Biochemistry

Supplementary Material

Distinct disulfide isomers of µ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels

Keith K. Khoo,^{†,‡, §} Kallol Gupta, [∥] Brad R. Green,[†] Min-Min Zhang,[⊥] Maren

Watkins,[⊥] Baldomero M. Olivera,[⊥] Padmanabhan Balaram,[∥] Doju Yoshikami,[⊥] Grzegorz Bulaj,[@] and Raymond S. Norton^{†,}*

[†] Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University,
381 Royal Parade, Parkville VIC 3052, Australia

[‡] The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia

§ The Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia

^I Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India

[⊥] Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA

[@] Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA

Conotoxin	Sequence	Reference
M-4 branch		
μ-GIIIA	RDCCTOOKK-CKDRQCKOQR-CCA*	Cruz et al. (1985) (1)
μ-GIIIB	RDCCTOORK-CKDRRCKOMK-CCA*	Cruz et al. (1985) (1)
μ-TIIIA	RHG CC KGOKG-CSSRECROQH-CC*	Lewis et al. (2007) (2)
μ-PIIIA	ZRLCCGFOKS-CRSRQCKOHR-CC*	Safo <i>et al.</i> (2000) (3)
μ-SxIIIA	RCCTGKKGSCSGRACKNLK-CCA*	Walewska et al. (2008) (4)
M-5 branch		
μ-KIIIA	CC-NCSSKWCRDHSRCC*	Bulaj et al. (2005) (5)
μ-KIIIB	NGCC-NCSSKWCRDHSRCC*	This work
μ-SIIIA	ZNCC-NGGCSSKWCRDHARCC*	Bulaj et al. (2005) (5)
μ-SmIIIA	ZRCC-NGRRGCSSRWCRDHSRCC*	West et al. (2002) (6)
μ-CnIIIC	ZG CC- NGPKG C SSKW C RDHAR CC *	Favreau <i>et al.</i> (2012) (7)
μ-BuIIIB	VGER CC KNGKRG C G-RWCRDHSRCC*	Holford <i>et al.</i> (2009) (8)

Table S1. Sequences of	f the M-4 and M-5	branches of the p	ı-conotoxin superfamily

Table S2. Prepropeptide sequences of µ-conotoxins determined from cDNA clones. □ indicates putative cleavage site to produce the mature conotoxin sequence, which is underlined.

Conotoxin	Sequence	Ref.
μ-PIIIA	MMSKLGVLLTICLLLFPITALPMDGDQPADRLAERMQDNISSEEHPFEKR <u>QRLCCGFPKSCRSRQCKPHRCCGR</u>	Corpuz <i>et al.</i> (2005) (9)
μ-SIIIA	MSKLGVLLTICLLLFPLTALPMDEDQPADQLEDRMQDDISSEQYPSFVRR <u>QKCCGEGSSCPKYFKNNFICGCC</u>	Wang et al. (2006) (10)
μ-BuIIIB	MMSKLGVLLTICLLLFPLFALPQDGDQPADRPAERMQDDISSEQNPLLEKR VGERCCKNGKRGCGRWCRDHSRCCGRR	Holford <i>et al.</i> (2009) (8)
μ-GIIIA	MSKLGVLLTICLLLFPLTALPMDGDEPANRPVERMQDNISSEQYPLFEKR RDCCTPPKKCKDRQCKPQRCCAGR	Corpuz <i>et al.</i> (2005) (9)
μ-KIIIB	KR <u>NGCCNCSSKWCRDHSRCC</u> GR	This work

In addition to the two major disulfide isomers characterized in this paper, the biological activity and structure of the disulfide-deficient analog μ -KIIIA[C1A,C9A], which has the [C2-C15,C4-C16] disulfide connectivity, were characterized previously.²² Intercysteine NOEs observed for the previously published structures of this analog and μ -KIIIA²² are summarized in Table S3. For μ -KIIIA, disulfide connectivities could not be determined unambiguously except for the [C4-C16] connectivity, with an NOE observed between C^{α}H of Cys16 and C^{β}H of Cys4. C^{β}H-C^{β}H NOEs from Cys2 to Cys9 could be overlapped with sequential NOEs between Arg10 C^{α}H and Cys9 C^{β}H. In contrast, intercysteine NOEs were more clearly defined for the μ -KIIIA[C1A,C9A] analog, in which only two disulfide bonds were present. In addition to intercysteine NOEs observed between Cys4 and Cys16, C^{β}H-C^{β}H NOEs between Cys2 and Cys15 were observed for this analog, thus defining its disulfide connectivity.

