### ARH-seq: Differential Splicing Prediction Workflow for RNA-seq Data

#### SUPPLEMENTARY MATERIAL

# Axel Rasche, Matthias Lienhard, Marie-Laure Yaspo, Hans Lehrach, Ralf Herwig

Correspondence should be addressed to Axel Rasche

#### **Institutional address**

Max-Planck-Institute for Molecular Genetics Department of Vertebrate Genomics Bioinformatics Group Ihnestrasse 63-73 14195 Berlin GERMANY

Phone: +49-30-8413-1741 Fax: +49-30-8413-1740 E-mail: rasche@molgen.mpg.de, herwig@molgen.mpg.de, lienhard@molgen.mpg.de, yaspo@molgen.mpg.de, lehrach@molgen.mpg.de

## A

| blood2brain          | 162 | heart2spleen            | 29 |
|----------------------|-----|-------------------------|----|
| blood2colon          | 31  | heart2testis            | 75 |
| blood2heart          | 31  | heart2thyroid           | 23 |
| blood2kidney         | 53  | kidney2liver            | 59 |
| blood2liver          | 54  | kidney2lung             | 51 |
| blood2lung           | 40  | kidney2muscle           | 69 |
| blood2muscle         | 54  | kidney2prostate         | 46 |
| blood2prostate       | 29  | kidney2skeletalMuscle   | 38 |
| blood2skeletalMuscle | 33  | kidney2spleen           | 27 |
| blood2spleen         | 38  | kidney2testis           | 91 |
| blood2testis         | 80  | kidney2thyroid          | 45 |
| blood2thyroid        | 28  | liver2lung              | 54 |
| brain2colon          | 143 | liver2muscle            | 76 |
| brain2heart          | 149 | liver2prostate          | 51 |
| brain2kidney         | 147 | liver2skeletalMuscle    | 55 |
| brain2liver          | 156 | liver2spleen            | 40 |
| brain2lung           | 162 | liver2testis            | 98 |
| brain2muscle         | 182 | liver2thyroid           | 50 |
| brain2prostate       | 159 | lung2muscle             | 56 |
| brain2skeletalMuscle | 147 | lung2prostate           | 33 |
| brain2spleen         | 146 | lung2skeletalMuscle     | 37 |
| brain2testis         | 204 | lung2spleen             | 32 |
| brain2thyroid        | 158 | lung2testis             | 78 |
| colon2heart          | 24  | lung2thyroid            | 32 |
| colon2kidney         | 30  | muscle2prostate         | 47 |
| colon2liver          | 53  | muscle2skeletalMuscle   | 35 |
| colon2lung           | 35  | muscle2spleen           | 56 |
| colon2muscle         | 49  | muscle2testis           | 98 |
| colon2prostate       | 24  | muscle2thyroid          | 46 |
| colon2skeletalMuscle | 28  | prostate2skeletalMuscle | 26 |
| colon2spleen         | 15  | prostate2spleen         | 31 |
| colon2testis         | 75  | prostate2testis         | 65 |
| colon2thyroid        | 23  | prostate2thyroid        | 21 |
| heart2kidney         | 38  | skeletalMuscle2spleen   | 35 |
| heart2liver          | 47  | skeletalMuscle2testis   | 77 |
| heart2lung           | 33  | skeletalMuscle2thyroid  | 25 |
| heart2muscle         | 47  | spleen2testis           | 78 |
| heart2prostate       | 24  | spleen2thyroid          | 30 |
| heart2skeletalMuscle | 20  | testis2thyroid          | 72 |
|                      |     |                         |    |

# В

| blood          | 14  |
|----------------|-----|
| brain          | 111 |
| colon          | 3   |
| heart          | 4   |
| kidney         | 10  |
| liver          | 11  |
| lung           | 14  |
| muscle         | 27  |
| prostate       | 7   |
| skeletalMuscle | 0   |
| spleen         | 0   |
| testis         | 54  |
| thyroid        | 10  |

**Supplementary Table S1: True Positive Sets. A:** Number of true positive events selected from AEdb for the corresponding case-control study. **B:** Number of true positive events selected from AEdb listed for different tissue specific test cases.

|                   | HU-75 PM | 1111- <sup>7515</sup> | 1111-75 62 | 1111-501 PW | 1111-501 15 | 1111-501 62 | Hur32 PM | 1111-3215 | 1111-32 22 | AMEAP | ATH FATS |
|-------------------|----------|-----------------------|------------|-------------|-------------|-------------|----------|-----------|------------|-------|----------|
| ARH_combi_rpkm    | 0,88     | 0,87                  | 0,89       | 0,86        | 0,84        | 0,80        | 0,88     | 0,89      | 0,89       | 0,87  | 0,88     |
| SplicingIndex_cnt | 0,62     | 0,50                  | 0,64       | 0,65        | 0,55        | 0,64        | 0,61     | 0,63      | 0,62       | 0,70  | 0,67     |
| PAC_combi         | 0,77     | 0,80                  | 0,76       | 0,64        | 0,61        | 0,59        | 0,75     | 0,76      | 0,70       | 0,63  | 0,64     |
| Correlation_combi | 0,80     | 0,76                  | 0,64       | 0,80        | 0,72        | 0,78        | 0,82     | 0,82      | 0,68       | 0,77  | 0,82     |
| cuffdiff          | 0,52     |                       | 0,38       | 0,48        |             | 0,56        | 0,67     |           | 0,68       |       |          |
| DASI_d_cnt        | 0,76     | 0,85                  | 0,63       |             |             |             |          |           |            |       |          |
| DEXSeq            | 0,70     | 0,67                  | 0,57       |             |             | 0,68        |          | 0,62      | 0,61       |       |          |
| MISO              | 0,57     |                       | 0,71       | 0,28        |             | 0,61        |          |           |            |       |          |
| MATS_J            | 0,53     | 0,53                  | 0,66       | 0,51        | 0,54        | 0,53        |          |           |            |       |          |

