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ABSTRACT Single molecule tracking of membrane proteins by fluorescence microscopy is a promising method to investigate
dynamic processes in live cells. Translating the trajectories of proteins to biological implications, such as protein interactions,
requires the classification of protein motion within the trajectories. Spatial information of protein motion may reveal where the
protein interacts with cellular structures, because binding of proteins to such structures often alters their diffusion speed. For
dynamic diffusion systems, we provide an analytical framework to determine in which diffusion state amolecule is residing during
the course of its trajectory. We compare different methods for the quantification of motion to utilize this framework for the clas-
sification of two diffusion states (two populations with different diffusion speed). We found that a gyration quantification method
and a Bayesian statistics-based method are the most accurate in diffusion-state classification for realistic experimentally ob-
tained datasets, of which the gyration method is much less computationally demanding. After classification of the diffusion,
the lifetime of the states can be determined, and images of the diffusion states can be reconstructed at high resolution. Simu-
lations validate these applications. We apply the classification and its applications to experimental data to demonstrate the po-
tential of this approach to obtain further insights into the dynamics of cell membrane proteins.
INTRODUCTION
It remains an elusive dream to be able to follow a protein
and its interactions as the protein travels through the cell
during its lifespan. Nevertheless, single molecule tracking
by fluorescence microscopy allows one to follow a protein
in a living cell at high resolution for a short period of time
and to record its trajectory (1–6). Tracking of proteins in
live cells is a unique approach to obtain details on dynamical
protein association and dissociation kinetics in a spatio-
temporal manner, and complements other fluorescence
microscopy techniques (7–9). Single molecule tracking
techniques have given us valuable insight into the dynamics
and biological functions of proteins (6,10–12) and the orga-
nization of the plasma membrane (13–16). Despite method-
ological advances and the insight obtained by contemporary
analysis methods, there remains a need to further develop
analysis tools that can translate experimental data into bio-
logical insights. For example, spatiotemporal information
on the diffusion of membrane proteins would contribute to
a biophysical understanding of the organization of these
protein complexes.

Trajectories of proteins obtained by tracking techniques
contain information about the interaction and functional
states of the protein. For example, the phosphorylation state
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of many membrane-bound tyrosine kinase receptors is
related to the formation of dimers or higher-order aggre-
gates (17,18). Clearly, proteins associated with these
aggregates are expected to show lower mobility than free
monomeric receptor molecules, which is reflected in their
trajectories. Additionally, proteins often transiently interact
with other molecules in nanoscale compartmentalization
structures in the plasma membrane or with cytoskeletal
structures, both resulting in transient slowed diffusion or
confinement (4–6,19–23). Not only do interactions with
molecules alter protein mobility, but the mobility of a pro-
tein also affects the possibility of interactions with other
molecules (24–26). A detailed knowledge of the interactions
of proteins and their dynamics is therefore important to un-
derstand the underlying signal transduction processes and to
model the cellular signal regulatory system (24–28).

Translating the trajectories of proteins to biological
events, such as protein interactions, requires the classifica-
tion of protein motion within the trajectories. Protein species
transiently exhibit different types of motion. The motion of
membrane proteins can often be described by two dynamic
populations of pure Brownian diffusion (6,19,23), which
we refer to as the diffusion states (Fig. 1 A). It is, however,
nontrivial to accurately determine in which diffusion state
the protein is residing during the measured trajectory.
Several issues hamper faultless state classification. Proteins
exhibiting different diffusion states often have overlapping
distributions of step sizes (Fig. 1 B). Furthermore, the local-
ization of proteins has a limited accuracy, and the switching
http://dx.doi.org/10.1016/j.bpj.2014.05.049
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FIGURE 1 Proposed framework for state classification and problem

statement. (A) Schematic to illustrate a typical trajectory of a single protein

on a plasma cell membrane, displaying switching behavior between two

states with different diffusion coefficients. (B) Distributions of observed

squared displacements (SD) resulting from different diffusion coefficients

show large overlap. A measured step-size value (an example is indicated

with an arrow) cannot be classified with high certainty to unambiguously

originate from a particular state, which demonstrates one of the problems

to be solved for diffusion state classification. To compose this histogram,

a localization inaccuracy sxy of 40 nm was added to the positions in the sim-

ulations. (C) Scheme of the methodology followed to test the various clas-

sification methods on correctness of state classification. After generation of

simulated trajectories with dynamic-state allocation, we determine the

diffusion constants (D1 and D2) and the fraction (a) of the fast state from

all displacements using a CDF fit. The track is divided into segments of a

certain window length (N), and for each segment the tested quantification

methods provide a value W using only the positions in that segment. For

each segment the motion is classified as fast or slow diffusion. The

threshold (T) for classification is determined from all valuesW and the frac-

tion a. The center position of the segment is classified as slow diffusion

when W is smaller than the threshold T, and as fast diffusion otherwise.

The found state is compared with the actual (remembered) state to yield

the classification correctness. The same scheme is followed for the diffusion

state classification of experimental data. Although the correctness clearly

cannot be determined in that case, an estimation of the correctness can

be determined by performing simulations at the parameters found by the

CDF fit.
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between the diffusion states is a stochastic process. Diffu-
sion-state classification methods are needed to determine
when, and in what regions, the protein exhibited distinct
diffusion behavior. These regions might point toward a
role of certain cellular structures in the function of the stud-
ied protein species. In addition, the lifetimes of these diffu-
sion states (the inverse kinetic rate) can be directly derived
from the diffusion state durations, and are useful parameters
to comprehend the role of the studied protein in complexes
associated with cellular regulatory systems. The combined
insight may eventually reveal the spatiotemporal design
principles of cell decision-making (27).

A widely used analysis method for single molecule
tracking data considers complete trajectories using mean-
squared displacement (MSD) curves (3,29–32). For ho-
mogenous motion, the shape of the MSD curve contains
information about the nature of the diffusion, e.g., pure,
confined, or hop diffusion (3,13,33,34). Because the MSD
curve is composed of averages of all distances, transient
diffusion states cannot be resolved by these full-trajectory
MSD analyses (see Fig. S1 in the Supporting Material).
When it was realized that protein motion is not homoge-
neous, but shows transient effects (1,4,10,22,35), local
methods were developed that considered subtrajectories
(segments) of a trajectory (4,34,36,37). These methods are
hampered, however, by the limited number of positions
within one segment to obtain accurate diffusion coefficients
or confinement strengths. An alternative Monte Carlo-based
method (38) is particularly useful to find the kinetic
rates between well-differentiated diffusion populations.
This method finds diffusion coefficients, their fractions,
and the switching rates for the whole set of trajectories,
but does not spatially resolve the states. Therefore, we pro-
pose what we believe to be a new approach that uses a global
method (analyzing all trajectories obtained) to determine the
different diffusion states of the protein studied, whereas
local methods are used to classify short segments of a trajec-
tory to one of the diffusion states found. We compare several
local methods to classify parts of trajectories (segments) to a
diffusion state.
Proposed scheme for diffusion state
classification

For pure diffusion systems, the multiple diffusion states can
be accurately determined using a fit of the cumulative distri-
bution function (CDF) of the squared displacements (20). In
this article, we assume that the motion of membrane pro-
teins can be described by two states of Brownian diffusion,
termed the ‘‘fast’’ and the ‘‘slow’’ population. Whether this
assumption is correct can be checked beforehand by looking
at the residuals of a fit of the CDF of step sizes in two-pop-
ulation diffusion (detailed later). After obtaining accurate
diffusion parameters by this fit, local methods are used
only to classify short segments of a trajectory to one of
the diffusion states found. Existing local diffusion or
confinement detection methods (34,36,37) can be expanded
to yield a local quantification measure that can be used for
classification. Subsequently, the classification to a diffusion
state is based on a threshold for the quantification measures.
Biophysical Journal 107(3) 588–598
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This threshold is objectively set using the parameters
describing the diffusion states (determined by the fit), and
the threshold is therefore based on the experimental data.
Thereby, we eliminate the subjective manual thresholding
of earlier confinement methods to detect transitions between
motion states. The need for manual thresholding was earlier
mentioned as a disadvantage of using window (segments)-
based methods (39).

We emphasize that there is no need to determine local
diffusion values of segments, because the CDF fit has
already accurately provided the diffusion values present
within the trajectories. The segments only need to be classi-
fied to one of the diffusion states. The length of the segments
should be carefully chosen such that the corresponding
duration is shorter than the typical switching time between
states, whereas the duration must be long enough to obtain
an accurate measure for the classification. We test different
local methods and the influence of different segment lengths
for diffusion classification using two-state Brownian dy-
namics simulations (Fig. 1 C), and compare this approach
to a recently developed Bayesian method (40).
Existing motion classification schemes

Several schemes have been proposed to differentiate be-
tween the supposed motion types of single proteins found
in (sub)trajectories, such as directed, confined, and normal
diffusion (33,39,41,42). Three of these schemes consider
classification of pure diffusion states (40,43,44). Two of
these schemes were based on maximum likelihood estima-
tion (MLE). The scheme devised by Ott et al. (44) employs
an MLE approach to classify between diffusive states (also
included in our comparison), and uses hidden Markov
models to find the diffusion coefficients of these states.
The other scheme relies on a large number of localizations
and a prior defined number of diffusion-state switching
occurrences (43). With contemporary fluorescence micro-
scopy techniques, it is still impossible to accurately localize
many positions to find the actual state before the protein
switches between states. Furthermore, the amount of
diffusion-state switching occurrences is not known before-
hand, because this switching is a stochastic process. In
2004, another scheme was proposed that used Bayesian sta-
tistics (45) to discriminate between slow and fast Brownian
motion in a spatiotemporal fashion without prior knowledge
(40). This scheme combines information from thousands
of short trajectories to identify the number of diffusive
states and the state transition rates, and is included in our
comparison.

