Supporting Information ## Fluctuations of an Exposed π -Helix Involved in Lipoxygenase Substrate Recognition. Miles D. Bradshaw and Betty J. Gaffney. Department of Biological Science, Florida State University, Tallahassee FL 32306. **Figure S1.** CW-EPR spectrum of Q267R₁ SBL1 at 60K (*solid*) with simulation (*dashed*). Spectrum recorded at 9.404 GHz microwave frequency, 0.2 μ W microwave power, 2 Gauss modulation amplitude, with 100 kHz modulation frequency. Spectrum was simulated with the program pepper of the EasySpin software package¹ (version 4.5.5) using a Gaussian line shape with an 8.4 G (FWHH) line width. The spectrum was simulated using the following g tensor values: g_{xx} : 2.0084, g_{yy} : 2.0061, g_{zz} : 2.0020; and the following A tensor values: A_{xx} : 3.5 G, A_{yy} : 5.5 G, A_{zz} : 35.4 G. Table S1: Comparison of Steady State Kinetic Constants of Spin-Labeled Mutants of SBL1. | Residue | k_{cat} (s ⁻¹) | Km (µM) | |--------------------|------------------------------|----------------| | WT^a | 234 | 16 | | NoCys ^a | $215, 178^b$ | $20, 18^b$ | | $I257R_1$ | 250 ± 9^{c} | 20 ± 4 | | $T259R_1$ | 174 ± 5 | 7.5 ± 0.6 | | $K260R_1$ | 149 ± 4 | 6.5 ± 0.5 | | $S261R_1$ | 186 ± 8 | 8.0 ± 0.9 | | $L262R_1$ | 173 ± 6 | 15 ± 1 | | $S263R^d$ | 203 ± 4 | 26 ± 1 | | $Q264R_1$ | 126 ± 2 | 13.3 ± 0.5 | | $I265R_1$ | 218 ± 5 | 8.3 ± 0.5 | | $Q267R_1$ | 185 ± 4 | 12.4 ± 0.6 | | $F270R_1^a$ | 96 | 13 | | F274R ₁ | 230 ± 4 | 4.9 ± 0.3 | "Kinetic constants of WT, cysteine-free (NoCys), and F270R₁ SBL1 from Gaffney *et al.* 2012. ^bKinetic constants for NoCys determined by detergent-free assay shown for comparison with S263R₁ kinetic constants. ^cUncertainties of the fit to the Michaelis-Menten equation are reported as mean-squared error. ^dS263R1 displayed non steady state kinetics in the presence of the detergent TWEEN-20 and was determined by detergent-free assay. ## **References:** ⁽¹⁾ Stoll, S., Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42-55.