**Supplementary Table S2: AUC for the corresponding curves in Supplementary Figure 9.** Abbrv.: pw, pairwise; ts, tissue specific; b2l, brain vs. liver; Illu, Illumina.

| / |   |
|---|---|
| F | ٦ |

PAC\_combi

DASI\_d\_cnt

cuffdliff

DEXSeq

MATS\_J

MISO

Correlation\_combi

| Illumina 75       | <b>F</b> | New York Street | Port of the second seco | yr<br>ywr<br>ywr<br>ywr<br>ywr<br>ywr<br>ywr<br>ywr<br>ywr<br>ywr<br>y | Sec.  | A<br>South<br>South | L. Sold | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | <b>.</b> | à |
|-------------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|---------------------|---------|---------------------------------------------------------------------------------------------|----------|---|
| ARH_combi_rpkm    | 250      | 0.27            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0081                                                                 | 0.04  | 0.02                | 0.12    | 0.055                                                                                       | 0.11     |   |
| SplicingIndex_cnt | 105      | 250             | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.016                                                                  | 0.042 | 0.022               | 0.12    | 0.048                                                                                       | 0.059    |   |

| с¥Г.          | Ç,     | \$ <b>9</b> ** | Q.    | Ť     | ÷.    | ÷.    |                                          |            | 2       | n c  | n <sup>t</sup> | mbi               |   |  |
|---------------|--------|----------------|-------|-------|-------|-------|------------------------------------------|------------|---------|------|----------------|-------------------|---|--|
| 0.25          | 0.0081 | 0.04           | 0.02  | 0.12  | 0.055 | 0.11  |                                          |            | w. (V   | xet/ | Ś              | , <sup>c</sup> o. |   |  |
| 0. <b>1</b> 9 | 0.016  | 0.042          | 0.022 | 0.12  | 0.048 | 0.059 | 0.059 numina 32 contradit contraditor st |            |         |      |                |                   |   |  |
| 250           | 0.002  | 0.048          | 0.031 | 0.073 | 0.046 | 0.068 |                                          | at         | olicity | ູັ   | orreit         | stidin            |   |  |
| 1             | 250    | 0.031          | 0.002 | 0.004 | 0.01  | 0.02  |                                          | <i>b</i> , | Sx      | १    | C°             | ۍ<br>کې           | _ |  |
| 23            | 15     | 250            | 0.075 | 0.062 | 0.075 | 0.13  | ARH_combi_rpkm                           | 250        | 0.2     | 0.16 | 0.06           | 0.06              | _ |  |
| 15            | 1      | 35             | 250   | 0.075 | 0.046 | 0.099 | SplicingIndex_cnt                        | 82         | 250     | 0.22 | 0.06           | 0.04              |   |  |
| 34            | 2      | 29             | 35    | 250   | 0.1   | 0.094 | PAC_combi                                | 68         | 90      | 250  | 0.03           | 0.04              |   |  |
| 22            | 5      | 35             | 22    | 46    | 250   | 0.094 | Correlation_combi                        | 30         | 30      | 12   | 250            | 0.01              |   |  |
| 32            | 10     | 59             | 45    | 43    | 43    | 250   | cuffdiff                                 | 26         | 19      | 21   | 6              | 250               |   |  |

| Illumina 50f      | ARH | ombi rp | enn et c | ombi<br>Correli | ation contrait | , MISO | MATS  | Ş |
|-------------------|-----|---------|----------|-----------------|----------------|--------|-------|---|
| ARH_combi_rpkm    | 250 | 0.1     | 0.04     | 0.014           | 0.031          | 0.099  | 0.055 |   |
| SplicingIndex_cnt | 46  | 250     | 0.025    | 0.004           | 0.029          | 0.062  | 0.035 |   |
| PAC_combi         | 19  | 12      | 250      | 0               | 0.053          | 0.1    | 0.059 |   |
| Correlation_combi | 7   | 2       | 0        | 250             | 0.014          | 0.05   | 0.022 |   |
| cuffdiff          | 15  | 14      | 25       | 7               | 250            | 0.54   | 0.11  |   |
| MISO              | 45  | 29      | 47       | 24              | 176            | 250    | 0.47  |   |
| MATS_J            | 26  | 17      | 28       | 11              | 49             | 159    | 250   |   |

| Affy exon array   | ARH | splicin | olindet c | onto<br>Correls | stion combi |
|-------------------|-----|---------|-----------|-----------------|-------------|
| ARH_combi_rpkm    | 250 | 0.54    | 0.31      | 0               |             |
| SplicingIndex_cnt | 175 | 250     | 0.3       | 0               |             |
| PAC_combi         | 119 | 115     | 250       | 0               |             |
| Correlation_combi | 2   | 1       | 1         | 250             |             |

