Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates

Marcin Poreba¹, Paulina Kasperkiewicz¹, Scott J. Snipas², Domenico Fasci², Guy S. Salvesen^{2,*}, Marcin Drag^{1,2,*}

¹Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; ²Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA

Supplemental section

Supplementary Figure 1. Caspase 3 preferences at the P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 3 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective.

Supplementary Figure 2. Caspase 6 substrate preferences at P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 6 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective.

Supplementary Figure 3. Caspase 7 substrate preferences at P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 7 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names are shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective.

Supplementary Figure 4. Caspase 8 substrate preferences at P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 8 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names are shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective

Supplementary Figure 5. Caspase 9 substrate preferences at P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 9 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names are shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective.

Supplementary Figure 6. Caspase 10 substrate preferences at P4, P3 and P2. The S4, S3, S2 subsites preferences of recombinant human caspase 10 were determined using three hybrid combinatorial sub-libraries with the general composition: Ac-P4-X-X-Asp-ACC, Ac-X-P3-X-Asp-ACC and Ac-X-X-P2-Asp-ACC, where P4, P3, and P2 are natural and unnatural amino acids, and X is equimolar mixture of 19 natural amino acids (cysteine was omitted and methionine was replaced by norleucine). Abbreviated amino acids names shown on the x axis. The y axis displays the average relative activity expressed as a percentage of the best amino acid. Standard deviations calculated from three screenings were below 10% of values shown in the figure. Red color represents the amino acids selected for most sensitive substrate synthesis, blue for most selective, and green for both sensitive and selective.

substrate	enzyme	k _{cat} , s ⁻¹	$K_M, \mu M$	$k_{cat}/K_{M}, M^{-1}s^{-1}$
MPP41	Casp-3	30.1	28.2	1,050,000
MPP42	Casp-3	27.8	33.5	825,000
MPP48	Casp-6	4.08	23.0	186,300
MPP49	Casp-6	2.94	12.6	229,000
MPP41	Casp-7	6.88	41.6	167,000
MPP42	Casp-7	9.66	61.5	159,000
MPP45	Casp-8	0.361	1.04	349,000
MPP46	Casp-8	0.717	1.31	525,300
MPP47	Casp-9	1.18	32.1	37,000
MPP43	Casp-10	1.59	9.11	176,200

Supplementary Table 1. Kinetic analysis of the best caspases substrates containing unnatural amino acids.

Supplementary Figure 7. The structures of the best short peptide caspases substrates

sequence	enzyme		Casp-3	Casp-6	Cas-7	Casp-8	Casp-9	Casp-10
		Км. иМ	20.7	473	49.6	6.94	104	24.3
DEVD	Casp-3/7	k_{cat} , s^{-1}	10.0	0.642	3.92	0.496	0.033	0.867
	1	$k_{cat}/K_M, M^{-1}s^{-1}$	474,400	1,360	82,000	71,600	310	34,600
		K _M , μM	218	45.6	285	2.12	25.6	20.9
VEID	Casp-6	k_{cat} , s^{-1}	3.26	2.02	0.553	0.300	0.078	1.25
	-	$k_{cat}/K_M, M^{-1}s^{-1}$	14,700	44,800	1,870	14,100	3,300	58,400
		K _M , μM	156	141	401	6.43	59.0	20.2
IETD	Casp-8	k_{cat}, s^{-1}	0.962	1.72	0.121	0.607	0.144	1.76
		$k_{cat}/K_M, M^{-1}s^{-1}$	6,120	12,200	300	94,900	2,450	88,200
		K _M , μM	163	209	419	13.7	102	26.3
LEHD	Casp-9	k_{cat} , s^{-1}	1.61	2.83	0.305	2.54	1.35	3.87
		$k_{cat}/K_M, M^{-1}s^{-1}$	9,670	13,600	730	186,000	12,700	143,700
		K _M , μM	126	n.d.	143	8.59	57.8	33.1
AEVD	Casp-10	k_{cat} , s^{-1}	4.04	n.d.	2.64	0.686	0.136	0.510
		$k_{cat}/K_M, M^{-1}s^{-1}$	32,900	1,100	18,500	80,200	2,300	15,700
		K _M , μM	30.2	n.d.	98.5	48.5	110	27.9
VDVAD	Casp-2	k_{cat}, s^{-1}	3.46	n.d.	1.47	0.868	0.00941	0.710
		$k_{cat}/K_M, M^{-1}s^{-1}$	115,000	100	14,900	17,900	80	25,600