The classification of confined motion, i.e., motion hin-
dered by transient confinement zones, has been discussed
elsewhere (3,20,22,38,39). We emphasize that our approach
is not in contrast to the idea of transient confinement zones.
In fact, whether the slow diffusion state originates from pure
Brownian motion, a transient confinement, or an immobili-
Biophysical Journal 107(3) 588–598
zation of the protein, cannot be revealed from the limited
number of typically acquired positions, and requires other
experimental and analytical methods. Although the transient
confinement and slowed diffusion are closely related,
confinement is actually defined as pure diffusive motion
restricted by boundaries that cannot be crossed. The
confinement area should be of reasonable size such that
normal diffusion within this area can still occur. There is
no consensus yet on the exact type of motion proteins
exhibit.
MATERIALS AND METHODS

Classification scheme

We provide an overview of our approach to test classification of segments to

dynamic two-population diffusion states (Fig. 1 C), followed by a more

detailed description of the individual steps. To begin, the two diffusion co-

efficients and their fractional contribution to the trajectories are determined

using a CDF fit of the squared displacements (20). Next, we use one of the

different local quantification methods, listed in Quantification Measures in

the Supporting Material, which assigns a value to each position in the tra-

jectory. All these methods yield a higher value for a higher diffusion speed.

Subsequently, thresholding of these values for the classification is done by

taking the ath percentile value of all values found (with a the percentage of

step sizes fitted to the first population). For example, when the fraction size

of fast diffusion is 0.30, we set the threshold value such that 30% of the

values are higher than the threshold value. By taking this threshold, we

perform the classification objectively, because the fraction percentage is

already accurately determined beforehand from the experimental data itself.

To compare the different detection methods in this framework, we tested

them using simulated trajectories, where we know the actual diffusion state

at each position. The final step in testing the framework is a one-to-one

comparison of the found state to the actual (simulated) diffusion state,

yielding the classification correctness. We define the classification correct-

ness as the percentage of positions that are correctly classified divided by

the total number of classified positions. The state lifetimes t1 and t2 found

by the analysis are compared with the actual lifetimes for the most prom-

ising method.
Generation of synthetic trajectories

Two-population diffusion trajectories were generated using MATLAB (The

MathWorks, Natick, MA) with the GPUMAT toolbox (8). Each set con-

tained 1000 trajectories composed of 1000 frames (positions) in two dimen-

sions with Brownian diffusion steps in between points. The molecule is

allowed to change between diffusion states within a trajectory. In more

detail, the positions are given by

xiþ1 ¼ xi þ R ,
ffiffiffiffiffiffiffiffiffiffiffiffi
2DjDt

p
; (1)

yiþ1 ¼ yi þ R ,
ffiffiffiffiffiffiffiffiffiffiffiffi
2DjDt

p
; (2)
where i is the frame number, R is a random number from a standard normal

distribution, D is the diffusion coefficient of the diffusion state j, and Dt is
j

the time between frames (Dt ¼ 40 ms unless otherwise stated). The dynam-

ical switching behavior between the two diffusion states (e.g., j ¼ 1, also

called fast, and j ¼ 2, also called slow) is provided by generating subse-

quent state durations. The duration of the state is determined by taking a

random number from an exponential distribution (a Poisson process) with

a given characteristic time t1 and t2. Diffusion states of all steps in the

set are stored, to be able to verify the classification method. Each position
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(xi, yi) is given a localization inaccuracy error by adding a random number

from a normally distributed pool with standard deviation sxy in each dimen-

sion. The localization error in the x-plane sx is equal to the error in the

y-plane sy, therefore sxy ¼ sx ¼ sy.
Cumulative distribution function of squared
displacements

To find the diffusion constants D1 and D2 and the fraction a of the first pop-

ulation, we calculate the cumulative distribution function of squared dis-

placements for the complete set of trajectories (20). Using the complete

distribution yields insights into the behavior of the entire population of

single molecules, without ensemble averaging effects. As long as there is

a large dataset of displacements to build a reliable CDF, it is a straightfor-

ward and reliable method to find the global diffusion coefficients and their

fractions. For the two-dimensional case, the CDF for the squared displace-

ments (DR)2, for a time lag t ¼ n , Dt, for two diffusion components is

given by

CDF
�
DR2ðtÞ�¼1� a , exp

0@� ðDRÞ2

4 D1t þ 2
�
s2
x þ s2

y

�
1A

�ð1� aÞ, exp
0@� ðDRÞ2

4 D2t þ 2
�
s2
x þ s2

y

�
1A;

(3)

where a is the fraction corresponding to the motion with diffusion coeffi-

cientD1. To deal with the localization inaccuracy in the exponent, we deter-

mine D1, D2, and a for the time lags corresponding to one and two frames,

and fit the exponential terms:

CDF
�
DR2ð1Þ� ¼ 1� at¼ 1 , exp

 
� ðDRÞ2
4 bD1;t¼ 1

!

� ð1� at¼ 1Þ , exp
 

� ðDRÞ2
4 bD2;t¼ 1

!
;

(4)

� �  
2

!

CDF DR2ð2Þ ¼ 1� at¼ 2 , exp � ðDRÞ

4 , 2 bD1;t¼ 2

� ð1� at¼ 2Þ , exp
 

� ðDRÞ2
4 , 2 bD2;t¼ 2

!
;

(5)

which yield the uncorrected diffusion coefficients for each time lag, for

example,

bD1;t¼ 1 ¼ D1;t¼ 1 þ s2
xy;

because sx
2 þ sy

2 ¼ 2sxy
2, and similarly

2 bD1;t¼ 2 ¼ 2 ,D1;t¼ 2 þ s2
xy:

Now the estimated diffusion coefficient for the first (and similarly for the

second) population corrected for the localization error is
D1 ¼ 2bD1;t¼ 2 � bD1;t¼ 1

¼
�
2D1;t¼ 2 þ s2

xy

�
�
�
D1;t¼ 1 þ s2

xy

�
¼ 2D1;t¼ 2 � D1;t¼ 1: (6)

For the fractionawe take the average of the valuesat¼1 andat¼2. In the sim-

ulations, these two values did not differ by more than a few percent.We have

used linear least squares to fit the CDF to the data. Fig. S11 shows an example

of a CDF fit for motion with two clearly separated diffusion populations.
Quantification measures

The next step is to quantify the motion of a molecule for each frame in its

trajectory. To this end, the trajectories are split in small segments, contain-

ing a total number ofN subsequent positions (the segment length), and these

segments are given a value W by one of the tested quantification measures.

Many methods could serve as a measure for slow or fast diffusion. This

measure can be, but is not limited to, an estimated diffusion coefficient

or confinement index. We have tested the following methods: windowed

MSD (34), relative confinement (35,36), the gyration radius (37), and

MLE. Besides these windowed measures, we also tested a Bayesian statis-

tics approach (40) using software made available by these authors. A

detailed discussion of the measures used can be found in Quantification

Measures in the Supporting Material.
State classification

When the motion within a segment is quantified, it can be classified as State

1 (corresponding to fast diffusion with coefficient D1) or as State 2 (corre-

sponding to slow diffusion with coefficient D2). We allocate the classifica-

tion of the segment to the center position of that segment, so that a state

duration can still be shorter than the segment length. For the MLE, the clas-

sification is performed intrinsically. For the relative confinement and gyra-

tion radius methods, the classification is provided by comparing the valueW

to a threshold value T. A segment is classified as State 1 ifW is larger than a

threshold value T, and as State 2 otherwise. The threshold value T is deter-

mined by taking all found values W, and calculating the ath percentile of

these values (with a the percentage of step sizes fitted to the first popula-

tion). Hence, the already known fraction of the diffusion population is

used to define the threshold value for the measure to perform the

classification.

In the case of the windowed MSD, we slightly altered the way to deter-

mine the threshold T, due to reasons described in the Results. We used a

likelihood approach to calculate the chance that a single valueW (calculated

for a segment) originates from diffusion with D1 or originates from diffu-

sion with D2. In more detail, a probability density function (PDF) of W is

composed for each diffusion constant given the values of the diffusion

coefficients D1 and D2. Examples of such PDFs are shown in Fig. S12 A.

The threshold value T is chosen as that value of W where the PDF of W

from D1 intersects the PDF of W from D2 (such that L1(T) ¼ L2(T)). In

this way, the segment is classified to the most likely state.

