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I. ATTRACTOR NEURAL NETWORKS: ADDITIONAL DETAILS

This supplementary text gives a brief introduction to Hopfield neural networks1,2 and how they can be adapted
to study epigenetic landscapes. We begin by reviewing the basic principles underlying the original Hopfield neural
network. We then show how to generalize this to continuous spins3 as well as discrete spins with correlated cell fates4

(projection method). For an in-depth introduction to neural networks, please see the beautiful book by Amit5.

A. Discrete, Standard Hopfield

There are N genes and each gene i is either on or off, with the output denoted by Si = ±1. Alternatively, we could

use the variables S̃ = 1
2 (S + 1) = 1, 0 with the corresponding substitutions in all equations below.

The input to a given gene i is denoted by the local field

hi =

N∑
j 6=i

JijSj +Bi (1)

where Jij is the interaction between gene i and gene j and Bi is the external (i.e interaction independent) bias of
gene i. Both Jij and Bi are assumed to be independent of Si.

The landscape H is given by

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj −
N∑
i=1

BiSi (2)

= −N
2

p∑
µ=1

(mµ)
2 −N

p∑
µ=1

bµmµ (3)

where in equation 3 we have introduce the order parameter for the overlap (dot product or “magnetization”) of a spin
configuration with a given cell fate µ as mµ and also introduced the cell fate bias bµ. The overlap is defined in terms
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of the cell fate vectors ξµi as:

mµ =
1

N

N∑
i=1

ξµi Si (4)

To prove that H is a Lypanov function (i.e. has stable equilibrium states and follows the standard definition of an
“energy”), it is necessary to show that H is a decreasing function and bounded below. To do so, consider flipping a
single Si. The resulting change in H is

∆H = −1

2

 N∑
j 6=i

JijSj +

N∑
j 6=i

SjJji +Bi

∆Si (5)

When we have symmetric interactions, Jij = Jji, this simplifies to

∆H = −

 N∑
j 6=i

JijSj +Bi

∆Si = −hi∆Si (6)

To determine the sign of ∆H we need the relation between hi and ∆Si. For deterministic (stochastic) dynamics,
as long as ∆Si and hi are always (usually) the same sign, we always (usually) have ∆H < 0. Therefore, any set of
dynamics that stochastically matches the sign of ∆Si and hi will lead to H being a Lypanov function. This implies
that any choice of dynamics leads to the same stable fixed points, but may give rise to different trajectories, limit
cycles, and sizes of basins of attraction for fixed points, see Amit5 section 2.2 and 3.5 for a detailed analysis. Therefore,
in this paper we focus on predictions that are independent of the exact dynamics. This is equivalent to thinking about
the stationary properties of the model.

We will follow the standard convention for neural networks and physics and implement Glauber dynamics which is
an asynchronous, stochastic update rule. In this update scheme, at each time step, one gene is selected at random
and probabilistically updated according to its local field

P [Si(t+ 1)] =
eβhi(t)Si(t+1)

eβhi(t) + e−βhi(t)
(7)

with hi defined above (or equivalently hi = − ∂H
∂Si

) and t time measured in discrete updates. Also, β = 1/T is the
inverse temperature and characterizes the slope of the sigmoid function. When β → ∞, the sigmoid approaches a
deterministic step function, while when β → 0 each state is equally likely.

Now we need to specify the gene interaction Jij and establish the global minima of the system. There are p cell
fates and the state of gene i in cell fate µ is given by ξµi . The gene interaction is a correlation based interaction and
in the standard Hopfield neural network it is defined as

Jij =
1

N

p∑
µ=1

ξµi ξ
µ
j (8)

In the standard Hopfield network, the cell fates have two assumptions. First, each cell fate is assumed to on average
be unbiased (i.e. equal number of positive and negative spins)

1

N

N∑
i=1

ξµi ≈ 0 (9)

and second every pair of cell fates is approximately orthogonal

1

N

N∑
i=1

ξµi ξ
ν
i ≈ O

(
1√
N

)
(10)
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These two assumptions can be relaxed in extensions of the standard Hopfield neural network, see later sections for
one example (the projection method) that can incorporate correlated cell fates.

