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1 “Branching” model of ordered mutation accumula-

tion

We first consider the case in which mutations accumulate in a defined temporal order at a set
of loci as shown in Fig. 1E and later (in Section 3) relax this assumption so that mutations
may accumulate in any order.

1.1 Formulation

Let S represent a stem cell and D a non-stem cell. Assume the stem cell divisions are
synchronized with a fixed cell-cycle duration of unity. When a stem cell divides, it spawns
two daughter cells in one of three different ways with probabilities pr, pa and pe:

S −−−−→


S + S pr = 1

2
s

S +D pa = 1− s
D +D pe = 1

2
s.

Here, the fraction of divisions that are symmetric — producing daughter cells with a common
fate — is denoted s (not to be confused with a selection coefficient). Numerical homeostasis
of the stem-cell pool is ensured on average by balancing the probability of symmetric renewal,
pr, with that of symmetric extinction, pe. Given a stage-i stem cell, Si, harboring neutral
mutations at i = 0 . . . K − 1 loci, each of its daughters independently acquires a mutation
at an additional locus, i + 1, with probability ui per stem-cell division. Thus, a symmetric
renewal gives rise to one of four possible outcomes

Si −−−−→


Si + Si (1− ui)2
Si + Si+1 (1− ui)ui
Si+1 + Si ui(1− ui)
Si+1 + Si+1 u2i .

Similarly, an asymmetric division generates mutants according to

Si −−−−→


Si +Di (1− ui)2
Si +Di+1 (1− ui)ui
Si+1 +Di ui(1− ui)
Si+1 +Di+1 u2i ,

whereas a symmetric differentiation looks like

Si −−−−→


Di +Di (1− ui)2
Di +Di+1 (1− ui)ui
Di+1 +Di ui(1− ui)
Di+1 +Di+1 u2i .

Since we restrict our exploration of parameter space to ui ≤ 10−2 � 1, we may neglect
probability contributions of order u2i (see Section 6 and Fig. S8). Making this approximation,
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and recognizing that the outcome Xi + Xi+1 (where X = S or D) cannot be distinguished
from Xi+1 +Xi in a non-spatial model, we arrive at the following reduced set of outcomes

Si −−−−→
{
Si + Si 1− 2ui
Si + Si+1 2ui

Si −−−−→


Si +Di 1− 2ui
Si +Di+1 ui
Si+1 +Di ui

Si −−−−→
{
Di +Di 1− 2ui
Di +Di+1 2ui.

Putting all this together, and book-keeping only the stem cells, we conclude that the division
of a stem cell Si (i = 0 . . . K − 1) results in one of five possible outcomes with the following
probabilities:

Si −−−−→


Si + Si pi,r = 1

2
s(1− 2ui)

Si + Si+1 pi,rm = 1
2
s 2ui

Si pi,a = (1− s)(1− ui)
Si+1 pi,am = (1− s)ui
∅ pi,e = 1

2
s

 (S1)

This is a discrete-time multi-type branching process [1, 2] in which each stem cell divides
independently of all other stem cells. The process starts with N wild-type (stage-0) stem
cells and ends when the first stage-K stem cell arises.

1.2 Efficient simulation algorithm

Let Zij(t) be the (random) number of times that a category-j division in Eq. (S1) occurs at
time t in a population of stage-i stem cells of (random) size Ni(t). The stage sizes one cell
cycle later are

N0(t+ 1) = N0(t)−B0(t) (S2a)

Ni(t+ 1) = Ni(t) + Ai−1(t)−Bi(t) i = 1, . . . , K − 1 (S2b)

NK(t+ 1) = NK(t) + AK−1(t) (S2c)

where

Ai(t) = Zi,rm(t) + Zi,am(t)

Bi(t) = Zi,am(t) + Zi,e(t)− Zi,r(t).

Notice that we have assumed that the stage-K stem cell has no birth-death dynamics. Instead
SK → SK at each cell cycle. This simplification does not affect the conclusions we draw since
the statistics that we compute relate to the appearance of the first stage-K stem cell and
are thus independent of its dynamics.

Conditioned on the sizes of the various stages, {Ni(t) = ni}, the number of divisions in

each category, ~Zi = (Zi,r , Zi,rm , Zi,a , Zi,am , Zi,e), is distributed according to the multinomial
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distribution [3],

P [ ~Zi(t) = ~z |Ni(t) = ni] =
ni!∏
j

zj!

∏
j

p
zj
ij , (S3)

where
∑

j zj = ni. This is an efficient way to simulate the stochastic process.

1.3 Deterministic analysis

Averaging the random variables in Eq. (S2) gives rise to terms of the form 〈Zij(t)〉 that can
be simplified by conditioning on the stage size as follows

〈Zij(t)〉 =
∑
~z

zj P [ ~Zi(t) = ~z ]

=
∑
ni

{∑
~z

zj P [ ~Zi(t) = ~z |Ni(t) = ni]

}
P [Ni(t) = ni] .

The factor in curly brackets is the average number of times that a category-j division occurs
in a fixed-size population of stage-i stem cells and is given by the product of the stage
size, ni, and the probability of a stem cell executing a category-j division, pij. Making this
replacement in the curly brackets immediately yields

〈Zij(t)〉 = 〈Ni(t)〉 pij.

Using this result and the expressions for the category probabilities pij given in Eq. (S1), one
may then show that the average population sizes obey

〈N0(t+ 1)〉 − 〈N0(t)〉 = −〈N0(t)〉u0 (S4a)

〈Ni(t+ 1)〉 − 〈Ni(t)〉 = 〈Ni−1(t)〉ui−1 − 〈Ni(t)〉ui i = 1, . . . , K − 1 (S4b)

〈NK(t+ 1)〉 − 〈NK(t)〉 = 〈NK−1(t)〉uK−1 (S4c)

After a few cell cycles, t� 1, these equations are well approximated by their continuous-time
form

d 〈N0〉 /dt = −〈N0〉u0 (S5a)

d 〈Ni〉 /dt = 〈Ni−1〉ui−1 − 〈Ni〉ui i = 1, . . . , K − 1 (S5b)

d 〈NK〉 /dt = 〈NK−1〉uK−1 (S5c)

If the mutation rates are identical and equal to u, then the relative abundance of the stages,
〈Ni〉 /N , follows a truncated Poisson distribution

〈Ni〉 /N = (ut)ie−ut/i! i = 0, . . . , K − 1

〈NK〉 /N = 1−
∑K−1

i=0 〈Ni〉 /N.
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We can also make analytical progress when the mutation rates are not all equal. Initially,
the dynamics of each stage is determined solely by the influx from the previous stage,

d 〈N0〉 /dt = 0 (S6a)

d 〈Ni〉 /dt = 〈Ni−1〉ui−1 i = 1, . . . , K (S6b)

yielding

〈N0〉 = N (S7a)

〈Ni〉 = Nu0 . . . ui−1t
i/i! i = 1 . . . K. (S7b)

Using these solutions we may derive the following expression for the influx to stage i

〈Ni−1〉ui−1 = 〈Ni〉 i/t i = 1 . . . K. (S8)

Plugging this expression into the influx-outflux inequality 〈Ni−1〉ui−1 � 〈Ni〉ui shows that
the solutions in Eq. (S7) are valid provided

t� 1/u0 (S9a)

t� i/ui i = 1 . . . K (S9b)

which is met for most biologically realistic parameter values. Combining Eqs. (S8) and (S9)
implies that the stage abundances are monotonically decreasing

〈Ni〉 � 〈Ni−1〉 i = 1 . . . K. (S10)

1.4 Purely asymmetric risk

In a tissue undergoing a purely asymmetric pattern of division (s = 0), each stem cell
behaves independently of all the others. This has two implications. First, the probability
that the first K-fold mutant stem cell arises by time t, RK(t) = P [TK < t ], is related to the
corresponding risk per stem cell, rK(t), by

RK = 1− (1− rK)N ,

where N is the population size. Second, the average number of stage-K stem cells is

〈NK〉 = rKN.