| Illumina 75       | ARH | ombilit | Nondet PAC | conto<br>combi | ation co | d crit | MATS  | > |
|-------------------|-----|---------|------------|----------------|----------|--------|-------|---|
| ARH_combi_rpkm    | 250 | 0.17    | 0.13       | 0.008          | 0.042    | 0.073  | 0.027 |   |
| SplicingIndex_cnt | 73  | 250     | 0.037      | 0.006          | 0.006    | 0.029  | 0.016 |   |
| PAC_combi         | 59  | 18      | 250        | 0.002          | 0.075    | 0.078  | 0.048 |   |
| Correlation_combi | 4   | 3       | 1          | 250            | 0.004    | 0.014  | 0.004 |   |
| DASI_d_cnt        | 20  | 3       | 35         | 2              | 250      | 0.087  | 0.042 |   |
| DEXSeq            | 34  | 14      | 36         | 7              | 40       | 250    | 0.029 |   |
| MATS_J            | 13  | 8       | 23         | 2              | 20       | 14     | 250   |   |

| Illumina 32       | ARH | ombi ro | ennoet c | ombi<br>Correli | ation cor | ,ntói<br>,o |
|-------------------|-----|---------|----------|-----------------|-----------|-------------|
| ARH_combi_rpkm    | 250 | 0.21    | 0.13     | 0.002           | 0.042     |             |
| SplicingIndex_cnt | 87  | 250     | 0.08     | 0.002           | 0.042     |             |
| PAC_combi         | 57  | 37      | 250      | 0               | 0.035     |             |
| Correlation_combi | 1   | 1       | 0        | 250             | 0         |             |
| DEXSeq            | 20  | 20      | 17       | 0               | 250       |             |

| Illumina 50f      | ARH | ombi rp | elindet | onbi correl | MATS  | ,ntá<br>) |
|-------------------|-----|---------|---------|-------------|-------|-----------|
| ARH_combi_rpkm    | 250 | 0.2     | 0.073   | 0           | 0.02  |           |
| SplicingIndex_cnt | 82  | 250     | 0.025   | 0.004       | 0.014 |           |
| PAC_combi         | 34  | 12      | 250     | 0           | 0.016 |           |
| Correlation_combi | 0   | 2       | 0       | 250         | 0.004 |           |
| MATS_J            | 10  | 7       | 8       | 2           | 250   |           |

| Affy exon array   | ARH | ombi (p)<br>Splicit | PAC PAC | onto<br>Correl | ation combi |
|-------------------|-----|---------------------|---------|----------------|-------------|
| ARH_combi_rpkm    | 250 | 0.61                | 0.34    | 0.01           |             |
| SplicingIndex_cnt | 189 | 250                 | 0.38    | 0.01           |             |
| PAC_combi         | 128 | 137                 | 250     | 0.01           |             |
| Correlation_combi | 4   | 3                   | 3       | 250            |             |

Supplementary Table S3: A: Overlap of top 250 predictions for the heart vs. liver comparison. In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B|/|A \cup B|$ . **B**: Overlap of top 250 predictions for the liver vs. non-liver test case.

| A              |       |      |                   |       |          |       |
|----------------|-------|------|-------------------|-------|----------|-------|
| ARH_combi_RPKM | Humin | a TS | a 50 <sup>t</sup> | Attym | ative EA | Splic |
| Illumina_75    | 250   | 0.02 | 0.28              | 0.26  |          | lllum |
| Illumina_50f   | 10    | 250  | 0.02              | 0.018 |          | Illum |

10

9

IIIInina 32

0.51

250

114

0.04 0.022

Humina 504

250

77

0.37

0.3

250

0.18

250

Athmetik EA

108

103

Humina TS

16

169

136

250 0.033

250

19

11

| SplicingIndex_cnt   | Humit | 18 TS      | 18 50t | Athm        | strit EA |
|---------------------|-------|------------|--------|-------------|----------|
| Illumina_75         | 250   | 0.014      | 0.41   | 0.29        |          |
| Illum ina_50f       | 7     | 250        | 0.016  | 0.016       |          |
| Illum ina_32        | 146   | 8          | 250    | 0.26        |          |
| Affymetrix_ExonArra | 112   | 8          | 104    | 250         |          |
| Correlation_combi   | Humir | a TS Humin | a 50t  | a 32 Athing | strit EA |
| Illumina_75         | 250   | 0.062      | 0.037  | 0.025       |          |
| Illumina_50f        | 29    | 250        | 0.05   | 0.02        |          |
|                     |       |            |        |             |          |
| liiumina_32         | 18    | 24         | 250    | 0.018       |          |

| cuffdiff      | Humin | a TS Humin | a 50t | م<br>MISO     | unit | a TS unina | MATS_J        | unit | 12 75 | a sot |
|---------------|-------|------------|-------|---------------|------|------------|---------------|------|-------|-------|
| Illumina_75   | 250   | 0.12       | 0.11  |               | HIL  | IIIC       |               | HIL  | III   |       |
| Illum ina_50f | 55    | 250        | 0.1   | Illum ina_75  | 250  | 0.082      | Illumina_75   | 193  | 0.068 |       |
| Illumina_32   | 48    | 46         | 250   | Illum ina_50f | 38   | 250        | Illum ina_50f | 26   | 225   |       |