Table S3. Intercysteine NOEs observed for μ-KIIIA and μ-KIIIA[C1A,C9A]. * indicates undetermined intensity due to overlap with other cross peaks. + in parentheses indicates intensity of the NOE.

Disulfide	HA-HA	HA-HB	HB-HB	HN-HB	Antidiagnostic HN-HA
C1-C15	-	-	HB2 1 – HB2 15 (*)	-	-
C2-C9	-	-	HB2 2 – HB2 9 (*)	-	-
			HB2 2 – HB3 9 (*)		
C4-C16	-	HA 16 – HB3 4 (+)	HB2 16 – HB2 4 (*)	-	-
			HB2 16 – HB3 4 (*)		

μ-KIIIA

μ-KIIIA[C1A,C9A]

Disulfide	HA-HA	HA-HB	HB-HB	HN-HB	Antidiagnostic HN-HA
C2-C15	-	HA 2 – HB2 15 (*)	HB2 15 – HB3 2 (++)	-	-
		HA 2 – HB3 15 (*)			
C4-C16	-	HA 16-HB3 4 (+)	HB2 16 – HB2 4 (++)	-	-
			HB2 16 – HB3 4 (+)		

Na _V subtypes	k _{off} (min ⁻¹)	k _{on} ^b (µM∙min) ⁻¹	<i>K</i> _d ^c (μM)
Na _v 1.2	0.0044 ± 0.0023	0.019 ± 0.002	0.23 ± 0.12
Na _v 1.4	0.083 ± 0.026	0.1 ± 0.02	0.83 ± 0.31
Na _v 1.7	0.011 ± 0.001	0.007 ± 0.004	1.57 ± 0.91

Table S4. Block of Na_V1.2, 1.4 and 1.7 by μ-KIIIA-P2.^a

^{*a*} Values (mean \pm S.D, n \geq 3 oocytes) were obtained by two-electrode voltage clamp of *Xenopus* oocytes expressing rat Na_V1 channels as described in Methods and Materials. ^{*b*} From $[k_{obs} - k_{off}] / 10 \mu M_{.}^{c}$ From k_{off}/k_{on} .

Determination of disulfide connectivity of µ-KIIIB isomer.

The MS^2 spectrum of μ -KIIIB-P2 shows an identical spectrum to that of peak1 and peak2 of μ -KIIIA (Figure S3), with the exception of the ions containing the N-terminal Asn-Gly. In a similar manner, only two foldamers (F11, F14) fit all the MS^2 fragment ions. Subsequent MS^3 fragmentation of 1100.5, which is identical in structure with 929.5 of μ -KIIIA (with the N-terminal extension), reveal the disulfide connectivity. Beside the N-terminal residue losses, giving rise to 986.3 and 929.3, ions at m/z 843.1 and 656.1 are observed, as in the MS^3 spectrum of 929.3 in μ -KIIIA-P1. As in the case of μ -KIIIA-P1, the ion 656.1 clarifies the unambiguous assignment of the disulfide connectivity. In this case, ambiguity arising through the relatively low intensity of 656.1 is eliminated by the MS^4 fragmentation of 843.1 that shows the presence of the same ion. The scheme of events is summarized in Figure S4. An identical MS^2 spectra for Peak-1 of μ -KIIIB (Figure S5), leaves again F11 and 14 as the two probable foldamers. As F11 has already been assigned to P2, the disulfide connectivity of μ -KIIIB-P1 is therefore assigned as F14.

Figure S1. 15 possible foldamers of µ-KIIIA-P1

Figure S2. 12 possible foldamers of µ-KIIIA-P1 upon trypsin digestion

Figure S3. CID MS^2 spectrum of the peptide derived upon trypsin digestion of μ -KIIIB-P2. Inset shows the MS^3 spectra of 1101.5 and MS^4 of 843.1.

Figure S4. Assignments of the key MS^n fragment ions of tryptic μ -KIIIB-P2.

Figure S5. CID MS^2 spectrum of the peptide derived upon trypsin digestion of μ -KIIIB-P1.

Figure S6. 1D ¹H NMR spectra of μ -KIIIA-P1 (blue) and μ -KIIIA-P2 (red) recorded at 5 °C, pH 4.8 on a Bruker-DRX 600 spectrometer, compared with μ -KIIIA sample (black) for which solution structure was determined previously by Khoo *et al.* Left panel displays the amide region, right panel the aliphatic region.