Supplementary Table 2. Kinetic analysis of caspases fluorogenic substrates (Ac-P4-P3-P2-Asp-ACC) with reference tetrapeptide sequences and a caspase 2 reference substrate (Ac-VDVAD-ACC). K_M values for Ac-AEVD-ACC and Ac-VDVAD-ACC substrates for caspase 6 were above 500 μ M, so we calculated only k_{cat}/K_M parameter (see Equation 2 in Supplementary Figure 12), n.d. not determined.

Supplementary Figure 8. Reference structures of generally used peptidyl caspase-targeting sequences.

substrate	enzyme	Casp-3	Casp-6	Casp-7	Casp-8	Casp-9	Casp-10
MPP38		318,200	96	71,600	2,654	27	2,020
MPP39	Casp-3/7	181,000	36	40,500	1,500	16	300
MPP40		238,000	39	38,000	1,430	7	1,560
MPP36	Casp-6	1,343	26,600	560	590	0	5,800
MPP28	C 9	520	110	200	53,400	600	7,800
MPP30	Casp-8	2,100	140	920	137,500	1,880	2,600
MPP8		0	30	0	2,600	32,200	960
MPP10	Casp-9	360	350	45	1,400	27,500	3,200
MPP12		0	0	0	1,580	31,500	1,120
MPP17		3,650	4,300	950	5,400	400	48,600
MPP21		40	300	74	380	490	12,600
MPP50	G 10	580	1,600	34	11,100	1,090	59,800
MPP51	Casp-10	120	25	0	10,800	590	62,400
MPP52		70	20	36	130	320	10,300
MPP53		50	86	51	20	160	5,800

Supplementary Table 3. Kinetic analysis of the most specific substrates tested toward six human recombinant caspases. Values are k_{cat}/K_M with units of $M^{-1}s^{-1}$.

substrate	enzyme	k_{cat} , s^{-1}	K _M , μM	$k_{cat}/K_M, M^{-1}s^{-1}$
				• • • • • • •
MPP38		8.34	26.2	318,000
MPP39	Caspase-3	6.44	35.6	181,000
MPP40		8.03	33.8	238,000
MPP36	Caspase-6	1.63	59.6	26,600
MPP38		2.11	29.4	71,600
MPP39	Caspase-7	2.01	51.8	40,500
MPP40	Ĩ	2.37	64.3	38,000
MPP28	Corpora 9	0.536	10.1	53,400
MPP30	Caspase-o	0.222	1.59	137,000
MPP8		2.07	68.6	32,200
MPP10	Caspase-9	0.348	13.1	27,500
MPP12		0.642	21.1	31,500
				10 100
MPP17		1.07	22.6	48,600
MPP21		0.102	7.64	12,600
MPP50	Caspasa 10	0.204	3.55	59,800
MPP51	Caspase-10	0.863	13.9	62,400
MPP52		0.121	12.1	10,300
MPP53		0.072	12.7	5,800

Supplementary Table 4. Detailed kinetic analysis of the most selective caspases substrates.

substrate/enzyme	Casp-3	Casp-6	Casp-7	Casp-8	Casp-9	Casp-10	
Commercial substrates							
DEVD	1415	79	470	62	2	120	
VEID	172	371	16	36	12	188	
IETD	60	101	3	78	19	326	
LEHD	92	307	6	614	103	618	
AEVD	394	56	134	68	17	83	
VDVAD	542	0	90	71	1	125	
Substrates containing unnatural amino acids							
MPP39	872	0	305	11	0	3	
MPP36	14	345	3	5	0	36	
MPP28	3	0	0	94	5	120	
MPP30	34	1	7	72	0	3	
MPP8	0	0	0	23	256	20	
MPP10	0	0	0	22	145	25	
MPP52	0	0	0	0	0	47	
MPP23	0	0	0	3	1	26	
MPP50	6	7	0	21	2	154	

Supplementary Table 5. Selectivity of individual substrates. In this experiment we compared substrates with previously reported sequences with our most selective substrates toward six recombinant caspases. Each substrate concentration was held at 100 μ M, and all caspases were used in the final concentration of 50 nM. Results are presented as the initial rate of ACC liberation versus time (RFU/s). Each experiment was performed in standard caspase buffer (buffers for caspases 8, 9, and 10 were supplemented with 1.0 M of sodium citrate).