Putting these formulae together, we get

RK = 1−
(

1− 〈NK〉
N

)N
. (S11)

Keeping 〈NK〉 constant while taking the limit N →∞ yields

RK = 1− e−〈NK〉. (S12)
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This formula, together with Eqs. (S5), was used to screen for parameter sets with purely
asymmetric lifetime risks in a defined range.

1.5 Heuristic analysis of protection

In this section we first derive the time scale on which a population of stem cells undergoing
neutral drift is driven to extinction. We then use this result to heuristically derive the
conditions under which symmetry is expected to delay mutation accumulation.

1.5.1 Median time for a stage to extinguish

Suppose that we observe n stem cells in a particular stage i of a purely symmetric population
at time t = 0. Prior to mutation the stem-cell dynamics may be approximated by the
continuous-time branching process,

Si −−−−→
{
Si + Si prob = 1

2

∅ prob = 1
2

,

with average cell-cycle time of unity. The distribution of times, Te, at which the stage
extinguishes is therefore [4, Eq. 8.58]

P [Te < t |Ni(0) = n ] = P [Ni(t) = 0 |N(0) = n ]

=

( 1
2
t

1 + 1
2
t

)n
, (S13)

where Ni(t) is the random number of stage-i stem cells at time t. Scaling time according to
t̂ = t/2n, the distribution takes on the form

P [ T̂e < t̂ ] =
1(

1 + 1/t̂
n

)n .
Keeping t̂ constant while taking the limit n → ∞ yields the Fréchet distribution from
Extreme Value Theory [5, p. 9],

P [ T̂e < t̂ ] = e−1/t̂.

An extreme-value distribution is expected since Te is the maximum of the set of indepen-
dent and identically distributed extinction times corresponding to the n lineages (clones)
comprising the initial population. The Fréchet distribution has a rather heavy right tail,
1 − e−2n/t ∼ 2n/t as t → ∞, implying that the mean extinction time diverges logarithmi-
cally. We therefore used the median time to extinction, defined by

P [Te < τe ] =
1

2
,
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and given by

τe =
2n

ln 2
, (S14)

as a measure of the time needed for a stage to extinguish given that it is observed to contain
n stem cells. This expression is asymptotically exact at large stage sizes whereas it is a
sufficiently good approximation for our purposes at small sizes. (The exact value implied by
Eq. (S13) is 21−1/n/

(
1− 2−1/n

)
.)

1.5.2 Protection criterion

We first determine which lineage (clone) of stage-i stem cells is responsible for progression to
the next stage during the organism’s lifetime, L. Eq. (S6b), which is valid provided L� i/ui
(see Eq. (S9)), may be re-cast as

〈Ni(L)〉 ≈
∫ L
0
〈Ni−1(t)〉ui−1 dt i = 1 . . . K − 1

which says that the average lifetime abundance of stage-i stem cells approximately equals
the average number of stage-i lineages founded during the course of life. In a symmetric
population, most of the lineages never reach a substantial size and extinguish within a few
cell cycles (Fig. 2D). Since each of these lineages has probability of order 1/x of reaching
size x ≥ 1 or larger [6], on average only one of them will reach a size of at least 〈Ni(L)〉 ≥ 1.
Thus the mean lifetime abundance approximately measures the size of the largest clone likely
to occur during a lifetime (asterisk in Fig. 2D). By virtue of its size, this clone carries the
majority of the risk of progression to the next stage [6]. This intuitive picture fails when
〈Ni+1(L)〉 � 1 because progression then occurs in rare lineages that grow to sizes much
larger than 〈Ni(L)〉 (see Section 2.3.1 and Fig. S2I).

Having identified the clone most susceptible to progression, we next determine the cir-
cumstances under which symmetric divisions delay its progression to the next stage. If the
clone were dividing purely asymmetrically, it would progress in a time of order 1/ 〈Ni(L)〉ui.
However, since it is dividing purely symmetrically, it will extinguish in a time of order 〈Ni(L)〉
(derived in Section 1.5.1). Symmetric extinctions ought to delay progression provided the
clone extinguishes faster than it progresses, 〈Ni(L)〉 � 1/ 〈Ni(L)〉ui. Thus the criterion for
symmetry-dependent protection of stage i is

〈Ni(L)〉 � 1/
√
ui i = 1 . . . K − 1 (S15)

and is valid provided L � i/ui and 〈Ni+1(L)〉 ≥ 1 (notice that the last condition implies
〈Ni(L)〉 ≥ 1 by virtue of Eq. (S10)). The threshold population size, 1/

√
ui, represents the

size a symmetric stage-i lineage needs to reach in order to progress to the next stage [6].
Re-casting Eq. (S8) in the form

〈Ni(L)〉 ≈ (i+ 1) 〈Ni+1(L)〉 /uiL i = 0 . . . K − 1 (S16)

and plugging this expression for the abundance into Eq. (S15), we arrive at an alternate
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form of the protection condition

ui � ( (i+ 1) 〈Ni+1(L)〉 /L )2 i = 1 . . . K − 1 (S17)

again valid for L� i/ui and 〈Ni+1(L)〉 ≥ 1. Eqs. (S15) and (S17) suggest natural scales on
which to measure abundance and mutation rate, respectively,

ni = 〈Ni(L)〉
√
ui (S18a)

ui = ui (L/(i+ 1) 〈Ni+1(L)〉 )2 . (S18b)

Eq. (S16) may then be used to establish the following simple relation between the scaled
parameters

ui =
1

n2
i

(S19)

valid for L� i/ui.

1.6 Probability that a lineage eventually mutates

Given that there is initially just one wild-type (stage-0) stem cell, we wish to calculate the
probability

Q
(∞)
0 = lim

t→∞
Q0(t)

= lim
t→∞

(1− P0(t))

that eventually one of its descendants mutates, where P0(t) is the probability of surviving
the mutation by time t. Since the stage-1 stem cell has no dynamics (K = 1), the event
(N1(t) = 0) is equivalent to the nonoccurrence of the mutation by time t,

P0(t) = P [N1(t) = 0 |N0(0) = 1, N1(0) = 0 ], (S20)

where N0(t) and N1(t) denote the numbers of wild-type and mutant stem cells, respectively.
To carry out the calculation we first need to introduce the theory of multi-type branching

processes. Using the shorthand (n0, n1; t) to represent the event (N0(t) = n0, N1(t) = n1),
we define

F0(x0, x1; t) =
∑
n0,n1

P [n0, n1; t | 1, 0; 0 ] xn0
0 xn1

1

F1(x0, x1; t) =
∑
n0,n1

P [n0, n1; t | 0, 1; 0 ] xn0
0 xn1

1 .

The probability generating functions, F0 and F1, satisfy the recursion relations [1, p. 114][7,
p. 406][8, p. 116]

F0(t+ 1) = f0 (F0(t), F1(t)) (S21a)

F1(t+ 1) = f1 (F0(t), F1(t)) , (S21b)
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where we have dropped the arguments (x0, x1) for clarity, and

f0(x0, x1) = F0(x0, x1; 1) = p0,r x
2
0 + p0,rm x0 x1 + p0,a x0 + p0,am x1 + p0,e

f1(x0, x1) = F1(x0, x1; 1) = x1

are the probability generating functions evaluated at the first division.
Having introduced the theory of multi-type branching processes, we now see that the

probability that the lineage descending from a stage-0 stem cell survives a mutation is just
P0(t) = F0(1, 0; t). Using the recursion relations, Eq. (S21), we deduce that

P0(t+ 1) = f0 (P0(t), 0) ,

where the second argument of f0 is

F1(1, 0; t) = P [N1(t) = 0 |N0(0) = 0, N1(0) = 1 ] = 0

since the mutant cannot extinguish. We may rewrite the kinetic equation for P0(t) as

P0(t+ 1)− P0(t) = p0,r P0(t)
2 − (1− p0,a)P0(t) + p0,e. (S22)

The long-time limit, P
(∞)
0 = limt→∞ P0(t), therefore satisfies the quadratic equation

p0,r x
2 − (1− p0,a)x+ p0,e = 0. (S23)

The physically meaningful solution is given by the smallest root and can be written in the
form

P
(∞)
0 = α0 −

√
α2
0 − β0,

where

α0 = 1 + β0γ0

β0 =
1

1− 2u0

γ0 =
u0
s

+ u0.