Now we can prove that each cell fate is a global minima of the landscape. For no external fields, the landscape can
be written as:

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj = −N
2

p∑
µ=1

(
1

N

N∑
i=1

ξµi Si

)2

+
1

2N

N∑
i=1

p∑
µ=1

Siξ
µ
i ξ

µ
i Si (11)

This can be rewritten in terms of the overlap as:

H = −N
2
m2 +

1

2
p (12)

Then as long as N is large compared to p, whenever we are in a given cell fate the energy is H = −N/2 and this
is the lowest bound since m2 ≤ 1. We have shown that for p � N , H is a decreasing, bounded function and hence
is a Lypanov function. When p and N are both large, a full replica calculation shows that H remains a Lypanov
function6.

While we have established that the landscape is a Lypanov function, we also need to examine the dynamical stability
of the cell fates and the existence of spurious attractors. In the absence of stochastic update noise (β →∞), we can
examine the signal-to-noise ratio of the cell fates. If a state is dynamically stable, one needs Sihi > 0. When the
state is in a given cell fate (without loss of generality assume cell fate 1), we have that

ξ11h1 =
1

N

N∑
j 6=i

p∑
µ

ξ11ξ
µ
1 ξ

µ
j ξ

1
j (13)

which can be broken into a signal term (first term) and noise term (second term) as follows:

ξ11h1 =
N − 1

N
+

1

N

N∑
j 6=i

N∑
µ6=1

ξ11ξ
µ
1 ξ

µ
j ξ

1
j (14)

For large N , the signal term approaches 1. We can evaluate the noise term by recognizing that it is an unbiased
sum of (N − 1)(p− 1) ≈ Np random steps, and therefore has mean 0 and standard deviation

√
pN , giving us

ξ11h1 = 1 +O
(√

p

N

)
(15)

Therefore as long as N is much larger than p, every cell fate is a fixed point. This rough signal-to-noise argument
can be made more rigorous by a spin-glass replica calculation6 which finds that cell fates are stable (in the case
β →∞) as long as the ratio of p/N is less than 0.138.

Here is an intuitive argument of why the landscape must be rugged, which implies the scaling of stable states with
N . From looking at small systems, a naive guess would be that the number of stable states should scale with the
size of the state space 2N . This scaling could be achieved if each minima occurred when a single TF state is turned
on while all the other TFs are off. However, this implies that each minima is only marginally stable; any spin flip
will move the state out of the minima. In order to have a basin of attraction, more TFs are needed to determine the
minima. A simple error correction or redundancy could be implemented by using r redundant TFs, but this would
require exponentially more states rN . Instead, stable states could be determined by overlapping sets of TFs, as in
the Hopfield neural network. This form of error-correction leads to frustration and Gaussian noise between the stable
states, hence the scaling of stable states with N and not 2N .

An unavoidable consequence of the non-linearity (ruggedness) of the Hopfield network is that in addition to the
desired attractors (the input cell fates), there are additional spurious, metastable, attractors. There are a variety
of spurious attractors, but the most common are symmetric mixtures of odd states2, for example without loss of
generality we can make a spurious state with the first three cell types, Sspur = major (ξ1 + ξ2 + ξ3), where major
stands for majority vote (equivalently the sign function) at each spin. The most common spurious attractor are
symmetric mixtures of 3 states (as in the example above). A signal-to-noise analysis can also be done to establish
that these spurious attractors are stable attractors, but with a smaller basin of attraction than the input cell fates
(see Amit 4.3 for details5).
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B. Continuous, Standard Hopfield

The previous section describes the basic ideas of Hopfield neural networks. Here, we show how discrete Hopfield
neural networks can be considered a limiting case of continuous differential equations of gene expression. We start
by defining continuous spins, σi, that can take on real number between −1 and 1. For continuous dynamics, we
must modify the dynamics of the corresponding local field. In particular, if the local field decays in time with a time
constant τi we have

dhi
dt

=

N∑
j 6=i

Jijσj +Bi − τ−1i hi (16)

where the Jij are the same as in the discrete case and the spin σi is related to the local field by some monotonic
function σi = gi [hi].

Now the landscape is given by

H = −1

2

N∑
i=1

N∑
j 6=i

σiJijσj −
N∑
i=1

Biσi +

N∑
i=1

τ−1i

∫ σi

−1
g−1i [σ] dσ (17)

where the first two terms are the same as in the discrete case while the third is the new term for continuous only.
Taking derivatives with respect to time gives us

dH

dt
= −

N∑
i=1

dσi
dt

 N∑
j 6=i

Jijσj +Bi − τ−1i hi

 = −
N∑
i=1

dσi
dt

dhi
dt

(18)

Then since hi = g−1i [σi], we can relate the derivative of hi to the derivative σi. Then using the fact that gi is
monotonically increasing we can show that the change in H is always negative:

dH

dt
= −

N∑
i

g−1i [σi]

(
dσi
dt

)2

≤ 0 (19)

The decrease in H along with the fact that H is bounded below, shows that we have a Lypanuv function. It is
easy to see that every discrete stable point is also a stable point in the continuous model; however, the continuous
Hopfield neural networks can have additional stable points.

