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S1 Model Derivation under Gaussian Assumption

We assume the gene expression follow Gaussian distribution, and then the network learning

problem is mathematically equivalent to a Gaussian graphical model learning problem. In

Gaussian graphical models, the structural of the graph is mathematically characterized by

the inverse of the covariance matrix, Σ−1. The non-zeros elements of Σ−1 indicate connec-

tions between the corresponding nodes on the graph. Therefore, learning the structure of

Gaussian graphical models is in essence to identify the sparse (non-zero) structure of Σ−1,

which takes care of all orders of dependencies.

`1-regularization has been successfully applied to learn the sparse (non-zero) structure

of Σ−1 following one of two main approaches: one approach is to apply `1-regularization

to identify the neighborhood of the nodes in the network, one node at a time, proposed by

Meinshausen and Bühlmann (Meinshausen and Bühlmann, 2006); and the other approach

is to maximize the penalized log-likelihood, proposed in (Banerjee et al., 2008). There is an

established link between the two approaches: the latter approach is the exact maximization

of the `1-penalized log-likelihood, while the former approach, which is also the approach

adopted in our paper, is an approximation of the exact problem and asymptotically con-

sistently estimates the set of nonzero elements of Σ−1 (Friedman et al., 2008; Meinshausen

and Bühlmann, 2006; Banerjee et al., 2008).

While our node by node strategy does make inference faster, the higher order depen-

dencies are still preserved by the method. In fact, we can quickly show that dependencies

are captured by this node by node regression theoretically under Gaussian assumption.

Without loss of generalization, we denote p variables follow zero mean multivariate

Gaussian distribution:

X =


x1

x2
...

xp

 ∼ N(0,Σ) = C1 exp(−1

2
XTΣ−1X). (S1)

We always move the node being inferred to the position of xp in X. Let X−p =
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[x1, x2, · · ·xp−1]T , and

Σ−1 =

Σ11 Σ1p

Σp1 Σpp

−1, (S2)

in which Σ11 is a (p− 1)× (p− 1) matrix.

Using block matrix inverse, we get

XTΣ−1X =XT
−p(Σ11 −Σ1pΣ

−1
pp Σp1)

−1
X−p −XT

−pΣ
−1
11 Σ1p(Σpp −Σp1Σ

−1
11 Σ1p)

−1
xp

− xpΣ−1pp Σp1(Σ11 −Σ1pΣ
−1
pp Σp1)

−1
X−p + xp(Σpp −Σp1Σ

−1
11 Σ1p)

−1
xp

=XT
−pΣ

−1
11 X−p + XT

−pΣ
−1
11 Σ1p(Σpp −Σp1Σ

−1
11 Σ1p)

−1
X−p

− 2XT
−pΣ

−1
11 Σ1p(Σpp −Σ−111 Σ1p)

−1
xp + xp(Σpp −Σp1Σ

−1
11 Σ1p)

−1
xp

=XT
−pΣ

−1
11 X−p + (xp −Σp1Σ

−1
11 X−p)

T
(Σpp −Σp1Σ

−1
11 Σ1p)

−1
(xp −Σp1Σ

−1
11 X−p)

(S3)

The conditional probability of xp

P (xp|X−p) =
P (xp,X−p)

P (X−p)

=
C1 exp(−1

2XTΣ−1X)

C2 exp(−1
2XT
−pΣ

−1
11 X−p)

=C3 exp(−1

2
(xp −Σp1Σ

−1
11 X−p)

T
(Σpp −Σp1Σ

−1
11 Σ1p)

−1
(xp −Σp1Σ

−1
11 X−p))

∼N(xp −Σp1Σ
−1
11 X−p,Σpp −Σp1Σ

−1
11 Σ1p)

(S4)

is also Gaussian distributed. So the maximum likelihood estimation of xp is

xp(MLE) = Σp1Σ
−1
11 X−p, (S5)

which is boiled down to the linear combination of the remaining nodes.

S2 Proof of Theorem 1

Theorem 1 can be illustrated as Figure S1. Networks are represented by connected clusters

of nodes, with gray edges indicating common connections under both conditions, green

edges indicating connections uniquely exist under one condition and red edges indicating
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connections uniquely exist under the other condition. GT is the underlying ground-truth

network. GX is the network learned purely from data. δ will control the increase in the

error rate induced by random knowledge within the shaded region. By incorporating prior

knowledge with good quality, the learning result GX,W can escape the shaded region and

result is significantly improved.
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Figure S1: Illustration of theorem 1.