It is convenient in the analysis that follows to re-write the expression under the square root
as

α2
0 − β0 =

2u0
s
β0 + (β0γ0)

2 .

Biologically plausible values for the mutation rate satisfy u0 � 1, in which case β0 ≈ 1 and

P
(∞)
0 ≈ 1 + γ0 −

√
2u0
s

+ γ20 ,

If the symmetry fraction is small compared with the mutation rate, s � u0, then γ0 ≈ u0
s

,
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and the square root is approximated by 1 + u0
s

, so that the lineage mutation probability is

Q
(∞)
0 ≈ 1.

In this regime, the lineage behaves as if it were dividing purely asymmetrically. Now consider
the alternative limit where the symmetry fraction is large compared with the mutation rate,
s� u0. There are two sub-cases: s ∼ 1 and s� 1. In both cases γ0 is of the same order as
2u0/s so that the leading-order term in the lineage mutation probability is

Q
(∞)
0 ≈

√
2u0
s
.

Generally, the probability that the lineage descending from a stage-i stem cell accumulates
one further mutation is (Fig. S2(A))

Q
(∞)
i =

{
1 s� ui√

2ui
s

s� ui.
(S24)

Conceptually similar manipulations can be employed to calculate the probability that a
lineage accumulates two or more mutations (see also [6]).

1.7 Mean time that a lineage drifts before mutating

Given that the lineage descending from a wild-type (stage-0) stem cell picks up a mutation,
what is the mean time it drifts before doing so, τ0? Remembering that stage-1 stem cells
have no dynamics, we may write

τ0 = 〈T1 |N0(0) = 1, N1(0) = 0, N1(∞) > 0 〉 ,

where T1 is a random variable representing the time at which the first single-mutant stem
cell arises in the lineage. The mean drift time τ0 is related to the conditional probability of
surviving the mutation, P [T1 > t |N1(∞) > 0 ] = P [N1(t) = 0 |N1(∞) > 0 ], by

τ0 =
∞∑
t=0

P [N1(t) = 0 |N1(∞) > 0 ], (S25)

where the conditioning on N0(0) = 1, N1(0) = 0 has been made implicit in the interests of
clarity. The summand is related to the unconditioned survival probability in Eq. (S20) by

P0(t) = P
(∞)
0 + P [N1(t) = 0 |N1(∞) > 0 ]

(
1− P (∞)

0

)
.
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Using this relation in Eq. (S25), and replacing the sum by an integral (a valid approximation
for large drift times, τ0 � 1), the mean time until the lineage mutates becomes

τ0 =

∫ ∞
0

P0(t)− P (∞)
0

1− P (∞)
0

dt . (S26)

The survival probability P0(t) satisfies a Riccati equation,

dP0/dt = p0,r P
2
0 − (1− p0,a)P0 + p0,e ,

which is the continuous-time approximation to Eq. (S22). The time-dependent solution is

P0 =
P

(∞)
0 − rθφ
1− θφ

, (S27)

where

θ = e
−
(
r−P (∞)

0

)
p0,rt

φ =
1− P (∞)

0

1− r

and P
(∞)
0 and r are the two roots of Eq. (S23). As shown in Section 1.6, the roots may be

approximated by

P
(∞)
0 ≈ 1 + γ0 −

√
2u0
s

+ γ20

r ≈ 1 + γ0 +

√
2u0
s

+ γ20 ,

where, as in Section 1.6,

γ0 =
u0
s

+ u0.

If the symmetry fraction is small, s� u0, then P
(∞)
0 ≈ 0 (see Section 1.6), r ≈ 2u0/s� 1,

and the survival probability is approximated by its purely asymmetric form,

P0(t) = e−u0t. (S28)

Performing the integral in Eq. (S26) yields

τ0 =
1

u0
,
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which is indeed large, τ0 � 1. If, on the other hand, the symmetry fraction is large, s� u0,
then

P
(∞)
0 ≈ 1−

√
2u0
s

r ≈ 1 +

√
2u0
s
,

(see Section 1.6). After some algebra, Eq. (S26) reduces to

τ0 =

∫ ∞
0

2θ

1 + θ
dt ,

where
θ ≈ e−

√
2u0s t.

Performing the integral yields

τ0 =
2 ln 2√
2u0s

,

which is again large, τ0 � 1. We note that at small times, t� τ0, we have θ ≈ 1−
√

2u0s t,
so that the survival probability, Eq. (S27), reduces to P0(t) ≈ 1− u0t, which, Eq. (S28) tells
us, is also the short-time form in the limit of small symmetry fractions, s � u0. In other
words, the probability that a lineage mutates by time t� τ0 is given by

Q0(t) ≈ u0t, (S29)

irrespective of the value of the symmetry fraction.
Generally, given that the lineage descending from a stage-i stem cell picks up an additional

mutation, the mean time it takes to do so is (Fig. S2(B))

τi =

{ 1
ui

s� ui
2 ln 2√
2uis

s� ui.
(S30)

2 “Moran” model of ordered mutation accumulation

The total population size fluctuates under the branching model. These fluctuations are rel-
atively insignificant in large populations but can significantly violate numerical homeostasis
in small populations. Yet real tissues attenuate errant fluctuations via feedback mechanisms.
We therefore developed a phenomenological model of feedback that captures all of the stem
cell divisions defined by Eq. (S1). This model is a variation on the well-known Moran model
from population genetics [9; 10, p. 79] in which time is continuous and the cell cycle period
is exponentially distributed with a mean value of unity.
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2.1 Formulation

We define first how the asymmetric divisions are treated in the model. The rate at which
asymmetric divisions occur in a population of stem cells is N(1 − s), where N is the time-
invariant total number of stem cells and s is the probability that a stem cell division is
symmetric. When such a division occurs, it occurs in a stage-i stem cell with probability
ni/N , where ni is the number of stage-i stem cells. Only asymmetric divisions in which the
daughter mutates need to be simulated since only those change the state of the population —
decrementing the number of stage-i stem cells while incrementing the number of stage-(i+1)
stem cells. The net rates of such events are

λ
(am)
i = (1− s)niui i = 0 . . . K − 1. (S31)

We turn next to the symmetric divisions. In the Moran approach, each population-
incrementing symmetric renewal is accompanied by a population-decrementing symmetric
extinction. Together these divisions constitute one replacement event. Balancing renewals
with extinctions in this way ensures that the net population size is strictly constant. Since
each replacement constitutes two stem cell divisions, replacements in a purely symmetric
population must occur at half the rate of stem cell divisions in an equivalent purely asym-
metric population. Thus the rate of replacements in a population undergoing a mix of
replacements and asymmetric divisions is N 1

2
s. When a replacement occurs, a stage-i stem

cell is chosen for renewal with probability ni/N whereas a stage-j stem cell is chosen for ex-
tinction with probability nj/N . The symmetric renewal results in mutation of one of the two
stem cell daughters with probability 2ui, in which case the number of stage-(i+ 1) stem cells
is incremented whereas the number of stage-j stem cells is decremented. The case i+ 1 = j
need not be simulated since it does not change the state of the population. The net rates of
such events are

λ
(sm)
ij = 1

2
sni2ui

nj

N
(1− δi+1,j) i, j = 0 . . . K − 1. (S32)

Alternatively, with probability 1 − 2ui, the symmetric renewal is of the form Si → Si + Si,
in which case stage-i is incremented whereas stage-j is decremented. Again the case i = j
need not be simulated. The net rates of these events are

λ
(s)
ij = 1

2
sni(1− 2ui)

nj

N
(1− δi,j) i, j = 0 . . . K − 1. (S33)

This process is simulated by choosing the time interval until the next event by sampling
from an exponential distribution with intensity equal to

K−1∑
i=0

λ
(am)
i +

K−1∑
i,j=0

(
λ
(sm)
ij + λ

(s)
ij

)
and executing one of the events described above with probability proportional to its rate
(the Gillespie algorithm). As expected, it coincides with the branching model at long times
and large population sizes (Fig. S1A).
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2.2 Deterministic analysis

We first derive the deterministic equations for a general continuous-time stochastic pro-
cess. Letting (~n, t) denote the event ( ~N(t) = ~n), the expected size of the stage-i stem cell
population is

〈Ni(t+ δt)〉 =
∑
~n′

n′iP (~n′, t+ δt)

=
∑
~n

{∑
~n′

n′i p~n→~n′

}
P (~n, t), (S34)

with transition probability
p~n→~n′ = P (~n′, t+ δt |~n, t).