## К

Illumina\_32

PAC\_combi

Illumina\_75

Illum ina\_50f

Illumina\_32

Affymetrix\_ExonArra

Affymetrix\_ExonArray

| ARH_combi_RPKM                                                                                     | Humir                                        | 18 TS                                                                                                                                                                                        | a 50 <sup>t</sup>                                            | A Stym                                           | atrix EA |
|----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------|
| Illumina_75                                                                                        | 250                                          | 0.2                                                                                                                                                                                          | 0.26                                                         | 0.12                                             |          |
| Illumina_50f                                                                                       | 83                                           | 250                                                                                                                                                                                          | 0.19                                                         | 0.055                                            |          |
| Illumina_32                                                                                        | 103                                          | 79                                                                                                                                                                                           | 250                                                          | 0.11                                             |          |
| Affymetrix_ExonArra                                                                                | 52                                           | 26                                                                                                                                                                                           | 49                                                           | 250                                              |          |
| PAC_combi                                                                                          | mit                                          | 12 15 min                                                                                                                                                                                    | a 50 <sup>t</sup>                                            | 13 32 IM                                         | atrit Er |
|                                                                                                    | IIII.                                        | Illin                                                                                                                                                                                        | IIIII                                                        | Alle                                             |          |
| Illumina_75                                                                                        | 111 <sup>11</sup><br>250                     | <b>IIIII</b><br>0.096                                                                                                                                                                        | <b>III<sup>III</sup></b><br>0.52                             | <b>6.41</b>                                      |          |
| Illumina_75<br>Illumina_50f                                                                        | 1111<br>250<br>44                            | <b>11<sup>111</sup></b><br>0.096<br>250                                                                                                                                                      | <b>III<sup>III</sup></b><br>0.52<br>0.064                    | <b>A<sup>119</sup></b><br>0.41<br>0.066          |          |
| Illumina_75<br>Illumina_50f<br>Illumina_32                                                         | 11111<br>250<br>44<br>171                    | 11111<br>0.096<br>250<br>30                                                                                                                                                                  | 10.52<br>0.064<br>250                                        | <b>p</b> <sup>ins</sup><br>0.41<br>0.066<br>0.38 |          |
| Illumina_75<br>Illumina_50f<br>Illumina_32<br>Affymetrix_ExonArra                                  | <b>IIII</b><br>250<br>44<br>171<br>145       | <pre>())))))))))))))))))))))))))))))))))))</pre>                                                                                                                                             | 10.52<br>0.064<br>250<br>138                                 | 0.41<br>0.066<br>0.38<br>250                     |          |
| Illumina_75<br>Illumina_50f<br>Illumina_32<br>Affymetrix_ExonArra<br><i>DEX Seq</i>                | 1111<br>250<br>44<br>171<br>145              | 1111<br>0.096<br>250<br>30<br>31<br>31                                                                                                                                                       | 1111<br>0.52<br>0.064<br>250<br>138<br><b>55</b><br><b>6</b> | <b>61111111111111</b>                            |          |
| Illumina_75<br>Illumina_50f<br>Illumina_32<br>Affymetrix_ExonArra<br><i>DEX Seq</i><br>Illumina_75 | ни<br>250<br>44<br>171<br>145<br><b>ни</b> т | 1111<br>0.096<br>250<br>30<br>31<br><b>a</b><br><b>b</b><br><b>b</b><br><b>b</b><br><b>b</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b> | 1111<br>0.52<br>0.064<br>250<br>138<br><b>8</b><br><b>9</b>  | <b>6</b><br>0.41<br>0.066<br>0.38<br>250         |          |

| SplicingInd                                               | ex_cnt                          | Humin                                   | a TS                                                                                  | a 50 <sup>t</sup>                                                   | Afyme                                                       | stit EA           |
|-----------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------|
| lllumina_75                                               |                                 | 250                                     | 0.15                                                                                  | 0.19                                                                | 0.027                                                       |                   |
| lllumina_50f                                              |                                 | 66                                      | 250                                                                                   | 0.2                                                                 | 0.092                                                       |                   |
| lllumina_32                                               |                                 | 80                                      | 83                                                                                    | 250                                                                 | 0.059                                                       |                   |
| Affymetrix_                                               | ExonArra                        | 13                                      | 42                                                                                    | 28                                                                  | 250                                                         |                   |
| Correlation                                               | _combi                          |                                         | a 15                                                                                  | 13 50 <sup>4</sup>                                                  | 8 <sup>3</sup>                                              | atrix EA          |
|                                                           |                                 | Illum                                   | Illum                                                                                 | Illum                                                               | AW                                                          |                   |
| lllum ina_75                                              |                                 | 11111111<br>250                         | <b>IIIII</b><br>0.062                                                                 | 11111101                                                            | <b>A<sup>ttynt</sup></b><br>0.014                           |                   |
| Illumina_75<br>Illumina_50f                               |                                 | 11111<br>250<br>29                      | 11111000000000000000000000000000000000                                                | 11111000000000000000000000000000000000                              | <b>A<sup>ttynt</sup></b><br>0.014<br>0.035                  |                   |
| Illum ina_75<br>Illum ina_50f<br>Illum ina_32             | •                               | 111110011<br>250<br>29<br>29            | 111110000<br>0.062<br>250<br>20                                                       | 11111000000000000000000000000000000000                              | <b>Attraction</b><br>0.014<br>0.035<br>0.014                |                   |
| IIIumina_75<br>IIIumina_50f<br>IIIumina_32<br>Affymetrix_ | ExonArra                        | 11110000000000000000000000000000000000  | 11110000000000000000000000000000000000                                                | 10.062<br>0.042<br>250<br>7                                         | <b>A<sup>thyfri</sup></b><br>0.014<br>0.035<br>0.014<br>250 |                   |
| Illumina_75<br>Illumina_50f<br>Illumina_32<br>Affymetrix_ | ExonArra<br>MATS_J              | <b>IIII</b><br>250<br>29<br>29<br>7     | 1111000<br>10062<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | 11110000<br>0.062<br>0.042<br>250<br>7                              | Afthr.<br>0.014<br>0.035<br>0.014<br>250<br>A<br>250        | 8 50 <sup>t</sup> |
| Illumina_75<br>Illumina_50f<br>Illumina_32<br>Affymetrix_ | ExonArra<br>MATS_J<br>Illumina_ | <b>HUP</b><br>250<br>29<br>29<br>7<br>7 | 10.062<br>250<br>20<br>17                                                             | нии <sup>т</sup><br>0.062<br>0.042<br>250<br>7<br>7<br><b>нит</b> и | Afthref<br>0.014<br>0.035<br>0.014<br>250<br>               |                   |

