparams.timeWindow = 10; 
Params.ConnectParams.costMatGCparams.funcName = 'costMatCloseGapsDensityM'; 
Params.ConnectParams.costMatGCparams.density = []; 
Params.ConnectParams.costMatGCparams.D = [0.01 0.01]; 
Params.ConnectParams.costMatGCparams.maxSearchDistPerFrame = [3 3]; 
Params.ConnectParams.costMatGCparams.maxSearchDist = [10 10];  
Params.ConnectParams.costMatGCparams.minTrackLen = 2; 
Params.ConnectParams.costMatGCparams.kon = 0.1; 
Params.ConnectParams.costMatGCparams.koff = 0.0001; 
Params.ConnectParams.costMatGCparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatGCparams.wvJump = []; 
Params.TrackFunction = 'obj.makeTrack'; % standard two stage tracking call. 
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