It is useful to decompose the term in curly brackets as follows

∑
~n′

n′i p~n→~n′ = ni

 ∑
~n′:n′i=ni

p~n→~n′

+
∑

~n′:n′i 6=ni

n′i p~n→~n′ . (S35)

Since the system must transition to some state, we may cast the term in square brackets as∑
~n′:n′i=ni

p~n→~n′ = 1−
∑

~n′:n′i 6=ni

p~n→~n′ .

Inserting this expression into Eq. (S35) and rearranging we get∑
~n′

n′i p~n→~n′ = ni +
∑

~n′:n′i 6=ni

(n′i − ni) p~n→~n′ .

Plugging this into Eq. (S34), dividing across by δt, and taking the limit δt → 0, we arrive
at an equation for the mean size of the stage-i stem cell population

d 〈Ni(t)〉 /dt =
∑
~n

Λ
(i)
~n P (~n, t), (S36)

where

Λ
(i)
~n =

∑
~n′:n′i 6=ni

(n′i − ni)λ~n→~n′ (S37)

λ~n→~n′ = lim
δt→0

p~n→~n′/δt.

Having derived a general equation governing the time dependence of the mean population
sizes, we next apply it to the stochastic process described in Section 2.1. Given a vector
~n = (n0, n1 . . . nK) describing the numbers of stage-0, 1 . . . K stem cells in a population,
Table 1 classifies the states ~n′ = (n′0, n

′
1 . . . n

′
K) that can be reached in a single transition and

that have n′i 6= ni. Inserting these state transitions into Eq. (S37) reduces it to
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λ~n→~n′ n′i − ni i

λ
(am)
i−1 +1 1 . . . K

λ
(am)
i −1 0 . . . K − 1

λ
(sm)
i−1,j +1 1 . . . K

λ
(sm)
j,i −1 0 . . . K − 1

λ
(s)
i,j +1 0 . . . K − 1

λ
(s)
j,i −1 0 . . . K − 1

Table 1: Classification of state transitions that change the number of stage-i stem cells.
The transition rates appearing in the first column are defined in Section 2.1. The allowed
range of j is 0 . . . K − 1 in all cases.

Λ
(i)
~n =


−λ(am)

0 + σ
(s)
0 − Σ0 i = 0

λ
(am)
i−1 − λ

(am)
i + σ

(sm)
i−1 + σ

(s)
i − Σi i = 1 . . . K − 1

λ
(am)
K−1 + σ

(sm)
K−1 i = K

 (S38)

where

σ
(sm)
i−1 =

K−1∑
j=0

λ
(sm)
i−1,j (S39a)

σ
(s)
i =

K−1∑
j=0

λ
(s)
i,j (S39b)

Σi =
K−1∑
j=0

(
λ
(sm)
j,i + λ

(s)
j,i

)
(S39c)

The summation in Eq. (S39a) can be performed immediately

σ
(sm)
i−1 =

1

2
sni−1 2ui−1

K−1∑
j=0

nj
N

(1− δi,j)

=
1

2
sni−1 2ui−1

{ (
1− ni

N

)
i = 1 . . . K − 1

1 i = K.
(S40)

Similarly, the summation in Eq. (S39b) reduces to

σ
(s)
i = 1

2
sni(1− 2ui)

(
1− ni

N

)
i = 0 . . . K − 1. (S41)

The summation in Eq. (S39c) is more involved but can be performed by partitioning its
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summands into three terms as follows

λ
(sm)
j,i + λ

(s)
j,i = ai,j + bi,j (1− δi−1,j)− bi,j (1− δi,j)

where

ai,j =
1

2
snj

ni
N

(1− δi,j)

bi,j =
1

2
snj 2uj

ni
N
.

The summation over ai,j can be performed immediately

K−1∑
j=0

ai,j = 1
2
sni
(
1− ni

N

)
i = 0 . . . K − 1, (S42)

since nK = 0 during the course of the simulation. The summations over the terms involving
bi,j can be written

K−1∑
j=0

bi,j (1− δi−1,j) =

{
b0,0 + · · ·+ b0,K−1 i = 0
bi,0 + · · ·+ [bi,i−1] + · · ·+ bi,K−1 i = 1 . . . K − 1

(S43)

K−1∑
j=0

bi,j (1− δi,j) =

{
[b0,0] + · · ·+ b0,K−1 i = 0
bi,0 + · · ·+ [bi,i] + · · ·+ bi,K−1 i = 1 . . . K − 1

(S44)

where the square bracket indicates that the corresponding term should be omitted from the
sum. Most of these terms cancel when Eq. (S44) is subtracted from Eq. (S43) yielding

K−1∑
j=0

bi,j (1− δi−1,j)−
K−1∑
j=0

bi,j (1− δi,j) =

{
b0,0 i = 0
bi,i − bi,i−1 i = 1 . . . K − 1

(S45)

Adding Eqs. (S42) and (S45) yields

Σi =

{
1
2
sn0

(
1− n0

N

)
+ 1

2
sn0 2u0

n0

N
i = 0

1
2
sni
(
1− ni

N

)
+ 1

2
sni 2ui

ni

N
− 1

2
sni−1 2ui−1

ni

N
i = 1 . . . K − 1

(S46)

Plugging the expressions in Eqs. (S40), (S41) and (S46) into Eq. (S38) and performing some
algebra yields

Λ
(i)
~n =


−n0u0 i = 0
ni−1ui−1 − niui i = 1 . . . K − 1
nK−1uK−1 i = K

Finally, plugging this expression into Eq. (S36) yields the deterministic equations for the
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feedback model

d 〈N0〉 /dt = −〈N0〉u0 (S47a)

d 〈Ni〉 /dt = 〈Ni−1〉ui−1 − 〈Ni〉ui i = 1, . . . , K − 1 (S47b)

d 〈NK〉 /dt = 〈NK−1〉uK−1 (S47c)

These equations are identical to those derived in the branching model at long times, Eq. (S5),
as they should be.

2.3 Formal analysis of the accumulation of two mutations

Previous studies in the field of population genetics have identified a number of parameter
regimes in which mutation accumulation in populations subject to genetic drift can be de-
scribed using simple analytical formulae [6, 11–15]. Here, we build on this theoretical work to
better understand why symmetric stem cell divisions protect against mutation accumulation
and to derive mathematical formulae that accurately describe the extent of protection.