The following is a mathematical proof of the theorem.

Theorem 1. For a given δ ∈ [0, 1), if the prior knowledge incorporation parameter θ

satisfies
E[d(GX, GX,WR,θ)]

|EX|
≤ δ, (S6)

then the increase in the error rate induced by incorporating random prior knowledge is

bounded by δ, more specifically,

E[d(GX,WR,θ, GT)]

|ET|
≤ d(GT, GX)

|ET|
+ δ (S7)

Proof. The graph edit distance between GX and GT is

d(GT, GX) = FP + FN. (S8)
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The relationship between EX and ET is

|EX| = |ET|+ FP − FN. (S9)

The deviation of learned network GX,WR,θ after knowledge incorporation from purely

data-driven result GX is expected to have P wrongly identified edges and N missing edges,

E[d(GX, GX,WR,θ)] = P +N. (S10)

Denote the expected number of false positives and false negatives of GX,WR,θ compared

to the ground-truth GT as FP ′ and FN ′. We have

FP ′ ≤ FP + P, (S11)

FN ′ ≤ FN +N. (S12)

Therefore,

E[d(GT, GX,WR,θ)]

|ET|
=
FP ′ + FN ′

|ET|

≤ FP + FN + P +N

|ET|

=
d(GT, GX) + E[d(GX, GX,WR,θ)]

|ET|

≤ d(GT, GX)

|ET|
+ δ
|EX|
|ET|

=
d(GT, GX)

|ET|
+ δ
( |ET|+ FP − FN

|ET|
)

≤ d(GT, GX)

|ET|
+ δ (S13)

S3 Maximum Entropy Distribution of Prior Knowledge

Let W ∈ Rp×p be the (symmetric) adjacency matrix that encodes the “random” prior

knowledge. There are M edges in the knowledge and therefore 2M elements of W are “1”

and the remaining elements of W are “0”.
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Since W is symmetric, we rearrange the elements of the upper triangle of W in a vector

form, denoted by x ∈ Rp(p−1)/2. Each element of x takes values in {0, 1}. Now we want to

find the maximum entropy distribution of x, P (x), given that there are exactly M “1” in

x. We have

maximize
P (x)

H(x) (S14)

s.t.
∑

x[i] = M (S15)

The number of possible values taken by x is 2p(p−1)/2. However, the number of feasible

values that satisfy the equality constraint is CMp(p−1)/2. Denote the set of feasible values of

x as X′. Therefore, the support of the P (x) for the above maximum entropy problem is X′.

The entropy of P (x) for the above problem is:

H(x) (S16)

=−
∑
x∈X′

P (x) logP (x) (S17)

Applying Thereom 2.6.4 in (Elements of Information Theory by Cover and Thomas),

H(x) obtains its maximum when x is uniformly distributed over X′.

Therefore the maximum entropy distribution for the “random” knowledge is

P (x) =


1

CM
p(p−1)/2

, x ∈ X′,

0, otherwise.

(S18)

S4 Solutions and Algorithms

S4.1 Model Parameter Selection

In problem formulation (4), the first `1-regularization term, λ1
∑p

j=1(1 − Wjiθ)(|β(1)ji | +
|β(2)ji |), leads to the identification of sparse graph structures. Let W = 0 or θ = 0 to

examine the performance based solely on data, which regresses to the problem in (Zhang

and Wang, 2010), λ1 is expected to yield a network neither too sparse nor too dense. One
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approach to determine λ1 under Gaussian assumption and λ2 = 0 is by controlling the risk

of falsely extending connectivity to distinct components in the graph no larger than α1

(which is typically set to 0.05),

λ1 =
2

N

(
1− Φ(

α1

2p2
)

)
, (S19)

which is outlined by Theorem 3 in (Meinshausen and Bühlmann, 2006).

The second `1regularization term, λ2‖β(1)
i − β

(2)
i ‖1, works specifically on differential

edges to suppress inconsistencies of the network structures and parameters between two

conditions. At a given significance level α2, (e.g., α2 = 0.05 is used in this paper), only

differential edges that are statistically significant are expected to enter the differential de-

pendency network. So the λ2 corresponding to α2 is found by putting the type I error rate

under null distribution in the vicinity of α2 using batches of permuted samples. Suppose

the size of the network or the number of edges in the network is E under null distribution,

the expected type I error rate should be α2, i.e., there are still α2E edges falsely claimed as

differential edges. λ2 is then found by gradually increasing its value from 0 until the type I

error rate falls into the vicinity of α2 under null distribution to guarantee desired detection

power. The p-value of differential edges can be further assessed using permutation test.

