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Supplementary Figures and Legends 
 
 
 
 
 
 

 
 

 
 
 
 
Supplementary Figure 1 | Generation of experimental animals used in the HCC transposon screen 
a, Scheme of the genetic cross used to generate the Liver-SB/HBsAg animals. The T2/Onc2 (6113) SB transposon 
concatamer inserted in mouse chromosome 1 carries ~358 transposon copies1. High transposon copy number was 
important for obtaining insertions that mimic the genetic heterogeneity of HCC. The donor transposon concatamer is 
mobilized by SB transposase expression. The conditional transposase inserted in the Rosa26 locus, Rosa26-lsl-SB112, is 
expressed after Cre recombination. A Cre recombinase under control of albumin (Alb) promoter3  was used to activate 
transposase selectively in hepatocytes. The HBsAg transgene was used to promote hepatic chronic inflammation and 
sensitize for HCC tumorigenesis.  b, Schematic for the activation of Rosa26-lsl-SB11 by Alb-Cre recombination, specific 
to hepatocytes. c, Efficient mobilization of the transposon in non-tumorous liver tissue of a Liver-SB/HBsAg mouse (72.3 
week-old) and in tumor tissue, but not in tail. PCR-based excision analysis, as previously described 4. 
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Supplementary Figure 2 | Liver pathology in HBsAg/Liver-SB mice 
a, Orcein staining of the liver of a 20.4 week-old Liver-SB/HBsAg male mouse. Orcein stains the HBsAg antigen in dark 
red and shows the characteristic ground glass appearance of hepatocytes seen in the human disease 5. This ground glass 
appearance results from the accumulation of the HBsAg in the endoplasmic reticulum. b, Preneoplastic hepatocellular foci 
of hyperplastic hepatocytes, with inflammatory mononuclear cells in a 19.7 week-old Liver-SB/HBsAg male mouse. c, 
The total number of grossly visible tumors was counted in euthanized moribund Liver-SB/HBsAg and Liver-SB livers. 
The count includes intrahepatic tumors; the lobes were cut and tumor nodules seen inside the lobes also counted. Two-
tailed unpaired t test was used to compare Liver-SB and Liver-SB/HBsAg data. Error bars represent the standard 
deviation. d, Hepatocellular carcinoma in a male Liver-SB/HBsAg mouse at 63.6 weeks of age. Macroscopic picture (left 
panel) showing multiple large liver tumors, and H&E staining (right panel) showing trabecular HCC. e, Percentage of 



 