2.3.1 Derivation of PF formula

The generation of the first double-mutant stem cell in the purely asymmetric trajectory of
Fig. S2C can be described by a pair of independent exponential random variables, X0 and
X1, with rate parameters Nu0 and u1, respectively. These values for the rates follow from
the fact that a population containing ni stage-i stem cells generates a stage-(i+ 1) stem cell
for the first time at rate

λ
(am)
i +

K−1∑
j=0

λ
(sm)
ij = niui,

where the rates λ
(am)
i and λ

(sm)
ij are defined in Section 2.1. The time at which the first

double-mutant stem cell arises, X0 + X1, is hypoexponentially distributed [16, p253] with
cumulative distribution R2 given by

dR0/dt = −Nu0R0

dR1/dt = Nu0R0 − u1R1

dR2/dt = u1R1

and initial condition R0(0) = 1, R1(0) = 0 and R2(0) = 0. The solution is (Fig. 3E)

R2(t) = H2(Nu0, u1; t), (S48)

where the 2-parameter hypoexponential distribution is given by

H2(k0, k1; t) =

{
k0(e−k1t−1)−k1(e−k0t−1)

k1−k0 k0 6= k1
1− (1 + k0t) e

−k0t k0 = k1.
(S49)
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This expression for R2 is a good approximation to the exact value provided the mean abun-
dance of single-mutant stem cells is small, 〈N1(t)〉 � 1, a regime we call the “Stochastic”
regime. In the alternative “Deterministic” regime, 〈N1(t)〉 � 1, the single-mutant abundance
is well approximated by its mean, N1(t) ≈ 〈N1(t)〉, and the cumulative risk of generating a
double-mutant stem cell is

R2 = 1− e−u1
∫ t
0 〈N1(t′)〉dt′ , (S50)

which is a special case of Eq. (S12). To progress further analytically, we solve Eq. (S47) to
get an expression for the mean single-mutant abundance

〈N1(t)〉 =

{
Nu0
u1−u0 (e−u0t − e−u1t) u0 6= u1
Nu0te

−u0t u0 = u1,
(S51)

which can be approximated by

〈N1(t)〉 ≈


Nu0t t� 1/u1
Nu0
u1

1/u1 � t� 1/u0
Nu0
u1
e−u0t 1/u0 � t

 (S52)

provided there is a separation of timescales, u0 � u1. We needn’t consider further the regime
t� 1/u0 because we carried out our simulations at u0 = 10−6 whereas biologically relevant
timescales are no larger than ∼ 104 cell cycles. The boundary between the Stochastic and
Deterministic regimes, 〈N1(t)〉 ∼ 1, is therefore defined by (Fig. 3I)

t ∼ 1/Nu0 t� 1/u1 (S53a)

N ∼ u1/u0 1/u1 � t� 1/u0. (S53b)

Plugging Eq. (S52) into Eq. (S50), one may show that the cumulative risk in the Deterministic
regime, N � u1/u0, t� 1/Nu0, is

RA = 1− e−
1
2
Nu0u1t2 . (S54)

Let us now consider the purely symmetric trajectory in Fig. S2D. Many single-mutant
lineages are expelled from the tissue before one arises that survives neutral drift long enough
to acquire a second mutation. This occurs with probability Q

(∞)
1 =

√
2u1 (see Eq. (S24)), and

when it does, the lineage drifts for a time τ1 = 2 ln 2/
√

2u1 before mutating (see Eq. (S30);
inset of Fig. S2D). The single-mutant lineage destined to mutate typically does not fix in the
population — an adaptation mechanism known as “Stochastic Tunneling”. In this regime,
the purely symmetric cumulative risk is (Fig. 3E)

RS = 1− e−Nu0Q
(∞)
1 t (S55)

since the drift time is negligible compared to the mean time until the first successful single-
mutant lineage, τ1 � 1/Nu0Q

(∞)
1 (Fig. S2D).

Protection vanishes at still longer time scales, t � 1/Nu0Q
(∞)
1 , where both the asym-

metric and symmetric cumulative risks have saturated at unity (Fig. 3E). Symmetry also
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fails to protect when the tissue age is much smaller than the drift time, t � τ1 (Fig. 3E).
Here, the second mutation typically occurs in the first single-mutant lineage (Fig. S2E, F)
because, for this particular parameter set, single-mutants rarely arise so early,

P [T1 < t ] = 1− e−Nu0t ≈ Nu0t� 1.

Thus T1, the time at which the first single-mutant stem cell arose, has probability density
function

P [T1 ∈ (t′, t′ + dt′) ] ≈ Nu0dt
′.

Moreover Eq. (S29) tells us that, if the single-mutant lineage is founded at time t′, then it
yields a double mutant by time t with probability

P [T2 < t |T1 ∈ (t′, t′ + dt′) ] = u1(t− t′),

where T2 is the time at which the first double-mutant stem cell arose. The net cumulative
risk of acquiring the double-mutant stem cell by time t is therefore (Fig. 3E)

RS(t) =

∫ t

0

P [T2 < t |T1 ∈ (t′, t′ + dt′) ]P [T1 ∈ (t′, t′ + dt′) ]

=

∫ t

0

u1(t− t′)Nu0dt′

=
1

2
Nu0u1t

2, (S56)

irrespective of the symmetry fraction. This expression coincides with the purely asymmetric
risk derived in Eq. (S48) since t � min{1/Nu0, 1/u1} (for the parameters of Fig. S2C-F).
In this “short-time” regime (t � τ1, Fig. 3I), the beneficial effect of symmetric extinctions
are cancelled by the deleterious expansion of single-mutant clones (Fig. 1C, D). Fig. S2G–I
shows that the short-time regime can extend to tissue ages as large as 103 stem cell cycles if
the secondary mutation rate is small enough, u1 � 1/t2, explaining why protection vanishes
in the lower part of Fig. 3D. Stochastic tunneling occurs for population sizes up to N = 1/u0,
beyond which the symmetric single-mutant abundance is approximately deterministic [6, 13]
and protection is lost (see Section 2.3.2).

When the population size is small, the probability that a single-mutant clone fixes in the
population exceeds the probability that it mutates before fixing, 1/N � Q

(∞)
1 (Fig. 3I). This

is the “Sequential Fixation” regime [6, 13] where it becomes possible that the first double-
mutant stem cell arises after fixation of the corresponding single-mutant lineage. To make
analytic progress in this regime, we consider only sufficiently large times, t� τ1, allowing us
to neglect the fixation time (which is of order N � τ1). The probability that a single-mutant
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lineage founded at time t = 0 mutates by some later time t via sequential fixation is

P [T2 < t , fix ] = P [T2 < t | fix ]P [ fix ]

=
(
1− e−Nu1t

) 1

N

=

{
u1t t� 1/Nu1
1/N t� 1/Nu1

(S57)

whereas via stochastic tunneling it is

P [T2 < t , no fix ] = Q
(∞)
1 .

Using the fact that τ1 � 1/Nu1, one may then show that the sequential fixation route is
more likely than the stochastic tunneling route, P [T2 < t , fix ]� P [T2 < t , no fix ].

At long times (Fig. 3I),
t� 1/Nu1, (S58)

one may neglect the time between (instantaneous) fixation of the single-mutant lineage and
acquisition of the second mutation (Fig. S2L). Thus the cumulative symmetric risk in this
regime is determined by the rate at which single mutants destined for fixation arise. This
rate is u0 (single-mutant lineages arise at rate Nu0 and fix with probability 1/N) implying
that the net cumulative risk is (Fig. S2J)

RS = 1− e−u0t. (S59)

On long time scales, t � 1/Nu1, symmetric stem cell extinctions flush many single-mutant
lineages out of the tissue until one survives drift, fixes, and mutates leading to significant
protection (Fig. S2M). At short times, τ1 � t � 1/Nu1 ≤ 1/Nu0 (we assume that u1 ≥
u0), the second mutation typically occurs in the first single-mutant lineage (Fig. S2O).
Furthermore, Eq. (S57) implies that

P [T2 < t |T1 ∈ (t′, t′ + dt′) ] = u1(t− t′).

We may therefore proceed exactly as we did for the Stochastic Tunneling regime at short
times obtaining Eq. (S56), which again coincides with the purely asymmetric risk derived
in Eq. (S48) since t � 1/Nu1 ≤ min{1/Nu0, 1/u1}. The beneficial effect of symmetric
extinctions is thus cancelled by the deleterious effect of clonal expansion, as we found in the
Stochastic Tunneling regime at short times.