S4.2 Closed-form Solution to the Sub-problem

For notational simplicity, we can always normalize the variables to mean 0 and unit length

by location and scale transformations,

N∑
k=1

x
(1)
ki = 0,

N∑
k=1

(x
(1)
ki )2 = 1,

N∑
k=1

x
(2)
ki = 0,

N∑
k=1

(x
(2)
ki )2 = 1, (S20)

where i = 1, 2, · · · , p. Here we assume this normalization step has already been performed.

Additionally, the orthogonality between jth column of matrix X, xj and the (j+p)th column

of X, xj+p simplifies the derivation of closed-form solutions to the sub-problems in each

iterations of the block coordinate descent.
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Since β
(1)
li and β

(2)
li , l = 1, 2, · · · , p, l 6= j, are fixed during iteration r+ 1, we rewrite the

objective function of (3) as

f̃(βi)

=
1

2
‖yi −

∑
l 6=i,j

xlβ
(1),r
li −

∑
l 6=i,j

xp+lβ
(2),r
li

− xjβ(1)ji − xp+jβ
(2)
ji ‖22

+ λ1
∑
l 6=i,j

(1−Wliθ)(|β(1),rli |+ |β(2),rli |)

+ λ2
∑
l 6=i,j

(|β(1),rli − β(2),rli |)

+ λ1(1−Wjiθ)(|β(1)ji |+ |β
(2)
ji |) + λ2|β(1)ji − β

(2)
ji | (S21)

Let

ỹi = yi −
∑
l 6=i,j

xlβ
(1),r
li −

∑
l 6=i,j

xp+lβ
(2),r
li (S22)

Therefore, updating (β
(1)
ji , β

(2)
ji ) is equivalent to

(β
(1),r+1
ji , β

(2),r+1
ji )

= arg min
β
(1)
ji ,β

(2)
ji

f̃(βi)

= arg min
β
(1)
ji ,β

(2)
ji

1

2
‖ỹi − xjβ(1)ji − xp+jβ

(2)
ji ‖22

+ λ1(1−Wjiθ)(|β(1)ji |+ |β
(2)
ji |) + λ2|β(1)ji − β

(2)
ji |

(S23)

Denote

ρ1 = ỹi
T · xj , (S24)

ρ2 = ỹi
T · xp+j . (S25)
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First, we examine a simple case, the solution, (β
(1)
ji , β

(2)
ji ), satisfies

β
(1)
ji > 0,

β
(2)
ji > 0,

β
(1)
ji < β

(2)
ji .

(S26)

Take derivative of objective function (S23), and we have

∂f̃

∂β
(1)
ji

= β
(1)
ji − ρ1 + λ1(1−Wjiθ)sgn(β

(1)
ji )

+ λ2sgn(β
(1)
ji − β

(2)
ji ), (S27)

∂f̃

∂β
(2)
ji

= β
(2)
ji − ρ2 + λ1(1−Wjiθ)sgn(β

(2)
ji )

− λ2sgn(β
(1)
ji − β

(2)
ji ), (S28)

where sgn(·) is the sign function.

When ρ1 > λ1(1−Wjiθ)− λ2 and ρ2 > ρ1 + 2λ2, we have
β
(1)
ji = ρ1 − λ1(1−Wjiθ) + λ2,

β
(2)
ji = ρ2 − λ1(1−Wjiθ)− λ2.

(S29)

Similarly, we derive all closed-form solutions to problem (S21), depending on the values

of ρ1, ρ2 with respect to λ1(1 −Wjiθ), λ2. The plane (ρ1, ρ2) is divided into 13 regions, as

shown in Figure S2.

Depending on the location of (ρ1, ρ2) in the plane, the solutions to problem (S21) are

as follows.

If (ρ1, ρ2) is in region (0), then

β
(1)
ji = β

(2)
ji = 0. (S30)

If (ρ1, ρ2) is in region (1), then

β
(1)
ji = β

(2)
ji =

1

2
(ρ1 + ρ2)− λ1(1−Wjiθ) (S31)
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Figure S2: Solution regions of the sub-problem (S21), ω = 1−Wjiθ.

If (ρ1, ρ2) is in region (2), then
β
(1)
ji = ρ1 − λ1(1−Wjiθ) + λ2,

β
(2)
ji = ρ2 − λ1(1−Wjiθ)− λ2.