The PDF of W for the windowed MSD method for a given diffusion

coefficient is calculated as follows: Using a one-population Brownian simu-

lation, a trajectory (containing 106 positions) is calculated. From this, we

calculated the values W for all segments in the trajectory. Next, the PDF

of the found values W is composed. This procedure is performed for both

D1 and D2. Finally, the intersection of these two PDFs is determined.
Visualization

After the state classification has been performed, either in simulations or in

experimental data, the information obtained can be used for subsequent
Biophysical Journal 107(3) 588–598
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analysis such as visualization. All the positions of all the molecules in one

video recording are used to reconstruct an image, such that one can visu-

alize the areas where the molecules have traveled. Each individual position

(localization) is represented by a color-coded dot. The color of the dot de-

pends on the state found at that position and time: red for the slow state, and

green for the fast state. This results in diffusion-state images at high reso-

lution showing the areas of slow and fast diffusion. We removed immobile

trajectories because these were typically found on the glass substrate and

not in cells. The filter for immobile trajectories was based on the gyration

method applied on a complete trajectory, with the threshold for the reached

area defined by a gyration radius of 40 nm, as this corresponded to the

apparent area traveled by an immobile molecule due to the localization

accuracy. This means that only those molecules are displayed that exhibit

motion at least once.
Live cell experiments

See Live Cell Experiments Methodology in the Supporting Material.
FIGURE 2 Correctness of the two-population classification by different

quantification measures for different simulated cases (A–D in the corre-

sponding panels). The correctness of the different quantification measures

is plotted against the segment lengths used in the classification. The

Bayesian method does not use segments, and its result is shown (dashed

line). In all simulation cases D1 ¼ 0.06 mm2/s and D2 ¼ 0.015 mm2/s. (A)

Simulation case A has a localization inaccuracy sxy of 40 nm and short state

lifetimes (t1 and t2). (B) This simulation case differs from case A only by a

lowered localization inaccuracy sxy. (C) This simulation case differs from

case A only by having a longer fast-state lifetime t1. (D) This simulation

case also has a longer slow-state lifetime t2.
RESULTS

Performance of different quantification measures

Wevalidated our approach by simulating the extreme case of
well-separated diffusion constants with D1 ¼ 40 � D2 and
long-state durations. We obtained a correctness of >95%
for windowed MSD, and >99% for the other methods, as
expected for clearly distinct motion. Next, we tested the
different quantification measure methods for diffusion clas-
sification, and studied the influence of different segment
lengths therein. Therefore, we simulated (at 25 fps) four
cases with two diffusion states with different state lifetimes
and localization accuracy. The cases were chosen to provide
a challenging and realistic situation for discrimination of the
two diffusion constants from experimentally obtained single
molecule trajectories.

The diffusion constants were chosen to reflect rela-
tively slow membrane receptors (unpublished observations):
D1 ¼ 0.06 mm2/s, and D2 ¼ 0.015 mm2/s. (For other ratios of
diffusion coefficients, see Fig. S4.) We chose our switching
settings close to the values found for the epidermal growth
factor (EGF) receptor (4): t¼ 300–900 ms. The localization
accuracy depends on the number of photons recorded
from a molecule per frame. The chosen localization accu-
racies are typical values observed for quantum dot labels
(sxy ¼ 20 nm) or fluorescent protein labels (sxy ¼ 40 nm),
whereas organic dyes will often be somewhere in between
these values. The accuracy does not only depend on the
number of photons acquired for localization, but also on
the labeling strategy. For instance, antibodies are large mac-
romolecules and their flexibility leads to a lower localization
accuracy.

Fig. 2 shows the performance of diffusion-state classifica-
tion for different quantification measures of local diffusion
together with the influence of the segment length chosen.
For the windowed MSD method, we display the correctness
when using the first three points of the MSD curve in the
fit, because this gave the best correctness in all the simulation
Biophysical Journal 107(3) 588–598
cases. For the first simulation (case A), we chose the locali-
zation accuracy sxy ¼ 40 nm and the state lifetimes were
both set to 300 ms. To study the influence of the localization
accuracy sxy alone, in simulation case B this parameter was
lowered to 20 nm. In simulation cases C and D, only the
switching behavior was altered compared to case A to be
able to test the influence of the state lifetimes. When the
two lifetimes are not equal (case C), this clearly changes
the diffusion fractions, such that there are an unequal number
of molecules in each state on average. The two diffusion co-
efficients and their fractions were not assumed to be known
beforehand, analogous to experimental data. These state pa-
rameters are found for each simulation by a fit to the CDF of
squared displacements. The results show that an optimal
choice of the segment length is needed to yield the best clas-
sification correctness. The optimal segment length depends
to a large extent on the state lifetimes and also on the partic-
ular quantification measure used in the state classification.

We find that the non-diffusion-based gyration evolution
method is the most accurate measure for diffusion-state



FIGURE 3 (A) The correctness dependence on the choice of the state

classification threshold for simulation case A (left curves) and case C (right

curves). The threshold varied with the ath percentile value of calculated

quantification-measure values W. In these simulation cases, the fraction

size for fast diffusion a ¼ 0.5 and a ¼ 0.75 (cases A and C, respectively),

and the classification, was performed with a segment length of seven

frames. The windowed MSD method does not yield optimal correctness

with a threshold using the ath percentile, yet the optimal threshold does

not provide any information either. Therefore the threshold selection for

this method was altered to using the likelihood that the found value for a

segment corresponds to either of the two diffusion states. (B) Robustness

of the MLE and gyration-based classification. When simulations with 100

trajectories and 1000 frames are repeated 100 times, variations can come

from the accuracy of the CDF fit. (Box plot) Resulting distribution (5, 25,

50, 75, 95%) of the obtained classification correctness using MLE and

the gyration (Gyr) method for all simulation cases (A–D, left to right)

due to this effect.
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classification in the simulation cases, with localization accu-
racy of 40 nm (cases A, C, and D). In these cases, for equally
sized diffusion populations (cases A and D), the gyration-
based classification scores better than classification using
any other method. When the diffusion populations are not
equally sized (case C), the gyration-based classification
scores almost as well as the computationally much more
expensive Bayesian method. In simulation case B with
a localization accuracy of 20 nm, the Bayesian method
and MLE-based classification score better than the other
methods. This trend continues when there is no localization
inaccuracy; simulations for this case showed the MLE
method then scores 81% correct compared to 74% for
the gyration-based classification. In practice, however, the
localization will rarely be better than 20 nm, due to the
limited number of photons and biochemistry labeling-
related issues. In the case of slow-state switching behavior
(case D), the gyration-based classification at these state-
switching rates is already close to its best possible perfor-
mance with these diffusion coefficients and localization
inaccuracy; increasing the average state duration to infinity
only resulted in 3% improvement in correctness. The classi-
fication correctness for the windowed MSD achieved when
another number of points in the MSD curve is taken to
perform the fit can be found in Fig. S2. The classification
correctness when we set a minimum state duration for a
number of frames can be found in Fig. S3.

After classification of the diffusion inside trajectories, the
lifetime of the states can be determined by composing a
histogramof state durations and fitting the lifetime.We deter-
mined the distribution of the slow- and the fast-state lifetimes
found by the gyration-based classification in trajectories of
simulation case A (see Fig. S5). We found that the state life-
times fitted are shorter than the actual (simulated) lifetimes,
especially for longer state lifetimes. Additional simulations
showed that a trend of changing the state lifetimes in the
simulation is reflected in the lifetimes found, although larger
lifetimes (as in case D) are significantly underestimated,
especially when the correctness is <85%.

Although the correctness percentages provide a measure of
the classification performance, the exact number might not
give a feeling for how useful such a classification is. We will
return to this point in the section on identifying the zones
of slow diffusion. Clearly the percentage must be >50% to
have any relevance, because this percentage would also be
obtained by a completely random state allocation.
Optimized threshold

The windowed MSD, relative confinement, and gyration
measures use a threshold for classification. We noticed
that for the windowed MSD, the classification correctness
was not around its maximum with the threshold at the ath
percentile, especially for unequally sized diffusion popula-
tions (Fig. 3 A). In the case of simulation case C (i.e.,
with unequally sized diffusion populations), the best result
when using the windowed MSD as the quantification mea-
sure would be to classify every position as fast diffusion,
and thereby scoring ~75% correct (i.e., the fast fraction
size). However, such classifications would not provide any
information. The other methods score the same correctness
at the 100th percentile threshold by definition, but these
methods score a higher correctness with a threshold at the
ath percentile. For the windowed MSD method, we there-
fore used another threshold. We instead compared the likeli-
hoods that a valueW for a segment originates from diffusion
with diffusion coefficient D1 or from diffusion with diffu-
sion coefficient D2. In other words, the threshold was set
at the intersection of the probability density functions of
the values obtained with the windowed MSD for diffusion
Biophysical Journal 107(3) 588–598
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from each diffusion state separately (detailed in Materials
and Methods). We verified that the windowed MSD using
likelihoods for state classification indeed performed with a
higher correctness compared to when window MSD values
are compared to a threshold using the ath percentile. Likeli-
hood methods do not regard the fraction size a to determine
the most likely state for a segment, therefore the MLE and
the Bayesian methods are not included in Fig. 3 A.
Classification robustness

The values for the classification performance in Fig. 2 and
Fig. 3 A are average values that are obtained for many clas-
sifications. Because one simulation entailed 1000 trajec-
tories of 1000 frames, the statistical noise averaged out
between simulations with the same diffusion parameters.
However, analyzing the results of one simulation is not suf-
ficient to predict the robustness of the method, because the
robustness in the correctness also depends on other aspects
of the classification framework. For example, the correctness
depends in large extent on the fitted diffusion constants and
fractions obtained from the CDF fit. Therefore, we tested
whether small perturbations in the CDF fit influenced the ob-
tained correctness for the MLE and gyration method. We
used a segment length of seven frames to classify 100 simu-
lations to obtain the distribution of the correctness. In each
simulation we used the simulation settings of case A, except
for the number of trajectories in the simulations, which was
lowered to 100 trajectories (a realistic number of molecules
in a tracking experiment). In this way, fewer displacements
are available for the CDF fit, and therefore the fitted values
have a larger spread in subsequent simulations. The resulting
correctness distributions (Fig. 3 B) shows that neither of the
twomethods is influenced dramatically by slightly perturbed
CDF fits, except for the case where both fractions are not
equally distributed (case C). The spread, in that case, is espe-
cially large in the MLE method.
FIGURE 4 Diffusion states classified by the gyration method, visualized

at high-resolution, with images displaying the regions in the fast state (A)

and slow state (B). The simulation was designed with spatially defined

zones (vertical lines) for diffusion states. Here the slow-state regions

were 120-nm wide and are separated by 600-nm-wide fast-state regions.