In summary, symmetry is protective provided the tissue cycles rapidly and/or the sec-
ondary mutation rate is high (Fig. S3A-C shows that symmetry is not necessarily protective
if instead the primary mutation rate is fast). Together, Eqs. (S48), (S54), (S55) and (S59)
can be used to estimate PF = RA/RS to an accuracy of 40% (Fig. S2P–R) throughout the
protected part of parameter space (Figs. 3I–L).
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2.3.2 Deterministic regime of a purely symmetric population

Fig. S3B shows that when the average number of new single mutants produced per cell
cycle becomes large, Nu0 � 1, the purely symmetric single-mutant abundance is well ap-
proximated by its mean. This regime is included in the Deterministic regime of a purely
asymmetric population, defined by Eq. (S53) (see also Fig. 3I), and so the cumulative risks
coincide (Fig. S3C). When Nu0 � 1, the time at which the first successful single-mutant

lineage appears is small compared to its drift time, 1/Nu0Q
(∞)
1 � τ1. In other words, the

rate of progression is limited by the time taken for a successful single-mutant lineage to drift
before mutating. This assumes however that the first such lineage gives rise to the first
double-mutant stem cell. The fact that the mean first passage time to the double mutant
(approximately the time at which cumulative risk reaches 50% in Fig. S3C) is significantly
smaller than τ1 indicates instead that many single-mutant lineages founded early on compete
against one another until one acquires the first double-mutant stem cell improbably early.
We conclude that, in the Deterministic regime of a symmetric population, protective clonal
extinctions are out-striped by the rapid production of single-mutant stem cells.

3 Unordered accumulation of two mutations

In this section we generalize the models of mutation accumulation presented in Sections 1
and 2 to include the possibility that loci mutate in any order. We consider only the case of
two loci, A and B.

3.1 “Branching” model

Assume stem cell divisions are synchronized. A wild-type cell, X0 (where X is either a stem
cell S or non-stem cell D), acquires a mutation at locus A with probability u0→aB and at
locus B with probability u0→Ab per stem-cell division, independent of the fate of its sister
cell. Each of these single mutants, Xi∈{aB,Ab}, becomes a double-mutant, X2, with probability
ui→2 per stem cell division. All other transitions (e.g. 0 → 2) are not permitted in a single
stem-cell division (u0→2 = 0). Following Section 1.1, one may show that the division of a
wild-type stem cell results in one of seven possible outcomes with the following probabilities:

S0 −−−−→



S0 + S0 p0,r = 1
2
s [1− 2(u0→aB + u0→Ab)]

S0 + SaB p
0,0

r−→aB
= 1

2
s 2u0→aB

S0 + SAb p
0,0

r−→Ab
= 1

2
s 2u0→Ab

S0 p0,a = (1− s) [1− (u0→aB + u0→Ab)]
SaB p

0,0
a−→aB

= (1− s)u0→aB
SAb p

0,0
a−→Ab

= (1− s)u0→Ab
∅ p0,e = 1

2
s


(S60)
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Similarly, the division of a single-mutant stem cell with genotype i ∈ {aB,Ab} results in one
of five possible outcomes:

Si −−−−→



Si + Si pi,r = 1
2
s (1− 2ui→2)

Si + S2 p
i,i

r−→2
= 1

2
s 2ui→2

Si pi,a = (1− s)(1− ui→2)
S2 p

i,i
a−→2

= (1− s)ui→2

∅ pi,e = 1
2
s


(S61)

The update rules for the random population sizes, Ni, of each of the four possible genotypes
are

N0(t+ 1) = N0(t)−B0(t)

Ni(t+ 1) = Ni(t) + A0→i(t)−Bi(t) i ∈ {aB,Ab}
N2(t+ 1) = N2(t) + AaB→2(t) + AAb→2(t)

where

A0→i(t) = Z
0,0

r−→i
(t) + Z

0,0
a−→i

(t) i ∈ {aB,Ab}

Ai→2(t) = Z
i,i

r−→2
(t) + Z

i,i
a−→2

(t) i ∈ {aB,Ab}

B0(t) = Z
0,0

a−→aB
(t) + Z

0,0
a−→Ab

(t) + Z0,e(t)− Z0,r(t)

Bi(t) = Z
i,i

a−→2
(t) + Zi,e(t)− Zi,r(t) i ∈ {aB,Ab}

and ~Zi∈{0,aB,Ab} are drawn from the multinomial distribution, Eq. (S3).

3.2 “Moran” model

We formulate the model analogously to Section 2.1. The net rate of asymmetric divisions that
decrement the number of stem cells with genotype i ∈ {0, aB,Ab}, ni, while incrementing
the number of stem cells with genotype k ∈ {aB,Ab, 2} is

λ
(am)
ik = (1− s)niui→k ,

where s is the probability that a stem cell division is symmetric. There are two types of
replacements. In the first type, which occurs at rate

λ
(sm)
ijk = 1

2
sni2ui→k

nj

N
(1− δjk) ,

a stem cell with genotype i ∈ {0, aB,Ab} is chosen for symmetric renewal, a stem cell with
genotype j ∈ {0, aB,Ab} is chosen for symmetric extinction, and a stem cell with genotype
k ∈ {aB,Ab, 2} is produced by mutation of one of the daughters of the symmetric renewal.
This type of replacement thus increments the k-population and decrements the j-population
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such that the total number of stem cells, N , remains unchanged. Alternatively, with rate

λ
(s)
ij = 1

2
sni (1−

∑
k 2ui→k)

nj

N
(1− δi,j) i, j ∈ {0, aB,Ab},

the symmetric renewal is of the form Si → Si + Si, in which case the i-population is incre-
mented whereas the j-population is decremented.

3.3 Deterministic solution

Following Section 1.3, one may show that the average population sizes obey

d 〈N0〉 /dt = −〈N0〉 (u0→aB + u0→Ab)

d 〈Ni〉 /dt = 〈N0〉u0→i − 〈Ni〉ui→2 i ∈ {aB,Ab}
d 〈N2〉 /dt = 〈NaB〉uaB→2 + 〈NAb〉uAb→2

The solution of these equations is

〈N0〉 = Ne−(u0→aB+u0→Ab)t (S65a)

〈Ni〉 =
Nu0→i

ui→2 − (u0→aB + u0→Ab)

(
e−(u0→aB+u0→Ab)t − e−ui→2t

)
i ∈ {aB,Ab} (S65b)

〈N2〉 =
∑

i∈{aB,Ab}

Nu0→i
u0→aB + u0→Ab

H2(u0→aB + u0→Ab, ui→2; t) (S65c)

where H2 is the 2-parameter hypoexponential distribution defined in Eq. (S49).

3.4 Purely asymmetric risk

Eq. (S11) tells us that the probability that the first double-mutant stem cell arises by time
t is

R2(t) = 1−
(

1− 〈N2(t)〉
N

)N
. (S66)

3.5 Purely symmetric risk when loci mutate independently

Consider the case depicted in Fig. 5B where t� τaB = 2 ln 2√
2uaB→2s

. Some double mutants arise
from aB single mutants via stochastic tunneling whereas others arise from a deterministic
background of Ab single mutants. The net rate of mutation accumulation is approximately
the sum of two independent Poisson processes with rates

kaB = Nu0→aBQ
(∞)
aB ,

where Q
(∞)
aB =

√
2uaB→2, and

kAb(t) = 〈NAb(t)〉uAb→2,
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respectively [6]. For the parameter values of Fig. 5B,

〈NAb(t)〉 ≈ N(1− e−u0→Abt), (S67)

and the cumulative risk of generating a double-mutant stem cell is

P [T2 < t] ≈ 1− exp

(
−
∫ t

0

[kaB + kAb(t
′)] dt′

)
≈ 1− exp

(
−kaBt−NuAb→2

(
t− 1− e−u0→Abt

u0→Ab

))
(S68)

To combine mutational paths at short times, t � τaB, it is helpful to introduce a random
variable Y1 ∈ {SaB, SAb} representing the genotype of the single-mutant stem cell that gen-
erates the first double-mutant stem cell. In cases where an aB stem cell generates the first
double mutant (Y1 = SaB), typically it is the first aB stem cell that does so (Fig. S3E).
Therefore, we may invoke the argument leading to Eq. (S56) obtaining