(S32)

If (ρ1, ρ2) is in region (3), then
β
(1)
ji = 0,

β
(2)
ji = ρ2 − λ1(1−Wjiθ)− λ2.

(S33)

If (ρ1, ρ2) is in region (4), then
β
(1)
ji = ρ1 + λ1(1−Wjiθ) + λ2,

β
(2)
ji = ρ2 − λ1(1−Wjiθ)− λ2.

(S34)
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If (ρ1, ρ2) is in region (5), then
β
(1)
ji = ρ1 + λ1(1−Wjiθ) + λ2,

β
(2)
ji = 0.

(S35)

If (ρ1, ρ2) is in region (6), then
β
(1)
ji = ρ1 + λ1(1−Wjiθ) + λ2,

β
(2)
ji = ρ2 + λ1(1−Wjiθ)− λ2.

(S36)

If (ρ1, ρ2) in region (7), then

β
(1)
ji = β

(2)
ji =

1

2
(ρ1 + ρ2) + λ1(1−Wjiθ). (S37)

If (ρ1, ρ2) is in region (8), then
β
(1)
ji = ρ1 + λ1(1−Wjiθ)− λ2,

β
(2)
ji = ρ2 + λ1(1−Wjiθ) + λ2.

(S38)

If (ρ1, ρ2) is in region (9), then
β
(1)
ji = 0,

β
(2)
ji = ρ2 + λ1(1−Wjiθ) + λ2.

(S39)

If (ρ1, ρ2) is in region (10), then
β
(1)
ji = ρ1 − λ1(1−Wjiθ)− λ2

β
(2)
ji = ρ2 + λ1(1−Wjiθ) + λ2.

(S40)

If (ρ1, ρ2) is in region (11), then
β
(1)
ji = ρ1 − λ1(1−Wjiθ)− λ2

β
(2)
ji = 0.

(S41)

If (ρ1, ρ2) is in region (12), then
β
(1)
ji = ρ1 − λ1(1−Wjiθ)− λ2

β
(2)
ji = ρ2 − λ1(1−Wjiθ) + λ2.

(S42)
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S4.3 Algorithms

Algorithm S1 uses block coordinate decent to solve the node-wise problem and is embedded

in Algorithm S2 to determine the optimal degree of knowledge incorporation.

Algorithm S1 Block coordinate descent algorithm to solve problem (4)

Initialization: β0
i = [0, 0, ..., 0], r = 0

while βri is not converged do

j ← (r mod p) + 1

if j 6= i then

Let β
(1),r+1
li = β

(1),r
li , β

(2),r+1
li = β

(2),r
li , l 6= j

Solve the jth sub-problem using (S22), (S24), (S25) and (S30)-(S42) in section S4.2.

end if

r ← r + 1

end while

13



Algorithm S2 Sampling and estimation method to solve problem (6)

Inputs: HIGH=0.9, LOW=0.1, MID=(HIGH-LOW)/2+LOW, B(= 1000),M

Initialization: θ =MID, D = 0

Solve problem (4) with W = 0 using Algorithm S1, get GX, |EX|
while HIGH-LOW< 0.01 do

for i = 1 to B do

Let WR = 0

Sample M elements in the upper triangle of WR, (aj , bj), j = 1, 2, · · · ,M
Let WR(aj , bj) = 1,WR(bj , aj) = 1

Solve problem (4) with WR using Algorithm S1, get GWR

Calculate di = d(GX, GX,WR,θ)

Let D = D + di

end for

if D
B|EX| > δ then

HIGH=MID

else

LOW=MID

end if

MID=(HIGH-LOW)/2+LOW

end while

Output: θ =MID

S5 Additional Simulation Results

S5.1 Simulation Data Generation

In the simulation studies, we used Gaussian Markov random field to generate the simulation

data following four steps. Firstly, generate two adjacency matrices with sparse changes.

Secondly, create the precision matrix with same structures with the adjacency matrices.

14



Thirdly, get valid covariance matrices by inverting the precision matrices. Lastly, simulate

data according to the covariance matrices.