Supplementary Table S4: A: Overlap of top 250 predictions for the heart vs. liver test case. In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B|/|A \cup B|$ . **B:** Overlap of top 250 predictions for the liver vs. non-liver test case.



<sup>(\*)</sup> For calculations we assume read length 32 bp and total read number of 32'000'000 and 26'000'000.

# **Supplementary Figure S1A:** Work flow illustrating the different steps of the ARH-seq computational framework.

In the following we repeat the formal description of the method ARH as presented in (18). For a gene g with m exons, two biological conditions c and t with corresponding exon combi-counts (exon and associated junctions)  $\phi_{g,e,t}$  and  $\phi_{g,e,c}$ , e = 1, ..., m, we compute the following quantities:

1. The exon splicing deviation,  $\zeta_{g,e}$ , measures the deviation of the fold change in each individual exon from the median gene fold change. Here, we compute log-ratios of exon fold changes to account for symmetric measurement of up- or downsplicing. From these log-ratios the median is subtracted to correct for global gene expression changes. A pseudocount of 1 on every count value avoids division by zero:

$$\zeta_{g,e} = \log_2\left(\frac{\phi_{g,e,t}+1}{\phi_{g,e,c}+1}\right) - \operatorname{median}_{e=1,\dots,m}\left(\log_2\left(\frac{\phi_{g,e,t}+1}{\phi_{g,e,c}+1}\right)\right)$$

2. The exon splicing probability is computed as the absolute value of the splicing deviation  $\zeta_{q,e}$  by

$$p_{g,e} = \frac{2^{|\zeta_{g,e}|}}{\sum_{e=1,...,m} 2^{|\zeta_{g,e}|}}$$

Note that for each gene  $\sum_{e} p_{g,e} = 1$ .

3. To measure whether the exon splicing probabilities are equally distributed or whether a single or a few exons dominate the probability distribution, we compute the entropy for each gene:

$$H_{g}(p_{g,1},...,p_{g,m}) = -\sum_{e=1}^{m} p_{g,e} \cdot \log_{2}(p_{g,e}).$$

4. The entropy  $H_g$  is dependent on the number of exons and can not be directly used for the comparison of different genes. Thus, in order to make the measure independent of the number of exons for a given gene, we subtract entropy from its theoretical maximum:

$$\max(H_g) - H_g = \log_2(m) - H_g(p_{g,1}, ..., p_{g,m}).$$

5. Another necessary modification accounts for the strength of deviation within the gene. This is robustly estimated with the interquartile range of exon expression ratios, the 25%,  $Q_{.25,g,e=1,...,m}\left(\frac{\phi_{g,e,t}}{\phi_{g,e,c}}\right)$ ,

and 75%,  $Q_{.75,g,e=1,...,m}\left(\frac{\phi_{g,e,t}}{\phi_{g,e,c}}\right)$ , quantiles. An index for the amplitude is the interquartile ratio  $\frac{Q_{.75,g}}{Q_{.25,g}}$ . This ratio is close to 1 for low splicing probability and increases with deviations of a number of exons in the gene. The interquartile ratio is multiplied with the entropy index and constitutes the ARH splicing prediction:

$$\operatorname{ARH}_{g} = \frac{Q_{.75,g}}{Q_{.25,g}} \cdot (\max(H_g) - H_g).$$

Thus, ARH is suitable to compare the predictions across different genes. Large ARH values (above 0.03) indicate splicing.



**Supplementary Figure S2: A:** Background distribution estimation of ARH-seq. The left plot shows ARH-seq distributions for all test cases (pairwise and tissue specific) each displayed with a different colour. The distributions show similar behaviour allowing for the estimation of a general background distribution used in different experiments. The red dotted line shows a fit with a Weibull distribution. The right plot shows the summarized ARH-seq distribution and the corresponding Weibull fit (red dotted line). **B:** Background distribution of the splicing deviations. On the left hand the splicing deviations are sign dependent with most deviations around zero. In the center image the absolute splicing deviation distributions for all the test cases (pairwise and tissue specific) are plotted, coloured by data sets. The distributions show similar behaviour allowing for the estimation of a general background distribution used in different experiments. On the right hand side all the predictions are collected for one general distribution. The vertical red lines indicate quantile cut offs at 0.9, 0.95 and 0.99 with absolute values.