Supplementary Figure 9. Structures of caspases-selective fluorogenic substrates.

Caspase-3 activation : Ac-DEVD-ACC substrate

Supplementary Figure 10. Caspase 3 activation measured with Ac-DEVD-ACC. Substrate concentration 250 μ M. Cytosolic extract was treated with cytochrome C and dATP (see Materials and Methods) and used without pre-incubation. The assay was performed at 37°C.

Supplementary Figure 11. The Ac-LEHD-ACC hydrolysis time course. Detailed kinetic analysis with the use of XIAP-BIR2 and XIAP-BIR3 clearly demonstrated that Ac-LEHD-ACC is hydrolyzed mainly by caspase 3, making this substrate useless as caspase 9 probe. Substrate concentration 250 μ M. Cytosolic extract was stimulated with cytochrome C and dATP (see Materials and Methods) and used without incubation. Assay was performed at 37°C.

Supplementary Figure 12. Calculation of $k_{cat/}K_M$ parameters – for good substrates (left) and for poor substrates (right).

Supplementary Figure 13. Time course of caspase 9 activation. (A) Cytosolic extracts were stimulated with cytochrome C and caspase 9 and caspase 3 cleavage was monitored over the time course. (B) Caspase 9 immunodepletion from cytosolic extracts. Western Blot showing the absence of Caspase 9 in the immunodepleted sample. (C) Caspase 9 activation in cellular extract measured with the use of MPP8, a selective short peptide-based caspase 9 substrate. The "burst" in first 40-60 seconds is caused by cytochrome C and it appears also in the absence of cytosolic extracts (data not shown). The activity of caspase 9 can be measured after 60 seconds after cytochrome stimulation.

Supplementary Figure 13. Monitoring of the MPP8 hydrolysis by the addition of caspase 9 WT to the caspase 9 immunodepleted cytosolic extract. The proteolytic activity of caspase 9 immunodepleted cytosolic extract has been monitored with the use of MPP8 substrate (200 μ M). After 15 minutes a recombinant wild type caspase 9 was added (100 nM) and the measurement was continued.

Supplementary Figure 15. Monitoring of the MPP8 hydrolysis by the addition of caspase 9 D330A mutant to the caspase 9 immunodepleted cytosolic extract. The proteolytic activity of caspase 9 immunodepleted cytosolic extract has been monitored with the use of MPP8 substrate (200 μ M). After 15 minutes a recombinant caspase 9 D330A mutant was added (100 nM) and the measurement was continued.

Caspase 9 immunodepletion – MPP8 substrate

Supplementary Table 5. Structure of amino acids used in HyCoSuL synthesis.

Compounds analysis

All individual compounds used for kinetic and biological studies were purified by HPLC on a Waters M600 solvent delivery module with a Waters M2489 detector system using Waters Spherisorb S5ODS2 column and characterized by high-resolution mass spectrometry (HRMS) using on High Resolution Mass Spectrometer WATERS LCT Premier XE with Electrospray ionization (ESI). Overall yields for the complete synthesis and HRMS data are listed below.