Figure S7. Amide and aromatic region of NOESY spectrum (blue) overlayed with TOCSY spectrum (red) for μ -KIIIB-P2 (at 5 °C and pH 4.8). NOESY (250 ms mixing time) and TOCSY (70 ms spin-lock time) spectra were acquired on a Bruker DRX-600 spectrometer.

Figure S8. Angular order parameters (S) for the final 20 structures of μ -KIIIA[C1-C15,C2-C9,C4-C16] measured using MOLMOL for ϕ (blue) and ψ (red) backbone dihedral angles plotted as a function of residue.

Figure S9. Residue Ramachandran plots of family of structures of μ -KIIIA[C1-C9,C2-C15,C4-C16] (top) and μ -KIIIA[C1-C15,C2-C9,C4-C16] (bottom)

Figure S10. Representative sodium-current traces from voltage-clamped oocytes expressing rat Na_V1.2. μ -KIIIB-P1 (left) and μ -KIIIB-P2 (right) were each tested at a concentration of 10 μ M. Each panel shows superimposed recordings before (control, *gray trace*) and after (*black trace*) 20-min exposure to the indicated peptide.

References

- (1) Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E. (1985) *Conus geographus* toxins that discriminate between neuronal and muscle sodium channels, *J Biol Chem* 260, 9280-9288.
- (2) Lewis, R. J., Schroeder, C. I., Ekberg, J., Nielsen, K. J., Loughnan, M., Thomas, L., Adams, D. A., Drinkwater, R., Adams, D. J., and Alewood, P. F. (2007) Isolation and structure-activity of μ-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels, *Mol Pharmacol* 71, 676-685.
- (3) Safo, P., Rosenbaum, T., Shcherbatko, A., Choi, D. Y., Han, E., Toledo-Aral, J. J., Olivera, B. M., Brehm, P., and Mandel, G. (2000) Distinction among neuronal subtypes of voltage-activated sodium channels by μ-conotoxin PIIIA, *J Neurosci 20*, 76-80.
- (4) Walewska, A., Skalicky, J. J., Davis, D. R., Zhang, M. M., Lopez-Vera, E., Watkins, M., Han, T. S., Yoshikami, D., Olivera, B. M., and Bulaj, G. (2008) NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the μ-conotoxin SxIIIA, *J Am Chem Soc 130*, 14280-14286.
- (5) Bulaj, G., West, P. J., Garrett, J. E., Watkins, M., Zhang, M. M., Norton, R. S., Smith, B. J., Yoshikami, D., and Olivera, B. M. (2005) Novel conotoxins from *Conus* striatus and *Conus kinoshitai* selectively block TTX-resistant sodium channels, *Biochemistry* 44, 7259-7265.
- (6) West, P. J., Bulaj, G., Garrett, J. E., Olivera, B. M., and Yoshikami, D. (2002) μconotoxin SmIIIA, a potent inhibitor of tetrodotoxin-resistant sodium channels in amphibian sympathetic and sensory neurons, *Biochemistry* 41, 15388-15393.
- (7) Favreau, P., Benoit, E., Hocking, H. G., Carlier, L., D, D. H., Leipold, E., Markgraf, R., Schlumberger, S., Cordova, M. A., Gaertner, H., Paolini-Bertrand, M., Hartley, O., Tytgat, J., Heinemann, S. H., Bertrand, D., Boelens, R., Stocklin, R., and Molgo, J. (2012) A novel μ-conopeptide, CnIIIC, exerts potent and preferential inhibition of Na(V) 1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors, *Br J Pharmacol 166*, 1654-1668.
- (8) Holford, M., Zhang, M. M., Gowd, K. H., Azam, L., Green, B. R., Watkins, M., Ownby, J. P., Yoshikami, D., Bulaj, G., and Olivera, B. M. (2009) Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from *Conus bullatus, Toxicon 53*, 90-98.
- (9) Corpuz, G. P., Jacobsen, R. B., Jimenez, E. C., Watkins, M., Walker, C., Colledge, C., Garrett, J. E., McDougal, O., Li, W., Gray, W. R., Hillyard, D. R., Rivier, J., McIntosh, J. M., Cruz, L. J., and Olivera, B. M. (2005) Definition of the M-conotoxin superfamily: characterization of novel peptides from molluscivorous *Conus* venoms, *Biochemistry* 44, 8176-8186.
- (10) Wang, C. Z., Zhang, H., Jiang, H., Lu, W., Zhao, Z. Q., and Chi, C. W. (2006) A novel conotoxin from *Conus striatus*, μ-SIIIA, selectively blocking rat tetrodotoxinresistant sodium channels, *Toxicon 47*, 122-132.