4 
 

liver weight compared to body weight for sick animals. The littermate control mice were not sick but were necropsied at 
comparable ages (60 to 120 weeks of age). The number of mice assessed is shown in the bars. For both the female and 
male mice, a one-way ANOVA showed that the means differed significantly between the four groups (females: F=12, 
p=5.5.10-6; males: F=15, p=1.6.10-7). More specifically, a Tukey’s HSD test showed significant differences (p<0.05) for 
female Control vs. Liver-SB, female Control vs. Liver-SB/HBsAg, male Control vs. Liver-SB/HBsAg, female HBsAg vs. 
Liver-SB, female HBsAg vs. LiverSB/HBsAg , male HBsAg vs. LiverSB/HBsAg, and male LiverSB vs. LiverSB/HBsAg. 
Most liver weight increases were due to liver tumor burden. Error bars represent the standard deviation. f, Gross pictures 
of the livers of animals 12.2 to 14.5 months of age. Livers with the most tumors were in the HBsAg/Liver-SB group. 
Liver-SB mice had the fewest liver masses. The scales represent mm.  
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Supplementary Figure 3 | Distribution of the 228 tumors used for cancer gene identification
A total of 250 tumors were deep sequenced to characterize their transposon insertions. When the tumors were 
harvested from the same animal they were from different lobes, or when from the same lobe they were not 
continuous. However, we cannot exclude that some tumors from the same animal display genetic similarities. We 
pruned genetically similar tumors based on their transposon insertion sites (see Supplementary Methods) and 
removed 22 tumors that showed partial genetic similarity with others. For further analyses, we utilized insertional 
data from the remaining 228 large tumors. They were 22 to 178 mm in size and obtained from 34 moribund mice 
at 10.6 to 19.3 months of age (110 tumors from female and 118 tumors from male mice).  
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Supplementary Figure 4 | Tumors are genetically dissimilar 
a, To determine whether tumors isolated from the same mouse were truly independent, we clustered the tumors 
based on their GKC-derived CIS patterns using complete linkage hierarchical clustering with Spearman 
correlation. The mouse ID numbers are indicated. b, Distributions of the Spearman correlation coefficients for 
tumors within (blue curve) or between (red curve) mice. The median Spearman correlation coefficients for tumors 
from the same or different mice were not significantly different from each other, indicating that tumors from the 
same mouse were just as dissimilar, on average, as tumors originating from different mice. Moreover, the 
correlation coefficient was less than 0.1, indicating no positive correlation in both cases. c, Distribution of CISs 
based on their mutation rate in tumors from different mice. The CIS counts represent the number of CISs found in 
a particular number of animals. The number of mice associated to CIS represents the total number of animals in 
which a particular CIS is identified. All CISs are mutated in tumors from at least nine different mice.   
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Supplementary Figure 5 | CISs identified by the GKC and gCIS methods 
a, The gene centric method (gCIS)6 identified 2525 CISs and GKC7 identified 2041 CISs. The overlap of the 
genomic regions of GKC CISs with gCISs was higher than expected by chance (83.0% overlap, p<2.10-16, Chi-
square with Yates correction). The union of these two methods gave 2871 CIS loci that represented 2881 
candidate cancer genes. This was because two genes can be annotated to one GKC CIS when the loci overlap or 
when the CIS is located between two genes. b, CIS genes were  ordered by size. Gene lengths were obtained from 
the Mouse Genome Informatics (MGI) database, miRNAs were excluded. c, Box-plot representing the variation 
of gene size associated with CISs of various categories. (b,c) Very large and very small genes are poorly 
identified by the GKC method due to the use of fixed kernel widths (15K to 240K).  
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Supplementary Figure 6 | CIS calling for two subgroups of 100 tumors leads to similar results 
Two subgroups of 100 tumors each from 17 independent mice were used for CIS calling with both GKC and gCIS 
methods. a, There was a 74% overlap in the CISs identified in tumors from group 1 and group 2, which was much 
higher than expected by chance (p<2.10-16 Chi-Square with Yates correction).   b, There is a strong linear 
correlation in the frequency a CIS was mutated in the two subgroups of tumors. c, CISs that are unique to one 
subgroup, or are shared between two subgroups, are plotted against the percent of tumors with an insertion in the 
CIS.  CISs found in both groups are of higher frequency, while the CIS that differs between group 1 and 2 are 
around the significance cut-off.  The CISs close to the cut-off are the ones that differ most. 
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Supplementary Figure 7 | SB/HBV screen is reaching saturation 
a, Overlap of the CISs from group 1 and group 2 tumors with the CISs obtained from all 228 tumors (see 
Supplementary Figure 6). The overlap was 96% on average and much higher than expected by chance (p values 
less than 2.10-16 Chi-Square with Yates correction), implying a good depth of coverage of our screen.   b, CISs 
that are unique or common between group 1 and 2 and the CISs from 228 tumors are represented according to 
their presence in a certain proportion of tumors. The percent of CIS occurrence in tumors are significantly 
different (unpaired t-test) between CISs in common or found uniquely. c, Linear correlation between the 
frequency a CIS is mutated in all 228 tumors and the frequency it is mutated in group 1 or group 2 tumors. No 
significant variation was detected (unpaired t-test).  



 

11 
 

 
 
 

 
 
