File S4

Validation on linkage disequilibrium

Innan (2002) also derived the expectation of LD between two loci:

$$E(D) = \frac{c}{\beta} \left(1 - \frac{2\lambda}{\omega} \right). \tag{8}$$

To generalize his theory to genes of length L (Innan 2003) he defined D_{sum} as the sum of LD at all L sites:

$$D_{sum} = \sum_{m=1}^{L} D_m, \tag{9}$$

where D_m is LD at site m (i.e. $D_m = \frac{n_{AA}n_{aa} - n_{Aa}n_{aA}}{n(n-1)}$, where n_{xy} represents the number of chromosomes with nucleotides x and y at original and duplicated genes, respectively). His expectation for D_{sum} for an infinite-site model (Innan 2003) is:

$$E(D_{sum}) = \frac{2\theta C}{4C + R + 2},\tag{10}$$

which is equivalent to E(D).

Figure S3 shows the results for D_{sum} from our simulations compared to $E(D_{sum})$. Our simulations show that $E(D_{sum})$ is not an accurate predictor for LD measures for high IGC rates when R > 0 since D_{sum} reaches a plateau before reaching $\Theta/2$. This plateau is lower for higher crossover rates.

 D_{sum} is a measure of LD between duplicate regions. To gain a deeper understanding of the pattern of LD not only between but within duplicates and in the whole region, we have calculated LD along the entire simulated region (see Methods).