P [T2 < t, Y1 = SaB ] =
1

2
Nu0→aBuaB→2t

2. (S69)

In the alternate scenario — the double mutant arises from a deterministic background of Ab
single mutants — the cumulative risk is

P [T2 < t, Y1 = SAb ] ≈ 1− exp

(
−
∫ t

0

kAb(t
′) dt′

)
,

≈ 1

2
Nu0→AbuAb→2t

2 (S70)

for the parameter values of Fig. S3D-H. The mutational paths are combined by simply
adding the cumulative risks in Eqs. (S69) and (S70) obtaining (Fig. S3H)

P [T2 < t ] =
1

2
Nu0→aBuaB→2t

2 +
1

2
Nu0→AbuAb→2t

2. (S71)

4 Effect of selection on ordered mutation accumulation

In our analysis thus far, we assumed each stem cell contributes on average one stem cell to the
population one cell cycle later. This is reasonable for asymmetric stem cell divisions but for
symmetric divisions, renewals and symmetric extinctions could be imbalanced (ie. subject
to selection). Here, we relax the assumption of neutrality by allowing the mean number of
stem cell descendants contributed by a given parent to depend on its stage, subject to the
constraint that the net stem cell population size is conserved.

4.1 Formulation

Leaving the asymmetric divisions in the Moran model of Section 2.1 unchanged (i.e. retaining
the rates in Eq. (S31)), we generalize the model such that, when a stem cell replacement
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occurs, a stage-i stem cell is chosen for symmetric renewal with probability wi∑
k wknk

, where

wi is the fitness of a stage-i stem cell and ni is the number of such stem cells. Thus, the
rates of replacements become

λ
(sm)
ij =

1

2
s
wi
w
ni2ui

nj
N

(1− δi+1,j) (S72a)

λ
(s)
ij =

1

2
s
wi
w
ni(1− 2ui)

nj
N

(1− δi,j) (S72b)

where i, j = 0 . . . K − 1 index the stages, s is the fraction of stem cell divisions that are
symmetric, and

w =
∑
k

wk
nk
N

is the mean fitness of the population. Notice that when all stages have equal fitness the
transition rates in Eq. (S72) reduce to Eqs. (S32) and (S33) for a neutral stem cell population.

4.2 Deterministic Analysis

In this section, we generalize the deterministic equations, Eq. (S47), to incorporate selection.
As shown in Section 2.2, the mean number of stage-i stem cells, 〈Ni〉, evolves according to

d 〈Ni(t)〉 /dt =
∑
~n

Λ
(i)
~n P (~n, t), (S73)

where ~n = (n0 . . . nK) represents the numbers of stage-0 . . . K stem cells in a population
and P (~n, t) is the probability of finding the population in the configuration ~n at time t.

Repeating the derivation of Λ
(i)
~n presented in Section 2.2, this time using the replacement

rates defined by Eq. (S72), we obtain

Λ
(i)
~n =


−
[
(1− s) + sw0

w

]
n0u0 + 1

2
s
(
w0

w
− 1
)
n0 i = 0[

(1− s) + swi−1

w

]
ni−1ui−1 −

[
(1− s) + swi

w

]
niui + 1

2
s
(
wi

w
− 1
)
ni i = 1 . . . K − 1[

(1− s) + swK−1

w

]
nK−1uK−1 i = K

In contrast to the neutral case, Eqs. (S73) are no longer closed and depend upon factors of
the form 〈Ni/w〉, for which one must derive further differential equations. We can truncate

this hierarchy by making the approximation ~N ≈ 〈 ~N〉 leading to

d 〈N0〉 /dt ≈ −f0 〈N0〉u0 +
1

2
s

(
w0

〈w〉
− 1

)
〈N0〉 (S74a)

d 〈Ni〉 /dt ≈ fi−1 〈Ni−1〉ui−1 − fi 〈Ni〉ui +
1

2
s

(
wi
〈w〉
− 1

)
〈Ni〉 i = 1, . . . , K − 1 (S74b)

d 〈NK〉 /dt ≈ fK−1 〈NK−1〉uK−1 (S74c)
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where the “ensemble average” of the mean population fitness is

〈w(t)〉 =
∑
k

wk
〈Nk(t)〉
N

and
fi(t) = (1− s) + s

wi
〈w(t)〉

.

This “mean-field approximation” is expected to fail whenever one or more stages are small,
under which circumstances the distribution P (~n, t) becomes very broad and is poorly ap-
proximated by its mean.

5 Protection in the compartmentalized intestine

In an intestine undergoing a purely asymmetric pattern of division, each stem cell behaves
independently of all the others. Thus, as argued in Section 1.4, the intestine-wide risk
of ordered accumulation of K mutations with mutation rates u0, . . . , uK−1 is (red lines in
Fig. S7)

RA = 1− [1−HK(u0, . . . , uK−2, uK−1; t)]
NM , (S75)

where N is the number of stem cells per crypt and M is the number of crypts. The function
HK(k0, . . . , kK−1; t) is the K-parameter hypoexponential distribution [16, p253], which we
computed by solving the ordinary differential equations

dP0/dt = −P0k0
dPi/dt = Pi−1ki−1 − Piki i = 1, . . . , K − 1
dHK/dt = PK−1kK−1

with initial conditions P0 = 1, Pi = 0 (i = 1, . . . , K − 1), HK = 0. In the purely symmetric
case (under the Moran model; Section 2.1), the K-fold mutant arises in an individual crypt
via sequential fixations (provided the number of stem cells per crypt and the mutation rates
are small enough [6, 17]) implying that the intestine-wide risk is (green lines in Fig. S7)

RS = 1− [1−HK(u0, . . . , uK−2, NuK−1; t)]
M . (S76)

6 Effect of allowing for simultaneous mutations in both

daughter stem cells

In Section 1.1, we formulated the “Branching” model of ordered mutation accumulation
by neglecting the possibility that, upon division of a stem cell, both daughter cells may
simultaneously mutate. To find out whether this approximation is good, we re-formulate
the model to include this possibility. Retaining probability contributions of order u2i , one
finds that the division of a stem cell Si (i = 0 . . . K − 1) now results in one of six possible
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outcomes with the following probabilities:

Si −−−−→



Si + Si pi,r = 1
2
s(1− 2ui + u2i )

Si + Si+1 pi,rm = 1
2
s 2ui(1− ui)

Si+1 + Si+1 pi,rm2 = 1
2
s u2i

Si pi,a = (1− s)(1− ui)
Si+1 pi,am = (1− s)ui
∅ pi,e = 1

2
s


(S77)

Let Zij(t) be the (random) number of times that a category-j division in Eq. (S77) occurs
at time t in a population of stage-i stem cells of (random) size Ni(t). The update rules for
the Ni are again given by Eq. (S2), where this time

Ai(t) = 2Zi,rm2(t) + Zi,rm(t) + Zi,am(t)

Bi(t) = Zi,rm2(t) + Zi,am(t) + Zi,e(t)− Zi,r(t),

but ~Zi is again sampled from the multinomial distribution in Eq. (S3). The recursive equa-
tions for the average population sizes again follow Eq. (S4). We re-ran stochastic simulations
using the more exact algorithm formulated here; the results are unchanged (compare Fig. S8
with Fig. 1G).
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8 Supporting Figure Legends

Figure S1: Numerical Screen
(A) Concordance of “Moran” and “Branching” models used to screen large and small pop-
ulations, respectively. The lifetime cumulative risk of accumulating two mutations in a
symmetric population was computed for a variety of stem-cell population sizes and organism
lifetimes under both models (right panels). The models predict the same cumulative risk
over most of parameter space but differ significantly in small populations at large lifetimes
where extinctions of the entire stem cell population in the Branching model reduce risk by
at least a factor of two (white contour in left panel). (B) Parameter sets comprising the
numerical screen of Table S1 were classified into 4 types based on the number of stochastic
stages. Representative symmetric trajectories are shown. Notice the correlation between the
number of stochastic stages and mean PF (averaged over all parameter sets with a given
number of stochastic stages).
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Figure S2: Analysis of Stochastic Tunneling and Sequential Fixation regimes
(A, B) A single wild-type stem cell was simulated until either one of its descendants mutated