 
Supplementary Figure 8 | Overlap between the CIS genes and CISs identified in three different Liver-SB 
screens 
a, We compared our list of 2881 CIS genes with the CIS genes identified in two other smaller-scale Liver-SB 
screens. We found 16 of the 18 CISs previously identified tumors induced in a p53-deficient background8 among 
our list of CIS genes. In addition, in another Liver-SB screen done in a Sav1-deficient background, described in 
Supplementary methods and Supplementary Table 1e, 90 of the 116 CIS genes identified in the screen were also 
among our list of CIS genes. b, Diagram showing the overlap between the CISs found in the three Liver-SB 
screens. 
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Supplementary Figure 9 | CIS genes associated with highest sequence read counts 
a, We obtained CISs from SB insertions with sequencing read counts ≥ 4. These CISs were plotted 
according to their median values of sequence reads obtained for insertions in the CIS and their frequency of 
occurrence in tumors. The CISs highlighted in red are the outliers, and are considered to be strong driver 
genes in SB-induced HCC. b, Mapping of SB insertions in the imprinted locus on Chr12 reveals a transposon 
orientation bias. Most insertions are in the same strand as Rtl1 gene, suggesting an activation of downstream 
genes and/or microRNAs. The scale represents the mm9 mus musculus genome. 
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Supplementary Figure 10 | HCC CIS genes are mutated in other types of cancer 
a, We compared our list of HCC CIS genes with the list of CIS genes identified in CRC7 and PDAC9,10. The 
overlaps were then calculated as well as p values for enrichment of the overlap (2x2 contingency table, Chi-square 
with Yates’ correction). b, About 61% of the genes identified in CRC7 and PDAC9,10 were also identified in HCC.  
These latter genes likely represent common cancer genes selected in many types of cancer.  
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Supplementary Figure 11 | CIS genes found in the Liver-SB/HBV screen are also misexpressed in human 
HCC 
Microarray data11 from 223 HCC patients containing data from tumor tissue and adjacent normal tissue 
(GSE14520). a, Diagram representing the human genes present on the Affymetrix microarray and corresponding 
orthologs of mouse HCC CIS genes. All genes mapping to mouse chromosome 1 were excluded. b, The 
proportion of differentially expressed genes was higher for the HCC CIS genes than for all other genes present in 
the microarray. Enrichment p value was <2.10-16 (2x2 contingency table, Chi-square with Yates’ correction). c, 
Boxplot showing the Log transformed p values for differential expression of genes between HCC tissue and 
adjacent non-tumor tissues. The p values are significantly lower for HCC CIS genes. d, Proportion of all CIS 
genes and non-CIS genes found to be up- or down-regulated in the microarray datasets. e, HCC CIS genes 
showed more misregulation on the arrays compared with CRC and PDAC CIS genes (p<2.10-16, Chi-Square with 
Yates correction for all). f, High-throughput qRT-PCR validation and clustering analysis represented as a 
heatmap shows similar expression pattern differences between tumor and adjacent non-tumor samples for 18 
HBV-positive patient samples and 9 HBsAg/Liver-SB samples. We assessed 30 genes (including 21 Liver-
SB/HBV CIS genes) representing several key oncogenic pathways (Myc, Pi3k/Akt/mTor, Ras, p53, Tgfβ, Wnt/β-
catenin) in addition to three of our most highly mutated genes (Adk, Dpyd, Zbtb20). g, Correlation  of the RT-
qPCR fold change in expression between mouse and human samples (from Supplementary Table 4). The left 
panel shows a positive correlation, whereas the right panel shows no correlation when using randomized values. 
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Supplementary Figure 12 | HCC, CRC and PDAC CIS genes are enriched for genes in major cancer 
signaling pathways 
a, Enrichment of CIS genes in major cancer signaling pathways . Pathway genes and CIS genes are listed in 
Supplementary Table 5. Pathway analysis was performed for HCC, CRC7 and PDAC9,10 CIS genes, and the 
smaller-scale HCC transposon screen performed in a Sav1-deficient background (described in Supplementary 
Methods and Supplementary Table 1e). The p values for enrichment (based on number of genes targeted per 
pathway) were calculated using 2x2 contingency tables, Chi-Square with Yates correction, two-tailed p values. b, 
These box-plots represent the frequency of CISs that either belong to these pathways or not. CIS genes from these 
pathways are significantly enriched in CISs of higher frequency (two-tailed p value, unpaired t-test). 
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Supplementary Figure 13 | Gene ontology analysis for HCC, PDAC and CRC CIS genes 
The lists of CIS genes were uploaded into DAVID bioinformatics12 and the enrichment in biological processes 
was obtained. The bars represent the –log10 of the p values for enrichment. Only significant results are shown 
(p<0.05). Although the PDAC and CRC mutagenesis screens are not approaching saturation, most ontologies 
show relatively similar p values. HCC display a much higher enrichment in genes related to metabolic processes.  
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Supplementary Figure 14 | Gene ontology analysis focused on metabolic processes with CIS genes obtained 
from CRC7, PDAC9,10 and Liver-SB/HBV studies 
The lists of genes were uploaded into Ingenuity Pathway Analysis and DAVID bioinformatics12 and enrichments 
for metabolic biological processes were obtained (children terms of “cellular metabolic process” in DAVID). The 
bars represent the –Log10 of the p values for enrichment. Only significant results are shown (p<0.05).
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Supplementary Figure 15 | Molecular pathogenesis linked to metabolism in liver tumors 
a, Heatmap representing the hierarchical clustering of gene expression levels of 52 metabolic genes from key 
metabolic processes like glycolysis, glutaminolysis, redox regulation, pentose phosphate pathways, and the TCA 
cycle. Tumor samples from 9 HBsAg/Liver-SB mice and 18 HBV-positive human HCC patients are shown. 
Tumor tissues and adjacent non-tumor tissues were assessed. CIS genes listed in Supplementary Table 1c are 
labeled with *. b, Correlation of average fold change expression values between the mouse and human samples 
(from Supplementary Table 4). Each dot represents one gene. The left panel shows a positive correlation between 
the two species, whereas the right panel shows no correlation when using randomized values. 
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Supplementary Figure 16 | Quality control of metabolomics data 
Gas chromatography mass spectrometry was performed on tumors larger than 5mm and adjacent normal tissue for 
each animal. Principal component (a) and Partial Least Square-Discriminant (b) analyses of the data grouped most 
samples consistently to their provenance from tumor or control tissue. (N = number of observations; A = number 
of components; R2X and Q2 = PCA validation parameters, B= latent variables). a, The analytical performance of 
GC/TOFMS was found to be satisfactory as the non-supervised PCA scores plot showed that all the QC samples 
were clustered in greater proximity compared to the cancer and control groups. b, The supervised PLS-DA model 
and its associated validation parameters further demonstrated that the prediction model was robust [5 Latent 
variables, R2Y = 0.989, Q2(cum) = 0. 778]. Validation of the PLS-DA model using permutation analysis 
confirmed that the model was not due to chance correlation (data not shown). The marker metabolites were 
identified on the basis of the pre-defined criteria and the PLS-DA model constructed between the normal matched 
(NM) normal and tumor (TU) tissues. The marker metabolites and their associated parameters (variable 
importance value = VIP, p values and fold change) are summarized in Supplementary Table 7. 
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Supplementary Figure 17 | Untargeted metabolic profiling for liver tumors and non-tumor adjacent tissue 
Heatmap representing hierarchical clustering analysis of the 56 metabolites found to be significantly changed in tumors 
(TU) and adjacent non-tumor (NM) liver tissue of HBsAg/Liver-SB mice (p<0.01, see Supplementary Table 7).  