A network structure can be represented by an adjacency matrix, where non-zeros indi-

cate dependencies between nodes. We used Gaussian Markov random field to generate the

simulation data. Under such model, nodes follow multivariate Gaussian distribution and

their dependencies are reflected by the non-zero elements in precision matrix, which can

be equivalently treated as the adjacency matrix of a network. So we generate an N × N
precision matrix, then the network structure and simulation data can be derived from the

precision matrix. In the generation of precision matrix, we first initialize an N ×N empty

matrix, and then every node is randomly connected to d neighbors. d is the degree of con-

nection uniformly chosen between 1 and 4 to get a sparse structure. Nodes with more than d

connections are performed with random connection removal and nodes with no connections

are performed with random connection addition until all nodes have connections but no

more than 4. In order to make the precision matrix invertible and invert to a valid positive

semi-definite covariance matrix, we randomly assign and adjust the values in precision ma-

trix in the range [0.2, 0.3], while keeping the sum of each row less than 1 (Meinshausen and

Bühlmann, 2006). The simulation data is finally generated according to covariance matrix

using R package mvtnorm (Genz et al., 2012; Genz and Bretz, 2009).

S5.2 Performance Evaluation

To evaluate the network learning performance in precision and recall, we created 100 repli-

cate networks, each with 150 samples. For each network, precision and recall of purely

data-driven kDDN, näıve baseline and kDDN with prior knowledge are calculated as the

false positive rate of prior knowledge gradually increases. The results of all 100 replicates

are averaged. The mean and one standard deviation are plotted in Figures S3-S6. The

results show that prior knowledge incorporation has the same designed effect irrespective

to particular simulation realization.
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Figure S3: Average precision of overall network learning.
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Figure S4: Average recall of overall network learning.
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Figure S5: Average precision of differential network learning.
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Figure S6: Average recall of differential network learning.
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S5.3 Simulation Performance in Noise Cases

We demonstrate the performance of the methods with noise corrupted simulation data.

We fix the sample size at 100, and generated simulation data for p = 50, 100, 200 added

Gaussian white noise with signal to noise ratio SNR = 0, 1, 2, 3, 4, 5. For each case we

compare the performance of the method under: purely data without noise, purely data

with noise, and gradually increase false positives in knowledge with and without noise.

The results of data sets with p = 50 are in Figure S7.
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Figure S7: Performance in noise cases, p=50.
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From the results we still see the effectiveness of knowledge incorporation in all noise

level. On one hand, the performance degrades as a result of noise corruption compared

with noise free. But on the other hand we are happy to see that in all noise level knowl-

edge incorporation largely improved the performance and the adverse effects of all wrong

malicious knowledge.

The experiment results with p = 100 and p = 200 are in Figures S8 and S9, from which

we can see the similar trends and conclusions.
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Figure S8: Performance in noise cases, p=100.
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Figure S9: Performance in noise cases, p=200.
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S5.4 Effects of Nonuniform Random Knowledge

In practice, FPs in prior knowledge may be more likely to bias towards or against certain

nodes rather than distributed uniformly. Proteins/genes with important functions tend to

be studied more intensively and therefore accumulated more knowledge. Under specific

conditions, knowledge associated with those proteins/genes are more likely to include FPs.

In such cases, FPs concentrate more on some nodes than others, which actually makes kDDN

avoid FPs more efficiently due to sparse selection mechanism. We compared the performance

with random knowledge and biased knowledge using simulation data. Instead of adding false

positives uniformly, we add false positives to nodes as follows to biased towards top nodes:

the first node contains 1/3 of all FPs, the second node contains 1/3 of the remaining FPs

which is 2/9, and the third node contains 1/3 of the remaining FPs, etc. Since in practice

the knowledge and data are independent and the data generation process is equal for all

nodes, the order of nodes does not matter in this biased knowledge assignment. The results

are shown by Figures S10-S13 for 100 node example. This change of random knowledge

generation either made no difference or slightly improved the performance, confirming that

the uniformly random is the worst case and kDDN bounds the performance under worst

case scenario.
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Figure S10: The effects of nonuniform random prior knowledge on inference precision of

overall network.
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Figure S11: The effects of nonuniform random prior knowledge on inference recall of overall

network.
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Figure S12: The effects of nonuniform random prior knowledge on inference precision of

differential network.
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Figure S13: The effects of nonuniform random prior knowledge on inference recall of differ-

ential network.

S5.5 Effects of False Negatives in Prior Knowledge

Existing biological knowledge databases are mainly manually curated, which may suffer

more from false negatives than false positives. However, the knowledge in databases are

aggregated from general conditions. When they are used to guide inference of network

under specific biological conditions, the inconsistency between knowledge and ground-truth

become false positives. Unlike the assessment of databases quality, in knowledge incorpo-
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rated inference, false positives are the major concerns as they directly affect the inference

results, while false negatives which are the ground-truth not reflected by the knowledge do

not affect the inference results.