(with probability Q
(∞)
0 ) or its lineage extinguished without mutating (with probability 1 −

Q
(∞)
0 ). The mean time that a branching lineage drifts before mutating, τ0, was recorded in

those cases where mutation occurred. Panel A shows that the simulated lineage mutation
probability (symbols) is well described by Eq. (S24) (lines) whereas panel B shows that
the simulated drift time (symbols) is well described by Eq. (S30) (lines). (C-F) Typical
dynamics at long times (C, D) and short times (E, F) prior to the production of the first
double-mutant stem cell (yellow lightning bolt). Inset to (D) is a magnified view of the
last few generations of the simulated dynamics. Population size is N = 103 stem cells
and mutation rates are u0 = 10−6 and u1 = 10−3. (G – I) Protection vanishes for small
secondary mutation rate, u1 � 1/L2. In these panels, population size is N = 103 stem
cells and mutation rates are u0 = 10−6 and u1 = 10−8. (G) Simulated (symbols) and
theoretical (line, Eq. (S56)) cumulative risk. (H, I) Typical trajectories that generate a
double-mutant stem cell by end of life, T2 < L = 103cc. In both cases, one of the first few
single-mutant lineages to arise from the wild-type background produces a double-mutant
stem cell that arises improbably early in its parent single-mutant lineage, T2 � τ1 � 1/u1.
(J – O) Sequential Fixation Regime. In these panels, population size is N = 10 stem
cells and mutation rates are u0 = 10−6, u1 = 10−4. (J) Cumulative risk calculated using
simulation (symbols) and Eqs. (S48), (S56) and (S59) (lines). (K, N) A double-mutant stem
cell typically arises in the first single-mutant stem cell in a purely asymmetric population.
(L, O) Dynamics in a purely symmetric population. (L) At long times, t � 1/Nu1, single-
mutant lineages frequently extinguish before one survives drift, fixes in the population, and
then rapidly acquires the next mutation. The time taken to fix, N , and to acquire the
second mutation once fixed, 1/Nu1, are negligible compared to the time taken for a single-
mutant lineage destined for fixation to arise, 1/u0. (O) At short times, t � 1/Nu1, the
time between fixation and mutation cannot be neglected. (M) Symmetric extinctions out-
compete fixation events to reduce mutation accumulation risk. (P – R) Accuracy of piecewise
analytic formula for PF measured by the ratio of analytically computed PF (Fig. 3J–L) to
exact PF as calculated via Monte Carlo simulation (Fig. 3F-H). Grey contours delineate
regions (red) where the fractional error of the analytic formulae |PFanalytic − PFexact| /PFexact
is less than 40%, including practically all the protected zone (PFexact > 2; white contour).
Panels A and B were generated under the Branching model, Eq. (S1), whereas panels C –
R were generated using the Moran model, Section 2.1. In panels C – O, purely asymmetric
(symmetric) trajectories are in red (blue). cc, cell cycles.
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Figure S3: Unordered “fast” and “slow” mutations
(A – C) A “fast-slow” ordered pathway. (A, B) The abundance of Ab stem cells is ap-
proximated by its mean value, 〈N1(t)〉 ≈ N (1− e−u0t), which follows from Eq. (S51)
when t, 1/u0 � 1/u1. (C) Simulated cumulative risk (symbols) is approximated by

1 − exp
(
−
∫ t
0
〈N1(t

′)〉 u1 dt′
)

. (D – H) Dynamics at short times, t � τaB, of unordered

“fast” and “slow” loci. The black line in panels F and G is Eq. (S67). (H) Simulated cumu-
lative risk (symbols) is approximated by Eq. (S71). In all panels, population size is N = 104

stem cells and mutation rates are 10−2 (“fast”) and 10−6 (“slow”). Time courses are plotted
until the first double-mutant stem cell appears in the entire stem cell population.

Figure S4: Clonal extinctions out-compete progression in the intestine
(A) Model of mutation accumulation in the intestine. (B) Typical dynamics showing how
various patterns of division generate the triple-mutant stem cell in the un-compartmentalized
case. (C) Dynamics in a single crypt of a compartmentalized intestine. The purely asym-
metric trajectory (s = 0%) is representative of all trajectories examined whereas the mixed
(s=10%) and purely symmetric (s=100%) trajectories show the most frequently observed
type since all four possible combinations of stochastic tunneling and sequential fixation were
observed at appreciable frequencies (see also [17]). The intestine was assumed to comprise
106 crypts, each containing 10 stem cells. Mutation rates are 10−6 (slow) and 10−3 (fast).

Figure S5: Protection persists when selection acts on stochastic stages
Protection against ordered accumulation of K = 2 mutations after 1000 stem cell cycles for
symmetry fractions s = 100% (A) and 10% (B), calculated by Monte Carlo simulation of
the generalized model presented in Section 4.1. The selection coefficient is defined in the
model by (w1−w0)/w0, where wi is the fitness of stage i (see Section 4.1). The insensitivity
of PF to wide variations in the selection coefficient is an example of the general principle
in population genetics that selection is ineffective provided the magnitude of the selection
coefficient is smaller than the inverse population size. Mutation rates are u0 = 10−6 and
u1 = 10−3 per locus per stem cell cycle.

Figure S6: “Increasing” mutation rates yield a broad distribution of latencies
Probability distributions of times at which the first double-mutant stem cell arose in a
population of N = 104 symmetrically dividing stem cells, from simulations of the discrete-
time branching process defined by Eq. (S1) (bars) and from the probability mass function

P [T2 = t ] = k(t) exp
(
−
∫ t
0
k(t′) dt′

)
(lines). In the Deterministic regime (A), the rate

constant is given by k = 〈N1〉u1, where the mean abundance of single-mutant stem cells is
〈N1〉 ≈ N (1− e−u0t), whereas it is k = Nu0

√
2u1 in the Stochastic Tunneling regime (B).

When the mutation rates are decreasing, the distribution of latency until the first double-
mutant stem cell is narrow (A), but when the mutation rates are increasing, the distribution
becomes wider (B), even at the same mean latency (858 cell cycles in both cases). Histogram
bar height represents the probability that the mutation occurred between the bar edges.
Insets show typical stochastic realizations (red) and mean single-mutant abundance (black).
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Figure S7: Protection in the human colon
Cumulative risk of ordered accumulation of K = 4 mutations by ages 30 (A, C) and 60 (B,
D), assuming mutation rates increase 1000-fold (A, B) or 100-fold (C, D) during the course
of mutation accumulation from an initial rate of u0 = 5× 10−7 per locus per stem cell cycle
[18]. Lines are Eqs. (S75) and (S76) whereas symbols are Monte Carlo simulations (under
the Moran model; Section 2.1). The colon is assumed to be compartmentalized into M = 107

crypts, (∼104 crypts/cm2 × ∼103cm2/colon [19]) each containing N = 20 stem cells [20, 21]
dividing purely asymmetrically (red) or symmetrically (green) 100 times per year. Mutation
rates of consecutive stages (u0, u1, u2, u3) are (A) 5 × 10−7, 5 × 10−7, 5 × 10−6, 5 × 10−4;
(B) 5 × 10−7, 5 × 10−7, 5 × 10−7, 5 × 10−4; (C) 5 × 10−7, 5 × 10−7, 5 × 10−5, 5 × 10−5; (D)
5× 10−7, 5× 10−7, 5× 10−6, 5× 10−5.

Figure S8: Symmetry protects even when mutations may occur simultaneously
in both daughter stem cells
The more accurate ordered mutation accumulation model presented in Section 6 was used to
generate a distribution of PFs over a random ensemble of parameter sets equivalent to that
used in Fig. 1G (Materials and Methods; Table S1). The distribution is unchanged (within
sampling error).
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