The regions of the slow diffusion state are suitably classified and clearly

visible. The dimension of the image is 15 � 15 mm, and the image is recon-

structed at a resolution of 30 nm/pixel.
Identifying the zones of slow diffusion

After state classification of the diffusion, super-resolution-
like images of the diffusion states can be reconstructed.
When the distribution of slowdiffusion zones is not randomly
distributed, the proposed approach for diffusion-state classi-
fication should be able to detect these zones. To validate this
application, we performed simulations of 200 trajectories
where the diffusion state was spatially defined. The regions
with slowdiffusionwere defined as 1 pixel wide (correspond-
ing to 120 nm), and were separated by 5 pixels. The separa-
tions were the regions of fast diffusion. The diffusion value
in the fast region was chosen D1 ¼ 0.10 mm2/s, and in the
slow regions it was chosen D2 ¼ 0.01 mm2/s, with the local-
ization accuracy sxy¼ 20 nm. These settings were chosen to
represent a typical membrane protein imaged utilizing bright
fluorophores. The resulting state lifetimes were ~300ms.We
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performed the diffusion-state classification using the gyra-
tion-quantification measure with a segment length of four
frames (Fig. 4 and see Movie S1 in the SupportingMaterial).
Simulations with the diffusion-state parameters mentioned
showed that this is the optimal segment length. The correct-
ness of gyration-based classification was 85%. The figure
shows that the performance is more than adequate to visu-
alize the spatial diffusion-state organization described. The
actual states of the simulation and the same reconstruc-
tion image using MLE-based classification are shown in
Fig. S7. For comparison, when the motion and the state
switching is completely random, such as in simulation case
A, the reconstruction map also shows apparent zones (see
Fig. S6). However, these zones are only caused by the
randomness of Brownian movement.
Example of classification applied to EGF receptor

The advantage of spatiotemporal-resolved state classifica-
tion is the possibility to observe where the molecules have
traveled in which diffusion state. Reconstructed videos
may also reveal whether multiple diffusion populations are
originating from a pool of molecules exhibiting either diffu-
sion state, or a pool of molecules transiently making transi-
tions between the states. The lifetimes of the states can be
determined as well from the histogram of state durations.

To demonstrate the potential of the application of diffu-
sion-state classification, we performed a gyration-based clas-
sification on experimental single molecule tracking data. We
recorded fluorescence images of fluorescently labeled EGF
receptor in MCF7 cells by utilizing SNAP-tag (see Movie
S2). In this video recording we detected, on average, 210
fluorescent molecules per frame (see Fig. S8 D). The locali-
zation accuracy in our video is close to 40 nm. The diffusion
constants D1 and D2 and the fraction size a of the fast state
from all displacements are determined using a fit to the
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CDF of squared displacements (see Fig. S8). We obtained
D1 ¼ 0.112 5 0.001 mm2/s, and D2 ¼ 0.008 5 0.001
mm2/switha¼ 0.695 0.03 (the given errors are 5–95%con-
fidence intervals of the fit). Intercellular differences are larger
than the errors of fitting theCDF.Weused a segment length of
seven frames, which performs best according to simulations
for the given diffusion parameters (classification correctness
of 86%). State lifetimes (or kinetic rates, the inverse lifetime)
were obtained by combining the state durations from five
recordings of EGF receptor (unliganded) to get enough statis-
tics (see Fig. S9).

After diffusion-state classification, we reconstructed the
diffusion-state video (see Movie S3) and diffusion-state im-
ages at high resolution (Fig. 5 and see Fig. S10). In these
images, we clearly see distinct zones of slowed diffusion.
Furthermore, we see cellular structures such as filopodia
at the boundaries of the cell, and possibly collapsed filopo-
dial structures on the lower membrane. The presence of
EGF receptor in filopodia was expected, because EGF re-
ceptor undergoes retrograde transport in filopodia (46,47).
DISCUSSION

The optimal segment length

The optimal segment length correlated to the state lifetime
in our simulations. For example, the optimal seven frames
in simulation cases A and B corresponds to the average state
FIGURE 5 The spatial distribution of the diffusion states exhibited by

EGF receptors in an MCF7 cell. The reconstructed image shows the areas

where receptors were classified in the fast diffusion state (green), and areas

where receptors were classified in the slow diffusion state (red). For a re-

gion at the periphery of the cell, a zoomed image (inset) shows clear regions

of slow diffusion. The image also shows that the receptor is associated with

certain cellular structures such as filopodia. The classification is performed

using the gyration method with a segment length of seven frames. The res-

olution of the reconstructed image is 30 nm/pixel. To see this figure in color,

go online.
lifetime of 300 ms (7.5 frames), and when the state lifetimes
increase (simulation cases C and D), the optimal segment
length also increases. The optimal segment length also
varies for the different quantification measures, especially
when the state lifetimes increase (simulation cases C
and D). Because the state lifetimes are not known before
the classification, it would be preferable when the results
do not vary much for different segment lengths. We can
see that the gyration method with a segment length of seven
frames scores near optimal in almost all the cases simulated.
Therefore, a good strategy would be to perform the classifi-
cation first with the gyration method and a segment length of
5–7 frames. This might provide a good first classification
with an adequate correctness. Later, the classification may
be repeated with a different segment length more suitable
to the state lifetimes found to obtain an optimized classifica-
tion or a verification of the reconstructed diffusion-state
images.
Diffusion state classification

We noticed that the gyration method has higher correctness
and is more robust compared to the other tested methods,
especially in situations with higher localization errors
(sxy ¼ 40 nm). The reason may be found in the fact that
more information is used to determine the gyration radius
compared to the value calculated with the windowed MSD
or the MLE methods. In the calculation of the gyration, the
information of the distances between all the segments posi-
tions is taken into account unlike in MLE. Therefore, the
gyration method not only considers the distance between
points, but also the relative locations of the positions. For
example, for pure diffusion, it is unlikely that a particlewould
move in only one direction. The MLE would not detect this,
because it only considers subsequent distances; however, the
gyration method will detect it. The spatial information of
relative location of the positions is only considered in the gy-
ration and confinement methods, which might be the reason
why these methods scored higher in classification of the two
diffusion states. In thewindowedMSDmethod, the optimum
result is obtained when the fit to find the diffusionvalue is ob-
tained from information only up to a time lag of three frames.
This means that in the case of the windowed MSD calcula-
tion, the distance information from the first to the last point
is not considered, whereas this is taken into account in the
gyration method. However, when the positions are more
precisely known (i.e., low localization error), the MLE and
Bayesian-based methods start to outperform the gyration
method. An explanation for thismight lie in the fact that these
methods make use of averaged distances of single steps. The
average value of single steps in a segment is apparently pre-
cise enough to find the most likely underlying diffusion
coefficient. Without localization errors, the (windowed)
MSD also scores best when only single steps (corresponding
to a time lag of one frame) are considered. Our approachwith
Biophysical Journal 107(3) 588–598
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the windowed MSD is then in fact equivalent to the MLE
method (43). Another reasonwhy thewindowedMSD scores
lower than other methods might be because MSD values can
be negative, especially with higher localization errors. It is
not clear what the chance is that negative values represent
a slow or a fast state (we classified these values as slow),
such that negative values cannot be adequately classified.

Interestingly, it remains an open question whether the
gyration-based classification method is the optimal quan-
tification measure for the cases simulated, or if another
quantification measure can be invented that outperforms gy-
ration-based classification. We saw that classification based
on the maximum likelihood of the average of single step
sizes is outperformed by gyration-based classification,
hence MLE does not yield the optimal performance to this
problem. How to best combine all the positional information
of a segment remains an open question.

Although we demonstrated the state classification for
a two-population system, the framework and the methods
can also be used for more than two populations. The CDF
fit should then be adjusted for multiple populations, and
thresholds can similarly be set at the found ath percentile.
This expansion can be benchmarked using simulation situa-
tions comparable to those we have presented here. Other
quantification methods can also use this framework for
benchmarking the method in a realistic context of single
molecule experiment on plasma membrane receptors. In
this article we have tested prevalent analysis methods for
quantification of the local diffusion. Although the confine-
ment and gyration methods have been developed in the
context of confinement, they had never been applied for
quantification of pure Brownian motion, whereas we
showed that these methods outperform classical methods
to classify segments to a diffusion state.

Michalet (34) has discussed the practicality of using a
windowed MSD. He argued that the segment length must
be chosen small enough so as to measure local behavior
and not averaged global behavior, yet must still be large
enough to be sufficiently accurate inasmuch as too-small
windows have a broad distribution in output values. He
therefore concluded that this method can rarely provide
reliable estimates of the diffusion coefficients, and can
only show a difference in multiple orders of magnitude,
even for windows of 100 points. Although this conclusion
is valid in the case of exceedingly low diffusion coefficients,
such as D ¼ 10�4 mm2/s in his example, we showed that a
windowed MSD can still be useful in diffusion-state classi-
fication. However, it is indeed not as powerful as the other
methods tested.

We chose to use the CDF-fit approach to find the global
diffusion values. Another approach to obtain the diffusion
coefficients has been described using Bayesian statistics
(45) and a hidden Markov model. This method finds the
different (and hidden number of) diffusion states with their
diffusion coefficients (40). Although this method yields
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accurate results, it also requires about a thousandfold
more computational time on our computer, whereas a
CDF fit is comparably accurate. Concerning the accuracy
of the quantification measure, we neglected the influence
of the exposure time on these values. Whereas this leads
to underestimation of the value of the diffusion coefficient
due to the averaging blur during exposure (1,48), we only
used the values to classify states; the exposure time effect
should not have much influence on this classification.