**Supplementary Figure S3: Exon lengths. A:** The 533'087 Ensembl exons range from 1 bp to 18'172 bp. 92'458 exons are <75 bp (17.3%) and therefore have no read count in the Illumina 75 data set. **B:** The 330 AEdb confirmed splicing events selected for tissue splicing range from 2 bp to 800 bp. 134 exons are <75 bp and therefore have no read count in the Illumina 75 data set.



**Supplementary Figure S4: A**: Histogram of exon number. For all Ensembl exons used in the analysis the histogram shows that genes tend to have few exons. The blue dashed line indicates the average of 11 exons per gene. The median is 3 exons per gene. **B**: Histogram for AEdb confirmed events. The average is 47 exons per gene with a median of 40. **C**: For every exon number bin the number of genes in the AEdb histogram is divided by the number of Ensembl genes. This illustrates that genes in the AEdb are biased towards high exon numbers.

Exon number in gene



| D                                |      |      |      |
|----------------------------------|------|------|------|
|                                  | pw   | ts   | b2l  |
| ARH_combi_rpkm_tophat            | 0,88 | 0,87 | 0,90 |
| ARH_combi_rpkm_jctnWindowsBowtie | 0,88 | 0,86 | 0,89 |
| ARH_combi_rpkm_MapSplice         | 0,89 | 0,88 | 0,90 |
| ARH_combi_rpkm_SpliceMap         | 0,88 | 0,86 | 0,89 |
| ARH_jctn_rpkm_tophat             | 0,57 | 0,57 | 0,51 |
| ARH_jctn_rpkm_jctnWindowsBowtie  | 0,57 | 0,56 | 0,50 |
| ARH_jctn_rpkm_MapSplice          | 0,57 | 0,59 | 0,51 |
| ARH_jctn_rpkm_SpliceMap          | 0,57 | 0,58 | 0,51 |
| ARH_exon_rpkm                    | 0,88 | 0,88 | 0,89 |

R

| C                                | ARHCO | he perfection | ophat nit for the correction of the correction o | Envindow<br>Ind Inder | Bennie<br>Berspice | Policeman<br>Policeman | nat jet | hwindows<br>Potente | Source Spice | Contract of the second se |
|----------------------------------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------------|---------|---------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARH_combi_rpkm_tophat            | 250   | 0,41          | 0,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,48                  | 0,018              | 0,025                  | 0,025   | 0,029               | 0,23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_combi_rpkm_jctnWindowsBowtie | 145   | 250           | 0,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,36                  | 0,02               | 0,018                  | 0,027   | 0,027               | 0,16         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_combi_rpkm_MapSplice         | 179   | 128           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,51                  | 0,016              | 0,022                  | 0,018   | 0,02                | 0,35         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_combi_rpkm_SpliceMap         | 162   | 131           | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                   | 0,029              | 0,037                  | 0,033   | 0,027               | 0,28         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_jctn_rpkm_tophat             | 9     | 10            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                    | 250                | 0,55                   | 0,69    | 0,59                | 0,057        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_jctn_rpkm_jctnWindowsBowtie  | 12    | 9             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                    | 177                | 250                    | 0,54    | 0,47                | 0,053        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_jctn_rpkm_MapSplice          | 12    | 13            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                    | 204                | 176                    | 250     | 0,64                | 0,066        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_jctn_rpkm_SpliceMap          | 14    | 13            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                    | 186                | 160                    | 195     | 250                 | 0,042        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARH_exon_rpkm                    | 93    | 68            | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109                   | 27                 | 25                     | 31      | 20                  | 250          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

**Supplementary Figure S5:** Alignments and read counting. **A:** ROC curves for different junction alignment methods with respect to AEdb confirmed splicing events (Illumina 75). Junction expression is computed with tophat, MapSplice, SpliceMap and synthetic junction windows. Prediction performance is computed with ARH-seq based on junction expression, exon expression and combinations (combi counts). The left plot shows averaged pairwise tissue evaluations, the middle plot averaged tissue specific evaluations and the right plot the evaluation of the brain vs. liver scenario. Abbrv.: jctn, junction. **B:** AUC for the corresponding curves in **A**. Abbrv.: pw, pairwise; ts, tissue specific; b2l, brain vs. liver. **C:** Overlap of top 250 predictions for the brain vs. liver test case (right plot in **A**). In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B|/|A \cup B|$ .



|                                  | pw   | ts   | b2l  |
|----------------------------------|------|------|------|
| ARH_combi_rpkm_jctnWindows_140bp | 0,87 | 0,85 | 0,88 |
| ARH_jctn_rpkm_tophat             | 0,57 | 0,57 | 0,51 |
| ARH_jctn_rpkm_jctnWindowsBowtie  | 0,57 | 0,56 | 0,50 |
| ARH_jctn_rpkm_jctnWindows_140bp  | 0,80 | 0,79 | 0,81 |
| ARH_jctn_rpkm_MapSplice          | 0,57 | 0,59 | 0,51 |
| ARH_jctn_rpkm_SpliceMap          | 0,57 | 0,58 | 0,51 |

R



**Supplementary Figure S6:** Junction prediction performance. **A:** ROC curves for different junction alignment methods with respect to AEdb confirmed splicing events (Illumina 75). Junction expression is computed with tophat, MapSplice, SpliceMap and synthetic junction windows. Prediction performance was computed with ARH-seq based on junction/combi-count expression and synthetic junctions with sizes 112 bp and 140 bp. The left plot shows averaged pairwise tissue evaluations, the middle plot averaged tissue specific evaluations and the right plot the evaluation of the brain vs. liver scenario. Abbrv.: jctn, junction. **B:** AUC for the corresponding curves in **A**. Abbrv.: pw, pairwise; ts, tissue specific; b2l, brain vs. liver. **C:** Overlap of top 250 predictions for the brain vs. liver test case (right plot in **A**). In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B|/|A \cup B|$ .



