File S5

Comparison between theoretical expectations of variation between duplicates

In this note, we analyze $\pi_b{}^C$, $\pi_b{}^A$ and $\pi_s{}^A$. Recall that $\pi_s{}^A$ corresponds to the average variation between duplicated blocks on the same chromosome while $\pi_b{}^A$ is the average variation between different blocks on different chromosomes. This difference is reflected in their behavior for high IGC rates. As shown in Figure S4, $\pi_s{}^A \to 0$ while $\pi_b{}^A \to 0$ for high IGC rates. Of course, very high IGC rates will imply complete identity between duplicated blocks on the same chromosome while there is a minimum equilibrium divergence for blocks on different chromosomes in accordance with the neutral theory of molecular evolution.

For high IGC rates ($c \gg \mu$) and very small crossover rates,

$$\pi_s^A(r \approx 0, c \gg \mu) = 1 - \hat{c}_1 \approx 1 - \frac{c}{c+\mu} = \frac{\mu}{c+\mu} \approx \frac{\mu}{c}. \tag{11}$$

For smaller conversion rates $\pi_b{}^A \approx \pi_s{}^A$, however, they diverge from $\pi_b{}^C$, as shown in Figure S4A. Interestingly, when R = 0, and contrary to what happens for high conversion rates, $\pi_s{}^A \neq \Theta/C$, but $\pi_b{}^C = \Theta/C$, since C << 1 (then, $C^2 << C$) and therefore,

$$\pi_b^C(R=0,C\ll 1) = \frac{\Theta(4C^2+4C+2)}{C(4C+2)} \approx \frac{\Theta(4C+2)}{C(4C+2)} = \frac{\Theta}{C} = \frac{\mu}{C}.$$
 (12)

Additionally, we find that for R = 0, and for all values of C:

$$\frac{\theta}{C} - \pi_b^C \approx \pi_s^A - \pi_b^A. \tag{13}$$

However, this is not the case for R > 0 as can be appreciated by comparing Figures S4A and S4B.