We only regarded spatiotemporal analysis methods in this
article, because the spatial information may yield especially
important information, such as where a molecule is interact-
ing. Therefore, we have excluded image correlation spec-
troscopy methods (such as particle image correlation
spectroscopy (49,50)) that do not require tracking, and a
Monte Carlo approach (38). Also, we only looked at alter-
nating diffusion states, and not at active transport or confine-
ment, as explained before.
Application in live cells

The application of the gyration-based diffusion-state
classification approach demonstrated that the correctness
achieved is sufficient to identify spatial zones of slowed
diffusion within cellular structures. Such zones are particu-
larly important because they reflect the regions where the
protein interacts with other proteins or cellular compounds.
The physiological meaning of the slow diffusion zones in
our example of EGF receptor remains an open question at
the moment. They could be related to cytoskeletal structures
or regions where the receptor exhibits internalization. For
other proteins, we might find another distribution of mem-
brane patches of slowed diffusion, and specific diffusion
states near other cellular structures such as actin or microtu-
buli might be seen. In that case, single molecule trajectories
may indicate a role of such cellular structures in the
signaling of the protein studied when analyzed by diffu-
sion-state classification.

Diffusion-state lifetimes obtained by this classification
framework seem less informative, as they tend to be under-
estimated due to short periods of incorrect state classifica-
tion (see Fig. S5). To reliably obtain changes in state
lifetimes, a high classification correctness (>85%) seems
essential. However, state lifetimes can be used as a test to
confirm that the diffusive populations found (using the
CDF fit) are lasting longer than the timescale of the sam-
pling rate (time between frames). States with extremely
short lifetimes are probably caused by issues with multiple
intermixed diffusive states, and further diffusion classifica-
tion is unreliable in that case.
CONCLUSION

In summary, we have introduced what we believe is a new
strategy for spatiotemporal classification of two-population
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diffusion, and compared methods to be used for this classi-
fication. We have validated our proposed diffusion-state
classification approach by testing with simulations and
showed possible applications, such as determining diffu-
sion-state lifetimes and composing diffusion-state images.
The key feature of the proposed framework is that a diffu-
sion estimator is the logical choice but not necessarily the
best way to discriminate and classify segments to two diffu-
sion states. When we have determined the diffusion coeffi-
cients and their fractions present in the motion of all the
molecules (e.g., using a CDF fit of the squared displace-
ments (20)), there is no need to find a local diffusion
coefficient. What remains is the need to classify the local
motion to one of the found diffusion states. The found frac-
tion size a can be used to perform objective thresholding of
the local quantification measures. This avoids relying on
subjective manual thresholding in segment-based methods
to detect transitions between motion patterns (39), such as
relative confinement (4,36).

We have found that the gyration method is best used for
diffusion-state classification when the localization error
(due to photon shot noise and the finite proximity of the
fluorescent dye to the protein) is ~40 nm, whereas MLE
or Bayesian methods are preferred in the case of localization
errors of 20 nm or less. Although the differences in the re-
sulting classification correctness are small, the robustness
of the gyration method is higher than the MLE method,
especially when a limited number of displacements are
available for the CDF fit. Furthermore, the Bayesian method
was approximately a thousandfold slower on our computer,
whereas it outperforms the gyration-based classification
only marginally. For realistic plasma membrane receptor
motion, the optimal setting of the gyration method requires
a segment window of 4–7 frames; the method then classifies
70–90% correct, depending on the exact characteristics of
the motion. Simulations with spatially organized diffusion
states demonstrated that this is adequate to observe spatial
organization of diffusion states. The estimated correctness
for experimental data may be determined by performing
simulations as demonstrated. When the diffusion states are
visualized at high resolution at their position in live cells,
such diffusion-state images may aid in identifying spatially
separated zones of the occurring states on the membrane of
the cell. Zones of slowed diffusion are an indication of inter-
actions with the protein studied. We showed that such zones
exist for EGF receptors within cellular structures. The im-
age also showed static or slowly dynamic cellular structures,
such as filopodia.

In conclusion, new biophysical insights could be acquired
from spatiotemporal information of protein mobility. Such
information can be obtained through the proposed diffu-
sion-state classification approach. We expect that the visual-
ization of zones of altered diffusion of proteins on top of other
cellular structures will help in providing a better understand-
ing in the organization of the plasma membrane and the role
of the cytoskeleton in protein signaling. Spatial diffusion
classification will be a valuable tool for obtaining more
insight into the complex protein interactions in live cells.
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single molecule tracking data by comprehensive testing against Monte
Carlo simulations. Biophys. J. 95:5988–6001.

39. Helmuth, J. A., C. J. Burckhardt, ., I. F. Sbalzarini. 2007. A novel
supervised trajectory segmentation algorithm identifies distinct types
of human adenovirus motion in host cells. J. Struct. Biol. 159:347–358.

40. Persson, F., M. Lindén, ., J. Elf. 2013. Extracting intracellular diffu-
sive states and transition rates from single molecule tracking data. Nat.
Methods. 10:265–269.

41. Jaqaman, K., H. Kuwata, ., S. Grinstein. 2011. Cytoskeletal control
of CD36 diffusion promotes its receptor and signaling function. Cell.
146:593–606.

42. Bouzigues, C., and M. Dahan. 2007. Transient directed motions of
GABAA receptors in growth cones detected by a speed correlation
index. Biophys. J. 92:654–660.

43. Montiel, D., H. Cang, and H. Yang. 2006. Quantitative characterization
of changes in dynamical behavior for single-particle tracking studies.
J. Phys. Chem. B. 110:19763–19770.

44. Ott, M., Y. Shai, and G. Haran. 2013. Single-particle tracking reveals
switching of the HIV fusion peptide between two diffusive modes in
membranes. J. Phys. Chem. B. 117:13308–13321.

45. Eddy, S. R. 2004. What is Bayesian statistics? Nat. Biotechnol.
22:1177–1178.

46. Lidke, D. S., P. Nagy, ., T. M. Jovin. 2004. Quantum dot ligands
provide new insights into erbB/HER receptor-mediated signal trans-
duction. Nat. Biotechnol. 22:198–203.

47. Arndt-Jovin, D. 2006. Quantum dots shed light on processes in living
cells. 9 July 2006, SPIE Newsroom. http://dx.doi.org/10.1117/2.
1200605.0228.

48. Berglund, A. J. 2010. Statistics of camera-based single-particle
tracking. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82:011917.

49. Semrau, S., and T. Schmidt. 2007. Particle image correlation spectros-
copy (PICS): retrieving nanometer-scale correlations from high-den-
sity single-molecule position data. Biophys. J. 92:613–621.

50. Semrau, S., L. Holtzer, ., T. Schmidt. 2011. Quantification of biolog-
ical interactions with particle image cross-correlation spectroscopy
(PICCS). Biophys. J. 100:1810–1818.

51. Qian, H., M. P. Sheetz, and E. L. Elson. 1991. Single particle tracking.
Analysis of diffusion and flow in two-dimensional systems. Biophys. J.
60:910–921.

52. Saxton, M. J. 1993. Lateral diffusion in an archipelago. Single-particle
diffusion. Biophys. J. 64:1766–1780.

53. Saxton, M. J. 1997. Single particle tracking: the distribution of diffu-
sion coefficients. Biophys. J. 72:1744–1753.

54. Smith, C. S., N. Joseph, ., K. A. Lidke. 2010. Fast, single molecule
localization that achieves theoretically minimum uncertainty. Nat.
Methods. 7:373–375.

55. Brauchle, C., D.C. Lamb, and J. Michaelis. Single Particle Tracking
and Single Molecule Energy Transfer. Wiley-VCH Verlag, Weinheim,
Germany.

http://dx.doi.org/10.1117/2.1200605.0228
http://dx.doi.org/10.1117/2.1200605.0228


Supporting Material for 
 
Classification of dynamical diffusion states in single molecule 
tracking microscopy 

P.J. Bosch†, J.S. Kanger‡ and V. Subramaniam†‡# 

† Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands 
‡ MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The 
Netherlands 
# Present address: FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands 

 

 

 

 

Contents 

Supporting Figures ................................................................................................................................... 2	  

Supporting Sections ............................................................................................................................... 12	  

Quantification measures .................................................................................................................... 12	  

Mean squared displacement (MSD) .............................................................................................. 12	  

Windowed MSD ............................................................................................................................ 13	  

Maximum Likelihood Estimation .................................................................................................. 13	  

Relative confinement ..................................................................................................................... 14	  

Radius of gyration evolution ......................................................................................................... 14	  

Live cell experiments methodology ................................................................................................... 16	  

Cell culture ..................................................................................................................................... 16	  

Microscopy .................................................................................................................................... 16	  

Tracking ......................................................................................................................................... 16	  

Accuracy of MSD methods and CDF fitting to obtain a one population diffusion coefficient ......... 17	  

Settings file for SPT tracking software .................................................................................................. 19	  

Supporting References ........................................................................................................................... 20	  

 

1 
Supporting Material  

  



2 
Supporting Material  

Supporting Figures 

	  	   	  

 

 
	  