Ac-DEVD-ACC, 32.1% yield. HRMS (m/z): $[M]^+$ calcd for $C_{31}H_{38}N_6O_{14}$, 719.6652 found, 719.2532

Ac-LEHD-ACC, 29.3% yield. HRMS (m/z): $[M]^+$ calcd for $C_{34}H_{42}N_8O_{12}$, 755.2922 found, 755.2966

Ac-IETD-ACC, 25.8% yield. HRMS (m/z): $[M]^+$ calcd for $C_{32}H_{42}N_6O_{13}$, 719.2810 found, 719.2859

Ac-AEVD-ACC, 24.6% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{30}H_{38}N_6NaO_{12}$, 697.2440 found, 697.2444

Ac-VEID-ACC, 33.3% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{33}H_{44}N_6NaO_{12}$, 739.2909 found, 739.2908

Ac-VDVAD-ACC, 34.5% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{34}H_{45}N_7NaO_{13}$, 782.2967 found, 782.2966

MPP8, 28.9% yield. HRMS (m/z): [M]⁺ calcd for C₃₈H₄₈N₈O₁₀, 777.3493 found, 777.3580

MPP10, 39.0% yield. HRMS (m/z): [M]⁺ calcd for C₄₆H₅₀N₈O₁₀, 875.3650 found, 875.3729

MPP12, 35.7% yield. HRMS (m/z): [M]⁺ calcd for C₄₅H₅₄N₈O₁₀, 867.3963 found, 867.3593

MPP17, 35.45% yield. HRMS (m/z): $[M]^+$ calcd for $C_{37}H_{46}N_{10}O_{14}$, 855.3195 found, 855.3266

MPP21, 32.2% yield. HRMS (m/z): [M]⁺ calcd for C₄₄H₅₃N₇O₁₂, 872.3752 found, 872.3831

MPP23, 27.5% yield. HRMS (m/z): [M]⁺ calcd for C₄₃H₅₉N₉O₁₁, 878.4334 found, 878.4421

MPP28, 31.2% yield. HRMS (m/z): [M]⁺ calcd for C₃₃H₄₂N₆O₁₃, 731.2810 found, 731.2879

MPP30, 32.2% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{44}H_{50}N_6NaO_{13}$, 893.3328 found, 893.3328

MPP36, 17.9% yield. HRMS (m/z): [M]⁺ calcd for C₃₃H₄₄N₆O₁₃, 733.2966 found, 733.3005

MPP38, 27.5% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{33}H_{38}N_6NaO_{12}S$, 765.2160 found, 765.2180

MPP39, 31.1% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{35}H_{35}F_5N_6NaO_{12}$, 849.2125 found, 849.2155

MPP40, 32.8% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{35}H_{38}F_2N_6NaO_{12}$, 795.2408 found, 795.2421

MPP41, 28.6% yield. HRMS (m/z): $[M]^+$ calcd for $C_{37}H_{42}N_6O_{15}$, 811.2708 found, 811.2769

MPP42, 26.5% yield. HRMS (m/z): $[M]^+$ calcd for C₃₉H₄₂N₆O₁₃S, 835.2531 found, 835.2628

MPP43, 27.1% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{38}H_{46}N_6NaO_{13}$, 817.3015 found, 817.2991

MPP45, 30.1% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{39}H_{48}N_6NaO_{13}$, 831.3162 found, 831.3210

MPP46, 34.2% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{40}H_{50}N_6NaO_{13}$, 845.3328 found, 845.3335

MPP47, 21.4% yield. HRMS (m/z): $[M]^+$ calcd for C₃₅H₄₆N₈O₁₀, 739.3337 found, 739.3400

MPP48, 29.8% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{38}H_{46}N_6NaO_{13}$, 817.3015 found, 817.3004

MPP49, 24.3% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{37}H_{44}N_6NaO_{12}$, 787,2909 found, 787,2919

MPP50, 33.3% yield. HRMS (m/z): $[MNa]^+$ calcd for $C_{42}H_{50}F_3N_7NaO_{12}$, 912.3362 found, 912.3362

MPP51, 26.4% yield. HRMS (m/z): $[M]^+$ calcd for $C_{37}H_{47}N_7O_{11}$, 766.3334 found, 766.3416

MPP52, 29.6% yield. HRMS (m/z): $[M]^+$ calcd for C₄₀H₅₃N₇O₁₁, 808.3803 found, 808.3878

MPP53, 22.5% yield. HRMS (m/z): $[M]^+$ calcd for C₄₃H₅₉N₉O₁₁, 878.4334 found, 878.4424

Ac-VDVAD-ACC

Minutes

0,00

5,00

10,00

15,00

20,00

Minutes

35,00

30,00

25,00