**Supplementary Figure S7:** Differential splicing vs. differential expression. Splicing prediction is plotted vs. gene expression fold-changes in brain vs. liver (Illumina 75). To account for increased and decreased gene expression changes, log-expression values are provided on the *x*-axes. Splicing predictions on the *y*-axes are always positive and on logarithmised scale except DASI. It provides *p*-values and is here visualised on  $-\log_{10}$  scale.



0000

1

7 11 16 21 26 31 36 41 46 51

Number of exons in gene Blue: median (3), green: mean (11) of exon numbers **Supplementary Figure S8:** Dependency of differential splicing prediction on exon number. **A:** Splicing prediction is plotted vs. exon number. Predictions are binned by the exon number. For each exon number bin a box-and-whiskers plot is displayed. A horizontal red line indicates the *p*-value 0.05 threshold line. The graphics show exon number dependency of predictions unaware of any true positive splicing events. **B**: Histogram of the exon numbers in Ensembl 58.



**Supplementary Figure S9:** Splicing prediction performance. Splicing prediction methods are compared on various tisse data sets. The left panel shows averaged pairwise tissue evaluations, the center panel averaged tissue specific evaluations and the right panel the evaluation of the brain vs. liver scenario. Columns show Illumina 75, Illumina 50f, Illumina 32 and the Affymetrix exon array data sets. Brain tissue is not available for exon arrays, the respective graphic is thus skipped. The MISO method uses for Illumina-50 the paired end feature. DEXSeq uses a work-around for the non-replicative data sets, except for Illumina-32.



False positive rate

**Supplementary Figure S10: Artefacts description.** The method results are ordered by decreasing splicing indication. Depending on the strengths and drawbacks of the methods visible effects influence methods performance. For the Illumina 75 test case brain vs. liver tissue the effects are explained here:

(1)[ARH\_combi\_rpkm] No predictions available, e.g. genes have not enough exons or no finite ratios.
(2)[ARH\_combi\_rpkm] Interpolation over many predictions with low indication, i.e. no splicing indication.
(3)[SplicingIndex\_cnt] No predictions available. When no read is found for an exon this leads to division by zero or non-finite values.

(4)[SplicingIndex\_cnt] If (3), no prediction available, applies to true positive events, those are counted last. With the final predictions the curve climbs to the upper right. This corresponds to a penalty function, if predictions for true positive events are not possible.

(5)[Correlation\_combi] No predictions available, e.g. genes have not enough exons with finite non-zero values to compute a correlation value.

(6)[Correlation\_combi] If, no prediction is available (see (6)) for true positive events, those are counted last. (7)[cuffdiff] For most genes and true positives no predictions are available due to low read coverage of the genes/transcripts. All these genes are skipped. Thus performance is rated with available true positives leading to bigger steps in the curve.

(8)[DASI\_d\_cnt] Same DASI *p*-value applies to many genes (24 TP genes in this case) due to the Fisher test. (9)[DASI\_d\_cnt] No predictions available, e.g. not enough exons to compute the Fisher test.

(10)[DASI\_d\_cnt] If no prediction is available (see (11)) for true positive events, those are counted last.

(11)[DEXSeq] Many non-TP predictions with very low indication, i.e. *p*-value > 0.99996

(12)[DEXSeq] Interpolation over many predictions with low indication, i.e. no splicing indication.

(13)[DEXSeq] No predictions available.

(14)[MISO] Many non-TP predictions with very low indication.

(15)[MATS\_J] Interpolation over many predictions with low indication, i.e. no splicing indication.



**Supplementary Figure S11:** Selected example *MPZL1*. Exon expression behaviour over exons genomically ordered for the gene *MPZL1* (Zhao and Zhao 2003). 'treat' corresponds to brain (red, dashed) and 'ctrl' to liver tissue (blue). Exon expression, basis for the predictions, are refined from left to right starting with raw exon read counts with RPKM scaling to combi counts including junction expression. The grey bar plots visualize the splicing probabilities for the exons, basis for the splicing assessment with entropy. The green dot-dashed line marks the two true positive tissue splicing events known for the gene.