FIGURE	  S1:	  A	  conventional	  full-‐trajectory	  MSD	  analysis	  of	  	  a	  two-‐population	  diffusion	  systems	  leads	  
to	   an	   apparent	   distribution	   of	   diffusion	   values,	   easily	   resulting	   in	   erroneous	   conclusions	   for	   this	  
motion	   system.	   The	   true	   motion	   system	   is	   a	   two-‐population	   diffusion	   system	   with	   diffusion	  
coefficients	   	  of	  0.15	  and	  0.01	  µm2/s,	  as	   indicated	  by	   the	  arrows	   in	   the	  graph.	  For	   this	  graph,	  1000	  
trajectories	   consisting	   of	   500	   frames	   	   (hence	   relatively	   long	   trajectories)	   were	   simulated.	   The	  
trajectories	  are	  analyzed	  using	  the	  conventional	  full-‐trajectory	  MSD	  method,	  where	  the	  first	  4	  points	  
of	   the	  MSD	   curve	  were	   used	   following	   the	   “rule	   of	   thumb”	   rule	   to	   fit	   the	   diffusion	   constant.	   The	  
found	   diffusion	   constants	   and	   the	   apparent	   spread	   both	   incorrectly	   describe	   this	   two-‐population	  
situation.	   The	   MSD	   analysis	   should	   therefore	   only	   be	   used	   for	   homogeneous	   (one-‐population)	  
motion.	  The	  discussion	  further	  in	  the	  supplementary	  material	  discusses	  the	  accuracy	  of	  determining	  
the	  diffusion	  constant	  for	  a	  one-‐population	  system	  using	  the	  full-‐trajectory	  MSD	  method.	  
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FIGURE	  S2:	  Correctness	  dependence	  of	  window	  length	  and	  of	  the	  number	  of	  points	  in	  the	  MSD	  curve	  used	  to	  fit	  
the	  diffusion	  value.	  (A)	  Simulation	  case	  A	  has	  a	  localization	  inaccuracy	  σxy	  of	  40nm	  and	  short	  state	  lifetimes	  (τ1	  =	  
τ2	  =	  300	  ms).	  (B)	  This	  simulation	  case	  differs	  from	  case	  A	  only	  by	  a	  lowered	  localization	  inaccuracy	  σxy	  =	  20nm.	  (C)	  
This	  simulation	  case	  differs	  from	  case	  A	  only	  by	  having	  longer	  fast	  state	  lifetimes	  (τ1	  =	  900	  ms;	  τ2	  =	  300	  ms;	  σxy	  =	  
40nm).	  (D)	  This	  simulation	  case	  also	  has	  longer	  slow	  state	  lifetimes	  (τ1	  =	  900	  ms;	  τ2	  =	  900	  ms;	  σxy	  =	  40nm).	  The	  
color	  bar	  aids	  in	  reading	  the	  classification	  correctness	  percentage.	  
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FIGURE	   S3:	   Effect	   of	   a	   minimum	   state	   duration	   filter	   on	   classification	   correctness.	   Since	   all	   the	   above	  
methods	  make	  use	  of	  segments,	  the	  state	  classification	  does	  not	  allocate	  exact	  time	  points	  of	  a	  trajectory	  to	  
a	   state,	  but	   to	  a	  window	  of	   several	   time	  points.	   The	   state	  of	   this	  window	   is	   classified	  at	   the	   center	   time	  
point	   of	   the	   window,	   and	   thereby	   each	   time	   point	   has	   its	   own	   state	   allocation	   based	   on	   different	   but	  
correlated	  data	  sets.	  Now	  the	  state	  classification	   is	  defined	  at	  all	   timepoints	  except	  for	  the	  beginning	  and	  
end	  of	  a	  (sub)trajectory.	  Since	  the	  window	  is	  several	  frames	  long,	  state	  durations	  shorter	  than	  the	  segment	  
length	   (window	   size)	  may	  appear	   illogical,	   and	   therefore	  we	  also	   tested	  whether	   filtering	  out	   short	   state	  
durations	   leads	   to	   better	   correctness	   for	   different	   classification	   methods.	   In	   most	   simulation	   cases	   (as	  
described	   in	   the	  main	   text)	   this	  was	  not	   the	   case,	   and	  we	  have	   therefore	   looked	  only	   at	  unfiltered	   state	  
classifications	  in	  the	  main	  text.	  (A-‐D)	  Classification	  correctness	  for	  simulation	  case	  A-‐D.	  The	  color	  bar	  aids	  in	  
reading	  the	  classification	  correctness	  percentage.	  
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FIGURE	  S4:	  Correctness	  of	  the	  two-‐population	  classification	  for	  different	  ratios	  for	  D1	  and	  D2.	  D2	  was	  
kept	   fixed	   at	   0.015	   µm2/s.	   Shown	   are	   the	   results	   for	   a	   gyration	   and	  MLE	   based	   classification	   for	  
simulations	  of	  cases	  A	  and	  D	  (with	  changing	  D1).	  We	  find	  that	  ratio	  of	  4	  in	  our	  simulation	  cases	  was	  
indeed	  a	  challenging	  situation,	  and	  that	  with	  ratios	   larger	  than	  10	  the	  best	  achievable	  classification	  
are	  obtained.	  The	  classification	  also	  depends	  on	  other	   factors	  as	  shown	  by	  the	  different	  results	   for	  
the	  two	  cases	  shown.	  

 

FIGURE	  S5:	  The	  distribution	  of	  lifetimes	  found	  by	  the	  gyration	  based	  classification	  method	  simulation	  
case	   A.	   The	   simulation	   consisted	   of	   20	   trajectories	   and	   was	   repeated	   1,000	   times	   to	   yield	   the	  
distribution	   of	   lifetimes	   of	   the	   slow	   state	   (A)	   and	   the	   fast	   state	   (B).	   The	   gyration	  method	   used	   a	  
segment	   length	  of	  7	   frames.	  The	  arrows	   indicate	   the	   true	   lifetime	  of	  both	   states.	   (C)	  Example	  of	  a	  
lifetime	  fit	  of	  the	  fast	  state	  from	  one	  simulation.	  This	   fit	   is	  only	  performed	  over	  state	  events	   larger	  
than	   5	   frames.	   (D)	   Example	   of	   a	   fit	   of	   the	   slow	   state.	   This	   fit	   is	   only	   performed	   over	   state	   events	  
larger	  than	  5	  frames.	  Although	  the	  lifetimes	  found	  are	  not	  too	  far	  off	  in	  this	  case,	  in	  cases	  with	  longer	  
state	  durations	  (such	  as	  case	  D),	  the	  lifetimes	  found	  are	  significantly	  underestimated.	   	  
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FIGURE	  S6:	   Image	  reconstruction	  of	  the	  state	  classification	  distribution	  of	  simulation	  case	  A.	  In	  this	  
case	  there	  were	  as	  many	  slow	  as	  fast	  states.	  The	  dimension	  of	  the	  image	  is	  55x55µm,	  and	  the	  image	  
is	  reconstructed	  at	  60nm/pixel.	  
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FIGURE	  S7:	  Image	  reconstructions	  of	  the	  state	  classification	  distribution	  of	  a	  simulation	  with	  spatially	  
defined	  diffusion	  states.	  (A)	  Simulation	  (actual)	   image	  of	  fast	  state.	  (B)	  Simulation	  (actual)	   image	  of	  
slow	  state.	  (C)	  Fast	  state	  image	  found	  by	  MLE	  method.	  (D)	  Slow	  state	  image	  found	  by	  MLE	  method.	  
(E)	  Colour	   image	  of	   states	  map	  as	   found	  by	   the	  MLE	  method.	  Green	  represents	   fast	   state,	  and	  red	  
represents	   slow	   state.	   (F)	   Colour	   image	   of	   states	   map	   as	   found	   by	   the	   gyration	   method.	   Green	  
represents	  fast	  state,	  and	  red	  represents	  slow	  state.	  A	  segment	  length	  of	  4	  frames	  was	  used	  in	  both	  
classification	  methods	   (this	   value	   yielded	   the	   highest	   correctness).	   The	   dimension	   of	   the	   image	   is	  
15x15µm,	  and	  the	  image	  is	  reconstructed	  at	  30nm/pixel.	   	  

A B 

C D 

E F 



9 
Supporting Material  

 

 

 

FIGURE	  S8:	  The	  proposed	  approach	  for	  diffusion	  state	  classification	  applied	  to	  experimental	  data.	  (A)	  The	  CDF	  
fit,	  with	  corresponding	  PDF	  (B)	  and	  residuals	  (C),	  for	  the	  motion	  of	  EGF	  receptor	  in	  an	  MCF7	  cell	  shows	  that	  the	  
model	  of	   two-‐population	  Brownian	  diffusion	   is	  a	   suitable	  motion	  model.	   (D)	  An	  example	  of	  a	   single	  molecule	  
fluorescence	  frame	  recording	  of	  EGF	  receptor	  in	  an	  MCF7	  cell.	  The	  image	  has	  not	  been	  modified	  or	  filtered.	  
 
 
  

D 
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FIGURE	  S9:	  Histograms	  of	  unliganded	  EGF	  receptor	  state	  lifetimes	  for	  the	  fast	  state	  (upper)	  and	  the	  
slow	   state	   (lower)	   in	   frames	   (video	  was	   recorded	   at	   25	   fps),	   determined	   by	   gyration	   analysis.	   The	  
characteristic	  lifetime	  is	  determined	  from	  an	  exponential	  fit	  of	  state	  durations	  longer	  than	  5	  frames,	  
since	  the	  use	  of	  a	  segment	  length	  of	  7	  frames	  does	  not	  correctly	  resolve	  shorter	  lifetimes.	  The	  state	  
duration	  will	  be	  underestimated	  because	  of	  random	  incorrect	  state	  classification.	  
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FIGURE	  S10:	   Image	  reconstructions	  of	  the	  distribution	  of	  states	  exhibited	  by	   liganded	  EGF	  receptor	  
proteins	   in	   an	   MCF7	   cell.	   The	   resolution	   of	   the	   reconstructed	   images	   is	   30nm/pixel.	   (A)	   Image	  
showing	   the	   areas	   travelled	   by	   receptors	   in	   the	   fast	   diffusion	   state	   (green),	   and	   areas	   where	  
receptors	   in	   the	   slow	  diffusion	   state	  were	  detected	   (red).	   (B)	   Zoomed	   image	  of	   the	   indicated	  area	  
(white	  box)	  in	  A.	  	  
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Supporting Sections 

Quantification measures 

 