 

22 
 

  

 
 
 
 
Supplementary Figure 18 | Mapping of various datasets to redox pathways disrupted in HCC  
To understand the metabolic pathways disrupted at the genetic, mRNA, and metabolite levels, we used data from 
the Liver-SB/HBV screen (Supplementary Table 1c), human expression data11, and metabolomics results 
(Supplementary Table 7). Metabolites are written with larger font size, and genes with smaller font size. Red or 
green fonts mean the gene expression or metabolite amount is increased or decreased, respectively, in HCC tissue 
versus adjacent non tumor tissue. CIS genes listed in Supplementary Table 1c are labeled with *. Rapid tumor cell 
growth and proliferation induce a high level of reactive oxidative stress (ROS) which hampers tumor cell 
survival13. Liver HCC tumor counteracted the effects of ROS by employing antioxidant defenses including 
NADPH, glutathione, and thioredoxin. The conversion of glutamine-derived malate to pyruvate by Me1 (malic 
enzyme 1) gene and the activation of PP pathway may produce NADPH. The synthesis of glutathione may 
happen through glutaminolysis (Gclc, Gss) and thioredoxin production may be induced by its gene expression and 
its enhanced metabolic processing. 
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Supplementary Figure 19 | Biochemical metabolic assays confirm the predictions from the integrated 
datasets 
Enzymatic activities in normal tissue and tumors. Increased reduction of pyruvate to lactate by lactate 
dehydrogenase (Ldh) in tumors illustrates the ‘Warburg effect’, in which a higher NADH/NAD+ turnover is 
required for aerobic glycolysis. In large tumors, elevated alanine transaminase (Alt) activity enables rapid 
conversion of alanine into pyruvate, in order to support increased pyruvate anaplerosis. Large tumors also include 
glutamine as an anaplerotic carbon source to supplement the increased metabolic fuel requirement. Error bars 
represent the standard error of the mean (SEM). Kruskal-Wallis tests were performed for each of the cases Ldh, 
Alt, and Gls. They showed that in each of these cases, the group means were different (FDR-corrected p-value = 
0.027 for Ldh, 0.005 for Alt, 0.0178 for Gls). More specifically, Nemenyi tests showed significant differences 
between specific groups as indicated on the graphs (p represents Nemenyi’s adjusted p value). When no indication 
is mentioned, there was no significant difference. Spearman correlation showed that the all enzymes activities 
significantly increased with tumor size (rho=0.51, FDR-corrected p=0.0051 for Ldh, rho=0.65, FDR-corrected 
p=0.0051 for Alt, and rho=0.58, FDR-corrected p=0.0051 for Gls). The numbers of samples assessed in each 
group are indicated above the bars. 
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Supplementary Tables 
 