To show this experimentally, we simulated the scenarios with different amount of false

negatives in prior knowledge with fixed size of prior knowledge without the presence of false

positives. When false positives present, increasing false negatives is equivalent to increasing

false positives as we did in Figures 3 and 4, given fixed size of prior knowledge. Starting from

all true knowledge, we gradually decrease the size of prior knowledge which is equivalent to

adding in false negatives, until the size of prior knowledge is 0 and the inference purely relies

on data. The results are shown in Figures S14 and S15. From the results of experiments with

various false positive rate and false negative rate in prior knowledge, we can conclude that

true positives in knowledge benefit the inference, false positives degrade the performance

but our method controls it, and false negatives do not affect the inference.
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Figure S14: The effects of false negatives in prior knowledge on inference precision.

31



0 10 20 30 40 50 60 70 80 90 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

False negative in prior knowledge

False negative rate in prior knowledge (%)

R
ec

al
l

● ● ● ● ● ● ● ● ● ● ●

●

kDDN
Purely data result

Figure S15: The effects of false negatives in prior knowledge on inference recall.

S5.6 Empirical Type I Error Rate for Simulated Data Sets Under the

Null Hypothesis

We test the type I error rate of differential edge detection of kDDN using multiple simulation

data sets under the null distribution (no differential edges between the two networks) to

assess if the differential edges are identified at the right significance level. If the type I

error rate is either too conservative or too liberal, the p-value fails to reflect the actual

false positive rate and we cannot control how many false positives are detected by setting a
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p-value based threshold (Chen et al., 2011). Experiments show the average type I error rate

under null distribution converges exactly to α under varied network sizes. This accuracy in

p-value estimation gives stronger confidence in differential edge detection.
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Figure S16: Empirical type I error rate (false positive rate) for simulated data sets under the

null hypothesis under four different network sizes. The designed significance level α = 0.05

is indicated by the red line. Across multiple runs, the average type I error rate is close to ,

which shows the differential edge detection is neither too conservative nor too liberal.

S5.7 Performance Comparison

The t-test results of performance comparison is detailed in Tables S1 and S2. Better results

at 0.05 significance level are highlighted by bold font.

We plot the performance comparison results in Figure 5 on the plane of precision and
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Table S1: T-test result of kDDN with peers in overall network learning performance.

Nodes in network kDDN csLearner Meinshausen DDN Tesla

KDDN.dt 4.19e-43 1.52e-56 6.26e-33 8.67e-08

80 KDDN.tk 6.64e-46 3.86e-69 9.02e-45 2.08e-44

KDDN.fk 2.06e-42 2.40e-52 7.58e-30 0.0039

KDDN.dt 1.81e-37 4.72e-53 2.11e-45 0.0499

100 KDDN.tk 1.53e-41 2.79e-62 2.07e-50 4.21e-42

KDDN.fk 6.40e-37 1.04e-45 7.19e-43 0.9778

KDDN.dt 2.20e-35 1.11e-99 3.99e-46 3.64e-06

120 KDDN.tk 9.66e-37 4.86e-94 1.53e-47 8.74e-28

KDDN.fk 5.49e-34 3.60e-94 1.19e-42 0.99

KDDN.dt 7.23e-34 1.63e-104 1.15e-47 1.35e-08

140 KDDN.tk 3.45e-35 1.08e-101 6.83e-49 4.25e-15

KDDN.fk 1.91e-32 2.37e-99 1.77e-44 0.0057

KDDN.dt 3.34e-46 1.75e-90 2.69e-51 2.56e-44

160 KDDN.tk 4.31e-47 8.08e-83 5.32e-52 2.17e-47

KDDN.fk 3.76e-45 4.55e-90 7.65e-50 4.22e-37
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Table S2: T-test result of kDDN with peers in differential network learning performance.