Mean squared displacement (MSD) 
The most straightforward way to determine the diffusion coefficient is by using the mean squared 
displacement (MSD) versus time lag curve (1). This provides an estimate of the diffusion coefficient, 
and also confinement (2), but the method requires that within the complete trajectory there is only one 
type of homogeneous motion. In short, the MSD is usually defined as the average of all squared 
distances between points within a certain lag time 𝜏 = 𝑛 ∙ ∆𝑡, with ∆𝑡 the time-delay between 
consecutive frames, and 𝑛 the interval of frames over which the distance is measured and averaged. 
For intervals larger than 1 frame, usually all available distances of a given duration 𝑛 ∙ ∆𝑡 are included, 
such that the distances are not statistically independent. Yet this way of averaging gives less variance 
to the average squared displacement value compared to taking only the independent distances (3). For 
pure Brownian motion, the relation between squared displacements (∆𝑅)! and the diffusion 
coefficient is a linear relation:  

MSD 𝜏 = ∆𝑅! !   = 4  𝐷  𝜏 + 2 𝜎!! + 𝜎!! =   4  𝐷  𝜏  +  4  𝜎!"! (1) 
 
where 𝜎!" is the standard deviation of the localization inaccuracy in one dimension, which is 
independent of the time lag. The estimated diffusion coefficient 𝐷 is found from fitting a line through 
the points at the different lag times in the MSD curve. We emphasize that it is not straight forward 

 
FIGURE	   S11:	   Illustrations	   of	   	   various	   segment	   analysis	  methods	   as	   quantification	  measures	   for	   the	  
proposed	   diffusion	   state	   classification	   approach.	   (A)	   Simulated	   two-‐population	   diffusion	   trajectory	  
and	   examples	   of	   selected	   information	   for	   the	   relative	   confinement	   and	   the	   gyration	  method	   on	   a	  
trajectory	  segment.	  Relative	  confinement	  detection	  takes	  the	  variance	  of	  distances	  from	  the	  center	  
of	   the	   segment	   (indicated	   by	   the	   grey	   arrows).	   The	   gyration	   radius	   depends	   on	   the	   variance	   and	  
covariance	   of	   the	   coordinates	   (segment	   indicated	   in	   grey	   with	   a	   dashed	   line).	   (B)	   Cumulative	  
distribution	  function	  (CDF)	  values	  and	  fit	  of	  squared	  displacements	  from	  a	  set	  of	  trajectories	  with	  two	  
diffusion	   coefficients	   (upper),	   and	   the	   corresponding	   probability	   density	   function	   which	   is	   the	  
derivative	   of	   the	   CDF	   (lower).	   The	   simulated	   values	   are	   in	   grey,	   the	   fit	   is	   drawn	   in	   black.	   (C)	   A	  
conventional	  full	  trajectory	  MSD	  curve	  from	  pure	  one-‐population	  diffusion	  (first	  500	  frames	  shown).	  
(D)	  A	  windowed	  MSD	  provides	  an	  instantaneous	  diffusion	  coefficient	  for	  all	  timepoints	  of	  a	  trajectory	  
by	  performing	  an	  MSD	  analysis	  only	  on	  a	  segment	  (the	  window,	  as	  indicated	  with	  dashed	  grey	  lines	  in	  
panel	  A)	  of	  the	  trajectory,	  and	  sliding	  this	  window	  through	  the	  whole	  trajectory.	  
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how to perform the fitting of the MSD curve to obtain diffusion values. A more detailed insight on this 
is given in the section “Accuracy of MSD methods and CDF fitting to obtain a one population 
diffusion coefficient” in the Supporting Materials. Moreover, conclusions from MSD curves must 
always be tested against unconstrained diffusion, as the randomness of normal diffusion may result in 
apparent anomalous diffusion (4). 

A recurring question is which points in the MSD curve can still be considered reliable. Certainly the 
variance of larger time lags gets increasingly larger, such that the points of larger time lags do not 
provide any reliable information. In the literature the first 10% points of the curve are often assumed 
to have not too much variance in their values (5). However, the analytical expression for one 
population Brownian motion for the variances has been derived (3, 6). Following this expression, 
Michalet discussed what the optimal number of points is to be taken into the fit for determining the 
diffusion coefficient (7). The optimal number of points depends on the ratio 𝛽 = 𝜎! 𝐷  ∆𝑡 , with σ 
the standard deviation of the localization inaccuracy. In the limit of no (or relatively small) 
localization inaccuracy, i.e. for small 𝛽, it was shown that the most accurate value for D is obtained by 
fitting with only the first two points of the MSD curve. This result was already noted earlier (2). 
However, since we consider two population diffusion systems which have both high and low diffusion 
constants and correspondingly both low and high 𝛽 values, we do not readily know the optimal 
number of points of the MSD curve that should be used in the fit. We have checked how the 
correctness of the fit depends on the number points of the MSD curve used using simulations (Fig. 
S2).  

Windowed MSD 
Typically, the MSD curve is made up from all positions in a trajectory, which cannot resolve local 
changes in the diffusion coefficient. Windowed MSD tries to give the local or instantaneous diffusion 
coefficient at each timepoint of a trajectory by performing the MSD analysis on small segments of the 
trajectory. First an MSD curve is composed for w subsequent positions in a trajectory, and the 
estimated D value is obtained from the first three points in the curve for this segment. This value is 
taken as the measure W. Then the MSD curve is made for the next subsequent positions, until the full 
trajectory has been slid through, and D values have been obtained for each segment, see also Fig. 
S11D. The use of a moving window makes it possible to detect temporal changes in the mode of 
motion on the order of the segment length (window size). The resolution is limited by the averaging 
nature of the method, since reducing the segment length means that the MSD curve is made up from 
fewer points, therefore increasing the statistical uncertainty of the fitted diffusion coefficient. 

Maximum Likelihood Estimation 
We have used a likelihood estimation approach here by comparing a window of measured squared 
displacements, a set of a few single steps ∆𝑅 ! , to the expectation value thereof given the 
distribution function of squared displacements originating from motion with a diffusion constant D. 
For one step of length ∆𝑅, we use 𝑃 ∆𝑅 ! 𝐷  to express the chance to find a certain squared 
displacement given Brownian motion with diffusion coefficient D. Since the expectation value of one 
squared displacement is independent of its predecessors, the chances for a tested D can be multiplied 
for each squared displacement ∆𝑅 !

!, hence the likelihood is given by: 

𝐿 ∆𝑅 !   |  𝐷 =   
1

4𝜋 𝐷𝜏 + 𝜎!"!
∙ exp −

∆𝑅 !
!

4 𝐷𝜏 + 𝜎!"!

!

!!!

 (2) 

 
where τ is the time lag, which is 1 frame, and N is the total number of steps in the window. The values 
for D are taken from the earlier CDF fit. In practice, the localization inaccuracy 𝜎!" must be 
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determined by other means first. Here we assumed that this value can be precisely obtained, and we 
used the true value as used in the generation of the trajectories. Here we determine the likelihood of 
both states, 𝐿! ∆𝑅 !   |  𝐷!  and 𝐿! ∆𝑅 !   |  𝐷! , and if 𝐿! > 𝐿!, the segment is classified as state 1.  
We could write this as a measure W by: 

𝑊 𝑡𝑟𝑎𝑐𝑘, 𝑓𝑟𝑎𝑚𝑒 =
𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 
(3) 

 
We have not taken exposure blur into account (8). Note that the MLE can also be used to estimate the 
value of the diffusion constant itself, by maximizing the expectation value by varying the tested D 
value; the maximum gives the most likely D value (9).  

Relative confinement 
Inspired by the confinement detection method of Simson (10), Meilhac used a slightly altered way to 
detect confinement (11), which we also use here. The relative confinement is defined by the parameter 
L as: 

𝐿 𝑡! +
!
!𝛿𝑡 =   𝛿𝑡 variance 𝑠  (4) 

 
𝑠 = 𝑟 𝑡 − 𝑟 𝑡! +

!
!𝛿𝑡   on  interval  𝑡 =    𝑡!. . 𝑡! + 𝛿𝑡  (5) 

 
An illustration of the distances s is given by arrows in Fig. S11A. Here we use the inverse of the value 
𝐿 for the motion quantification measure. 

Radius of gyration evolution 
The use of the radius of gyration has been first proposed by Saxton to measure asymmetry in single 
molecule trajectories (4), and it was demonstrated by Elliott et al. that it could also be used to detect 
confinement (12). The gyration radius is a measure of the space that is explored (defined by radius Rg) 
by the molecule within the segment, hence the radius will have a lower value for slow diffusion than 
for fast diffusion. Therefore the gyration radius is a local measure of the diffusion of a molecule, and 
can be used as a differentiation criterion in classification. We note that the expression in reference 12 
contains a typographical error, as the radius of gyration is defined as the square root of the non-
squared sum of the eigenvalues of the covariance matrix. However we followed Elliot et al. in an 
alternative measure, also called Rg. This alternative gyration radius Rg is defined as:  

 𝑅!! = 𝑅!! + 𝑅!! (6) 

where R1 and R2 are the eigenvalues of the gyration tensor T: 

𝑻 =

1
𝑁

𝑥! − 𝑥 !
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑥! − 𝑥    𝑦! − 𝑦
!

!!!

1
𝑁

𝑦! − 𝑦 !
!

!!!

 (7) 

  
with i enumerating all subsequent positions (𝑥! , 𝑦!) in a segment of length N. We will use the value 𝑅! 
as a motion quantification measure. 	  
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Table	  S1:	  Motion	  quantification	  measures	  

Method Quantification measure W 

Windowed MSD fit of a MSD curve of a segment using first two points in curve 

Confinement 1
𝐿 𝑡! + !

!𝛿𝑡
 

Gyration Rg 

MLE 𝐿 ∆𝑅 !   |  𝐷!
𝐿 ∆𝑅 !   |  𝐷!