Supplementary Table 1 | List of CISs obtained from liver tissues. 
a, CISs obtained from 228 Liver-SB/HBV hepatic tumors with the gene centric method. b, CISs 
obtained from 228 Liver-SB/HBV hepatic tumors with the GKC method. c, Union of (a) and (b). The 
genes also found in other transposon-based mutagenesis screens7,9,10 are indicated. d, The CISs obtained 
from SB insertions with sequencing read counts ≥ 4. The CISs highlighted in blue indicate the outliers 
considered to be strong driver genes induced by SB in HCC. e, CISs obtained from liver tumors in a 
Sav1 liver-knockout background (screen  described in Supplementary Materials). Sfi1 and En2 genes 
were removed from all lists as they are known artifacts due to multiple copies of this gene in the mouse 
genome, or presence in the transposon sequence, respectively. 
  
Supplementary Table 2 | Cross-species comparison between HCC CIS genes and human 
expression data. 
The microarray data from 223 human HCC patient samples (GSE14520), tumor tissue and adjacent non-
tumor tissue11 were used. The expression results are indicated for all the CIS genes of the Liver-SB 
screen. The genes highlighted in grey are below the threshold of significance (significance: absolute 
value of fold change >1.5 and adjusted p value <10-5). 
   
Supplementary Table 3 | List of HCC candidate cancer genes that are also found mutated in 
human cancer, or mis-regulated in human HCC 
CISs highlighted in red are found either mutated or mis-expressed in human cancer (see Table 1 and 
Figure 3).  
 
Supplementary Table 4 | Cross-species comparison of several genes of interest by high-content 
RT-qPCR (Biomark™). The fold changes were calculated with 10 out of 18 HBV-positive HCC 
samples and 6 out of 9 HBsAg-positive Liver-SB mouse tumor samples that belonged to the most 
representative HCC gene signature (Supplementary Figures 11f and 15a). Gene expression levels in 
tumors and non-tumor adjacent tissues were calculated, as well as two-tailed p values (unpaired t-test). 
Primer sequences used for the Biomark™ qPCR validation are indicated. 
 
Supplementary Table 5 | CIS genes mapping to cancer signaling pathways 
The tables list genes of several canonical cancer signaling pathways. The CIS genes obtained in HCC-
SB, PDAC-SB9,10 and CRC-SB7 screens are mentioned with their percentage of occurrence.  
 
Supplementary Table 6 | Lists of HCC CIS genes classified by biological or metabolic processes. 
a, Classification by biological processes using DAVID bioinformatics12.  b, Classification by metabolic 
processes using both DAVID bioinformatics  and Ingenuity Pathway Analysis.  
 
Supplementary Table 7 | List of marker metabolites found misregulated in liver tumors.  
Variable importance value (VIP), p values from t-test and Welch test, and fold change for tumor tissue 
versus adjacent normal tissue are indicated. 
 
Supplementary Dataset 1 | Non-redundant transposon insertions.  
This file contains BED files listing non-redundant insertions from the 228 large liver tumors.  
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