Α





| В                 |         |          |         |
|-------------------|---------|----------|---------|
|                   | Illu-75 | Illu-50f | Illu-32 |
| ARH_combi_rpkm    | 0,99    | 0,98     | 0,91    |
| SplicingIndex_cnt | 0,77    | 0,88     | 0,91    |
| PAC_cnt           | 0,94    | 0,78     | 0,78    |
| Correlation_cnt   | 0,76    | 0,75     | 0,76    |
| DASI_d_cnt        | 0,86    |          |         |
| DEXSeq            | 0,95    | 0,94     | 0,81    |
| MISO              | 0,40    |          |         |
| MATS_J            | 0,52    | 0,54     |         |

| C                 | ARH com | b PASI d cr | solicingIn | PAC cont | Correlation | DEXSER | MISO  | MATS J |
|-------------------|---------|-------------|------------|----------|-------------|--------|-------|--------|
| ARH_combi_rpkm    | 250     | 0.17        | 0.12       | 0        | 0.031       | 0.096  | 0.035 | 0.059  |
| DASI_d_cnt        | 72      | 250         | 0.031      | 0.004    | 0.002       | 0.022  | 0.016 | 0.006  |
| SplicingIndex_cnt | 55      | 15          | 250        | 0        | 0.053       | 0.068  | 0.059 | 0.055  |
| PAC_cnt           | 0       | 2           | 0          | 250      | 0.002       | 0.006  | 0.002 | 0.002  |
| Correlation_cnt   | 15      | 1           | 25         | 1        | 250         | 0.04   | 0.012 | 0.044  |
| DEXSeq            | 44      | 11          | 32         | 3        | 19          | 250    | 0.025 | 0.055  |
| MISO              | 17      | 8           | 28         | 1        | 6           | 12     | 250   | 0.037  |
| MATS_J            | 28      | 3           | 26         | 1        | 21          | 26     | 18    | 250    |

False positive rate

Supplementary Figure S12: A: Method evaluation with muscle-specific exon skipping events, RT-PCR. ROC curves for different muscle vs. non-muscle test cases. The validated events were predicted on Affymetrix exon array tissue data with Splicing Index and MiDAS. Validation was performed with RT-PCR. From left to right are the evaluations for Illumina 75, 50f and 32 data sets. Abbrv.: cnt, count. B: Method evaluation with muscle-specific exon skipping events, RT-PCR. AUC for the corresponding curves in A. Abbrv.: Illu, Illumina. C: Method evaluation with muscle-specific exon skipping events, RT-PCR. Overlap of top 250 predictions for muscle vs. non-muscle test case Illumina 75 data set (left hand graphic in supplementary Figure 6). In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B| / |A \cup B|$ .

False positive rate

egend

1.0



**Supplementary Figure S13: A:** Read length evaluation. ROC curves for ARH-seq predictions on data sets with varying read length. The Illumina 50f data set aligns only forward reads from the paired-end protocol. On the left hand side are averaged pairwise tissue evaluations, in the center averaged tissue specific evaluations and on the right hand side the evaluation of the brain vs. liver scenario. **B:** Read length evaluation. AUC for the corresponding curves. Abbrv.: pw, pairwise; ts, tissue specific; b2l, brain vs. liver.



Supplementary Figure S14: A: ROC curves for different exon-junction consensus methods (Illumina 75). ARH-seq predictions are computable for exons and junctions separately. Here, we evaluate the best method to join the predictions of the two data types. Possible approaches are (1) overlap, (2) Fisher-P and (3) combining expression values in beforehand to splicing prediction. In (1) the lower prediction value of exon or junction prediction is selected. In (2) p-values of the two predictions are combined via the  $\chi^2$ -test, also named Fisher-P approach (Weibull parameters fitted to exon based ARH-seq background distribution). Both approaches are incriminated by low junctionbased prediction performance. In (3) we propose to combine exon and junction expression in beforehand in the so-called combi counts and then run ARH-seq as prediction method. Junction predictions are generally hindered by the fact, that for many genes no junction reads are aligned at all. On the left hand side are averaged pairwise tissue evaluations, in the center averaged tissue specific evaluations and on the right hand side the evaluation of the brain vs. liver scenario. Abbrv.: jctn, junction. B: AUC for the corresponding curves in A. Abbrv.: pw, pairwise; ts, tissue specific; b2l, brain vs. liver. C: Overlap of top 250 predictions for the brain vs. liver test case (right hand graphic in A). In the lower left triangular matrix are absolute numbers and in the upper right triangular matrix are relative overlaps following the formula  $|A \cap B|/|A \cup B|$ .



**Supplementary Figure S15:** Effect of synthetic junction sizes. **A:** Expecting <sup>1</sup>/<sub>4</sub> read length overlap 544'250 junctions are covered with at least one read in brain. Relaxing this overlap to a minimum of 5 bp, 753'416 junctions are covered, a 27.7% increase in coverage. **B:** At the same time with <sup>1</sup>/<sub>4</sub> read length overlap 14'036'931 reads are aligned to junctions in brain and 23'898'512 reads for the smaller overlap. This corresponds to a 70.3% increase in aligned reads.

Illumina-75, pairwise tissues, AEdb









Supplementary Figure S16: Precision-Recall plots for the Illumina-75 data set.





|               | Spike-in |  |  |  |  |
|---------------|----------|--|--|--|--|
| ARH           | 0,99     |  |  |  |  |
| SplicingIndex | 0,96     |  |  |  |  |
| PAC           | 0,96     |  |  |  |  |
| Correlation   | 0,75     |  |  |  |  |

B

**Supplementary Figure S17:** Spike-in exon array performance. In Abdueva et al. (2007), a benchmark dataset was presented with spike-in transcripts. In HeLa cells 25 non-expressed transcripts are added at different concentrations in a Latin square design by five groups. Following the original handling of the data, we used the Affymetrix probe–probe set-transcript cluster assignment. Exons are re-assigned to different transcripts to establish generic splicing events. The environment excluding the 25 transcripts has no expression change at low variability. The samples are hybridized on the arrays in triplicates.