Nodes in network kDDN csLearner Meinshausen DDN Tesla

80 KDDN.dt 4.77e-12 3.45e-13 0.2005 0.0047

80 KDDN.tk 5.62e-16 1.34e-16 0.0075 1.72e-05

80 KDDN.fk 3.83e-12 2.20e-13 0.2669 0.0075

100 KDDN.dt 8.65e-16 3.41e-15 2.76e-05 0.0005

100 KDDN.tk 9.65e-18 8.55e-17 4.73e-08 1.90e-06

100 KDDN.fk 2.27e-14 6.65e-14 0.0001 0.0015

120 KDDN.dt 4.89e-40 3.95e-34 3.73e-25 2.08e-13

120 KDDN.tk 1.95e-41 1.31e-34 1.17e-28 9.33e-17

120 KDDN.fk 2.62e-39 2.46e-34 1.39e-22 4.39e-11

140 KDDN.dt 4.53e-35 9.76e-33 1.10e-24 1.01e-09

140 KDDN.tk 4.47e-36 4.67e-33 4.15e-27 4.41e-12

140 KDDN.fk 1.38e-34 3.15e-33 5.88e-22 3.24e-07

160 KDDN.dt 4.43e-41 4.20e-34 1.45e-32 2.05e-19

160 KDDN.tk 4.32e-46 4.28e-37 4.21e-38 2.64e-25

160 KDDN.fk 4.20e-40 1.14e-33 3.09e-29 4.53e-15
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recall, with background heatmap indicating F score ranging from 0 to 1, in Figures S17 and

S18. Besides the same observation of F score performance in the paper, we also see that

kDDN performs best in both precision and recall. Tesla performs the second. Meinshausen’s

method performs third in overall network but poor in differential network.
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Figure S17: Performance of overall network recovery displayed on the plane of precision

and recall with F score heatmap as background.
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Performance on recovering differential networks
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Figure S18: Performance of differential network recovery displayed on the plane of precision

and recall with F score heatmap as background.

In addition to the performance comparison on networks with different sizes, we also

compared kDDN with DDN on the simulation example used in (Zhang et al., 2009). The

example was generated by SynTren and the comparison is shown in Figure S19. The nodes

are placed at the same relative positions. The ground truth network is shown in Figure

S19(b), with 20 nodes. The black edges indicate common edges. Red and green edges are

condition-specific edges. The result learned by DDN is shown in Figure S19(c), in which

only differential edges are learned, and 3 edges are error. The network learned by kDDN
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is shown in Figure S19(a). The number of erroneous edges is still 3 but 5 common edges

are also identified. In this example the two methods achieved comparable performance in

differential edge detection due to small network size, but the common edge identification

can only be done by the proposed method.

Figure S19: Comparison of results on simulation data generated by SynTren. (a) The result

learned by the proposed method. (b) Ground truth network. (c) Network learned by DDN

method.

S6 Additional Real Data Results

S6.1 Yeast and Breast Cancer Results with θ = 0

We reported the experimental results on the stress/breast cancer datasets using the data-

only method (θ = 0, joint learning). On yeast oxidative stress response dataset, the network

inferred from data-only experiment differs from that of data-knowledge integration by 14

differential edges, as shown in Figure S20 with differences highlighted. On the breast cancer

dataset, the network inferred from data-only experiment differs from that of data-knowledge

integration by 41 common and 1 differential edges between CSF2RB and PIK3R5.
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Figure S20: The differences of 14 differential edges between data-only result and knowledge

incorporated result are highlighted.

S6.2 Robustness Analysis on Yeast Case Study

In the differential network identified, Yap1, Rho1 and Msn4 are at the center of the network.

We used 100 bootstrap samples to evaluate whether this finding is robust. The degree of

connections is a good indicator of the centrality of Yap1, Rho1 and Msn4, which has a

degree of 5, 3 and 5 in the network. In the bootstrap experiments we calculated the average

degree of Yap1, Rho1 and Msn4, which were 4.35, 2.98 and 5.06, with a standard deviation

of 1.43, 1.33 and 1.53, respectively. The bootstrap degree showed that the genes are robustly

identified as the “hubs” of the network. The robustness is important, but the sensitivity is

also important to a biologist to provide hypothesis, which must be validated experimentally.
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S6.3 A Case Study on Juvenile Dermatomyositis

We accessed a 125 patient muscle biopsy U133A mRNA profiling dataset containing 13 di-

agnostic groups of patients with specific muscle disorders (Bakay et al., 2006). We applied

kDDN to two of the largest groups: normal controls (NHM) with 18 samples and juvenile

dermatomyositis (JDM) with 25 samples. Juvenile dermatomyositis is an autoimmune dis-

order of muscle in pediatric patients, and we have previously reported mRNA profiling of

this disease in an earlier data set (Tezak et al., 2002).

We queried two pathways that are known to be important in the pathophysiology of

JDM using the KEGG database: apoptosis pathway (Figure S21), and T cell receptor

signalling pathway (Figure S22).