 

 

 

FIGURE	  S12	  	  	  Distribution	  of	  found	  quantification	  measure	  values	  for	  pure	  one-‐population	  diffusion.	  
The	  histograms	  of	  three	  different	  diffusion	  constants	  are	  shown,	  where	  in	  all	  cases	  we	  added	  a	  
localization	  inaccuracy	  σxy	  of	  40	  nm	  to	  the	  positions	  in	  the	  simulations.	  (A)	  Histograms	  of	  values	  
found	  using	  a	  windowed	  MSD.	  	  The	  broadening	  in	  the	  slower	  diffusion	  distributions	  are	  due	  to	  the	  
convolution	  with	  the	  localization	  inaccuracy.	  (B)	  Histogram	  of	  values	  found	  using	  relative	  
confinement.	  (C)	  Histogram	  of	  values	  found	  using	  gyration.	  



Live cell experiments methodology 

Cell culture 
All cell culture materials were obtained from PAA Laboratories (Pasching, Austria) unless stated 
otherwise. MCF7 cells, a human breast cancer cell line, and plasmid coding for SNAP-EGFR were a 
gift from Jenny Ibach (Max Planck Institute in Dortmund, Germany). Cells were cultured in 
Dulbecco’s Modified Eagle’s medium supplemented with 10% FBS and penicillin/streptomycin at 
37°C with 5% CO2.  Before measurements, the cells were transferred to CellView dishes product 
#627870  (Greiner Bio-one, Alphen aan den Rijn, The Netherlands), grown overnight, transfected with 
SNAP-EGFR using Effectene (Qiagen, Venlo, The Netherlands), and then starved overnight the day 
after transfection in medium without FBS. Labeling of the SNAP-EGFR proteins was done by 
incubating the cells for 1 minute with 400nM of SNAP-Surface 549 (New England BioLabs, Ipswich, 
MA, USA) in 0.5% BSA. Measurements were performed in PBS buffer with added magnesium and 
calcium (PAA Laboratories, product H15-001). 

Microscopy 
Measurements were performed on a microscope with an Olympus PlanApo 100x/1,45 Oil TIRF 
objective using TIRF illumination. For excitation a 532nm laser (400mW) from Pegasus Shanghai 
Optical Systems (Pegasus Lasersysteme, Wallenhorst, Germany ) was used. All the light filters were 
obtained from SemRock (Rochester, NY). The infrared light produced by the laser was not sufficiently 
suppressed, therefore the green laser light passed an FF01-543/22 filter. The excitation and emission is 
split by an FF494/540/650-Di01 dichroic mirror. The emission light is filtered with an NF03-
532/1064E notch filter and an FF01-580/60 bandpass filter. Fluorescence images were acquired using 
an Andor iXon EM+ DU-897 back illuminated EMCCD with an acquisition time of 9ms and a kinetic 
cycle time of 38ms (25.8 fps). The microscope stage was heated with a sample heating plate and the 
objective was heated with a ring heater to 35-37°C. 

Tracking 
To obtain the trajectories from the raw videos, we used tracking software developed by others (13, 
14). The settings used for the cost matrices in this software can be found at the end of the Supporting 
Materials.  
16 
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Accuracy of MSD methods and CDF fitting to obtain a one 
population diffusion coefficient 
 

It might seem, and it is often stated, that the CDF method is more accurate in determining the diffusion 
coefficient for a one population diffusion system compared to simply averaging the stepsizes as in 
MSD methods (15), as it considers the whole distribution of stepsizes. In practice however, this is not 
always correct. Also the number of points from an MSD curve taken into the fit to determine the 
diffusion coefficient are often based on a “rule of thumb” concept, such as taking the first three or four 
or the first 10% of the curve. However the accuracy to find the diffusion coefficient can simply be 
found by simulation and also by calculation (3). We show a simulation approach here to determine the 
spread of found diffusion coefficients from CDF and MSD methods.  

We simulated one-population unconstrained diffusion for 100 trajectories of various lengths, with a 
relatively small localization error compared to the diffusion coefficient, so for  𝛽 = 𝜎! 𝐷  ∆𝑡  ratio 
smaller than 1, see (7). We found that, for all lengths of trajectories, a CDF fit with only 1 stepsize is 
indeed, but only slightly, more accurate compared to the best MSD based fit; the value is of course 
wrong when not corrected for the added localization inaccuracy to the real diffusion coefficient. In 
practice this means we have to use the CDF of 2 steps too, and use the difference for CDF 2 steps and 
CDF 1 step to determine the diffusion coefficient. This 2 steps CDF methods has been described in 
detail in the methods section. Using this last method however, we found to be less accurate compared 
to the best MSD based fit where we take only the first two points in the curve (also the 1-steps and 2-
steps). Using only the first two points in the MSD curve was the best MSD based fit for this ratio of β. 
Therefore the CDF was not taken as a method for classification, as the MSD is preferred for one 
population diffusion therefore. Nevertheless, the CDF method has a known PDF for a distribution with 
multiple diffusion constants unlike the windowed MSD distribution, so this is still a straight forward 
method to find the global diffusion constant values and fractions when there are enough datapoints to 
build a reliable CDF.  
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FIGURE	  S13	  	  	  	  Error	  and	  standard	  deviation	  of	  MSD	  methods	  to	  obtain	  a	  one	  population	  diffusion	  coefficient.	  
For	  100	  simulated	  trajectories	  exhibiting	  one-‐population	  Brownian	  motion	  	  (D=0.1	  um2/s,	  25fps)	  of	  various	  
lengths	  (3,5,8,..,100	  steps)	  as	  plotted	  on	  the	  x-‐axis,	  the	  diffusion	  value	  was	  determined	  from	  fitting	  the	  MSD	  
curves	  of	  all	  trajectories.	  We	  added	  localization	  inaccuracy	  of	  σxy	  =	  40nm	  to	  the	  simulated	  trajectories	  (C,D).	  
This	  fit	  was	  done	  using:	  the	  full	  curve	  (a),	  full	  curve	  weighted	  using	  the	  variance	  of	  each	  point	  (b),	  the	  first	  10%	  
(c),	  only	  the	  first	  two	  points	  (d),	  and	  using	  cumulative	  distribution	  function	  (CDF)	  fitting	  of	  steps	  (e),	  and	  using	  
CDF	  of	  one-‐step	  and	  two-‐step	  distances	  (f).	  We	  repeated	  this	  1,000	  times,	  and	  looked	  at	  the	  standard	  
deviation	  σ	  (A,C),	  and	  the	  average	  mismatch	  <ε>	  (B,D)	  in	  the	  fitted	  diffusion	  values.	  The	  1	  step	  CDF	  method	  
has	  the	  lowest	  standard	  deviation	  in	  the	  fitted	  values,	  but	  gives	  the	  wrong	  value	  when	  there	  is	  a	  localization	  
inaccuracy	  as	  in	  practice.	  The	  most	  accurate	  way	  of	  using	  the	  points	  in	  the	  MSD	  curve,	  is	  to	  only	  use	  the	  first	  
two	  points	  of	  the	  MSD	  curve.	  
 

 

  



Settings file for SPT tracking software 
 
Dat.PixelSize = .119;  
Dat.TimeStep = 0.03868; 
Dat.ch_bin = [1];  
Params.verbose = 1;  
Params.frames = []; 
Params.psf = [0.84034 0.84034]; 
Params.imMask = []; 
Params.wvMask = [];  
Params.CCDGain = 63.8298; 
Params.CCDOffset = 0; 
Params.Intensity = 1.90; 
Params.FitBoxSize = [7];  
Params.Iterations = 10;  
Params.MaxCudaFits = 30000;  
Params.MinCRLBSigma = 0.5;  
Params.MinPValue = 0.01;  
Params.MinPhotons = [10];  
Params.ConnectParams.costMatF2Fparams = costMatFrame2FrameSetOptions; 
Params.ConnectParams.costMatGCparams = costMatCloseGapsSetOptions; 
%%% set parameters for frame 2 frame connections %%% 
Params.ConnectParams.costMatF2Fparams.funcName = 
'costMatFrame2FrameDensity'; 
Params.ConnectParams.costMatF2Fparams.density = []; 
Params.ConnectParams.costMatF2Fparams.D = 
[0.06*Dat.TimeStep/Dat.PixelSize^2 0.06*Dat.TimeStep/Dat.PixelSize^2 ]; 
Params.ConnectParams.costMatF2Fparams.maxSearchDist = [4 4]; 
Params.ConnectParams.costMatF2Fparams.kon = 0.1; 
Params.ConnectParams.costMatF2Fparams.koff = 0.0001; 
Params.ConnectParams.costMatF2Fparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatF2Fparams.wvJump = []; 
%%% set parameters for gap closing %%% 
Params.ConnectParams.costMatGCparams.timeWindow = 10; 
Params.ConnectParams.costMatGCparams.funcName = 'costMatCloseGapsDensityM'; 
Params.ConnectParams.costMatGCparams.density = []; 
Params.ConnectParams.costMatGCparams.D = [0.01 0.01]; 
Params.ConnectParams.costMatGCparams.maxSearchDistPerFrame = [3 3]; 
Params.ConnectParams.costMatGCparams.maxSearchDist = [10 10];  
Params.ConnectParams.costMatGCparams.minTrackLen = 2; 
Params.ConnectParams.costMatGCparams.kon = 0.1; 
Params.ConnectParams.costMatGCparams.koff = 0.0001; 
Params.ConnectParams.costMatGCparams.maxWvSearchDist = []; 
Params.ConnectParams.costMatGCparams.wvJump = []; 
Params.TrackFunction = 'obj.makeTrack'; % standard two stage tracking call. 
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