C. Continuous Gene Expression

A popular approach to model gene interactions is based on the genetic toggle switch7 and represents gene interactions
by a Hill function. For now, we will use the general variable σ̃ ∈ [σmin, σmax].

In the most general case, we have that

σ̃i = sign(hi)
ai|hi|ni

kni
i + |hi|ni

+ bi (20)

where the input hi is in the range [−∞,∞] and the output σi is in the range [−ai + bi, ai + bi].
If we rescale every gene by its dynamic range and center the Hill function at zero, we get that σ̃ = σ ∈ [−1, 1] and

σi = sign(hi)
|hi|ni

kni
i + |hi|ni

(21)

Using the function above for σi = gi [hi] allows one to relate continuous Hopfield neural networks to gene expression
using Hill coefficients.
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D. Discrete as Limit of Continuous

How can we relate the continuous model of gene expression to the previous discrete model? There are two limits.
First, if we take the discrete time limit with the update time much greater than the input memory, we get

hi(t+ 1) =

N∑
j 6=i

JijSj(t) +Bi (22)

Second, in the genetic toggle switch language, when the cooperativity is large n � 1, then Si → ±1. This gives
us a deterministic, discrete model of gene expression. If we introduce stochasticity through Glauber dynamics, we
completely recover the discrete Ising model of gene expression.

E. Discrete, Projection Method

The standard Hopfield attractor neural network assumes that the “memories” (cell fates) have nearly no correlations
amongst themselves. However, cell fates are highly correlated (see Figure S1). Therefore, instead of the standard
Hopfield attractor neural networks, we will implement the projection method neural networks4.

The correlation between cell fate µ and ν is given by

Aµν =
1

N

N∑
i=1

ξµi ξ
ν
i (23)

Now the inferred correlation-based, TF interaction matrix is

Jij =
1

N

p∑
µ=1

p∑
ν=1

ξµi (A−1)µνξνj (24)

Then the landscape can be rewritten as

H = −1

2

N∑
i=1

N∑
j 6=i

SiJijSj = − 1

2N

N∑
i=1

N∑
j 6=i

p∑
µ=1

p∑
ν=1

Siξ
µ
i (A−1)µνξνj Sj (25)

= −N
2

p∑
µ=1

mµaµ (26)

where in equation 26 we have introduced the projection order parameter aµ which is the orthogonal projection of a
spin vector onto the subspace spanned by the stable cell fates

aµ =

p∑
ν=1

(A−1)µνmν =

p∑
ν=1

N∑
i=1

(A−1)µνξνi Si (27)

A simple geometric picture illustrates that H makes each cell fate a global minimum of the landscape. An arbitrary
vector can be rewritten in terms of its projection in the cell fate subspace and its orthogonal component δSi,

Si =

p∑
µ=1

aµξµi + δSi (28)

Then, the distance of an arbitrary vector S to the cell fate subspace is given by ∆,

∆ =

(
N∑
i=1

(δSi)
2

)1/2

(29)

which can be rewritten as

∆2

N
= 1−

p∑
µ=1

aµmµ (30)
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This allows us to rewrite the stabilizing term of the landscape as

H = −N
2

+
1

2
∆2 (31)

This provides a very clear interpretation of the landscape as the global distance of an arbitrary vector S to the
natural cell fate subspace4.

Again, let’s examine the signal-to-noise of cell fates in the absence of stochastic update noise. If a state is dynamically
stable, one needs Sihi > 0. When the state is a given cell fate (without loss of generality assume cell fate 1), we have
that

ξ11h1 =
1

N

N∑
j 6=i

p∑
µ=1

ξ11ξ
µ
1

(
A−1

)µν
ξνj ξ

1
j (32)

=

p∑
µ=1

ξ11ξ
µ
1

(
A−1

)µν
Aν1 = 1 (33)

Therefore, the stability of cell fate 1 has no noise interference from the other cell fates, and we have that cell fates
are stable up to p/N = 1.
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