The apoptosis pathway result illuminated important induction of apoptosis in JDM

muscle, as shown by the strong upregulation of Bax and downregulation of Bcl-2, leading

to a dramatic change in Bax/Bcl-2 ratios associated with apoptosis (Rosse et al., 1998).

Apoptosis in JDM muscle has been previously reported (Zhao et al., 2007). However, our

result shows how co-regulation of key apoptosis regulatory proteins impinging on Bax/Bcl-2

ratios is altered in normal control muscle vs. JDM muscle. For example, in normal muscle,

Bax and its regulatory partner TNFSF10 (TNF-related apoptosis-inducing ligand, also

called TRAIL) are inversely correlated (red edge), yet in JDM they are directly correlated.

TNFSF10 /TRAIL is a ligand for apoptosis receptors, and the visualization suggests an

abnormal positive feedback loop between Bax and TNFSF10 that would be expected to

be deleterious to myofiber survival. A similar situation is seen with BCL2, a key anti-

apoptotic protein. In normal muscle, expression of BCL2 and its regulatory protein RIPK1

are inversely correlated. In JDM, they are simultaneously down-regulated, again suggestive

of loss of negative regulatory loops, and promotion of apoptosis in JDM. RIPK1 is a less

well characterized protein, and the identification of its abnormal regulatory relationship

with BLC2 may point out new areas for further investigation.
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Figure S21: NHM vs. JDM in apoptosis pathway shows widespread evidence of loss of

normal apoptotic regulatory control of apoptosis pathways in JDM. Red edges are in normal,

and green edges are in JDM. Red nodes are up-regulated in JDM and green indicate down-

regulation in JDM.

CD8+ T cells are a well-recognized inflammatory infiltrate in JDM muscle. When vi-

sualizing T cell receptor pathways via kDDN result, this is immediately apparent, with

upregulation of CD8+ associated proteins. As normal skeletal muscle shows very few res-

ident T cells, the visualization of differential network using kDDN provides fewer novel

insights compared to the apoptosis example above. However, a novel and potentially im-

portant sub-network was detected by kDDN due to the role of NFAT proteins in mediating

membrane signals to nuclear cellular reactions. NFAT5 is shown by DDN visualization to

be highly upregulated in JDM. NFAT5 is known to respond to osmostic stress, relaying

this signal to the nucleus in muscle and other tissues (Zhang et al., 2003; Hernndez-Ochoa

et al., 2012). The connection to T cell pathways via ZAP70 likely reflects an interac-

tion between infiltrating T cells and pro-inflammatory myofibers, and points out a possible

ischemic/osmotic pathway that may be an important contributor to JDM.
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Figure S22: NHM vs. JDM in T cell receptor signalling pathway. Red edges are in normal,

and green edges are in JDM. Red nodes are up-regulated in JDM and green indicate down-

regulation in JDM.

S6.4 A Case Study on Transcription Factor Estrogen Receptor α Regu-

lation

Nuclear receptor estrogen receptor alpha (ERα) controls the expression of target genes

through either direct or tethered DNA binding. It is important to study the differential

binding patterns of ERα under different conditions to understand the mechanisms of ERα

binding. We used a public data set (Stender et al., 2010) profiling the gene expression of

wild type and ERα mutated cell lines to discover the different binding targets.

The wild type ERα is expected to regulate target gene expression via direct binding while

the ERα muated regulation is expected to be accomplished via tethered DNA binding.

We selected a set of genes from literature documented ERα targets (Klinge, 2001; Lin
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et al., 2004), expression inferred possible targets (Stender et al., 2010) and targets found

in database (Klinge, 2001), including ESR1, TFF1, EBAG9, CASP7, GREB1, SP1, JUN,

FOSB, ATF, CEBPB, PITX1, GADD45A, TRIB1, SOX9 and HBEGF. Results are shown

in Figure S23.

Figure S23: Wild type ERα vs. ERα mutated shows differential DNA binding patterns

via direct and tethered binding. Red edges are in wild type, and green edges are in ERα

muated.

The identified target binding relations pointed out the possible binding schemes as

green - tethered and red - direct or tethered. JUN and ATF are known to be involved in

tethered binding (Umayahara et al., 1994; Kushner et al., 2000), while CASP7 is known as

a direct target (Klinge, 2001; Lin et al., 2004). These results demonstrated the ability of

kDDN to work with transcription factor-target information and identify condition-specific

transcription factor binding.
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