
Supplementary Material:
A Scalable and Accurate Targeted gene Assembly tool
(SAT-Assembler) for next-generation sequencing data
Yuan Zhang1, Yanni Sun1,∗, James R. Cole2

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI, 48824
2 Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824
∗ E-mail: yannisun@msu.edu

1 Pipeline of SAT-Assembler

In this document, we present the pseudo-codes of five stages of SAT-Assembler.

1. Profile HMM-based homology search

2. Alignment-informed graph construction

3. Pruning and optimization of overlap graphs

4. Guided traversal using multiple types of information

5. Contig scaffolding

2 Pseudocodes of SAT-Assembler

Procedure 1 Profile HMM-based homology search

Input: S: input sequences; M : target gene families; p: the E-value threshold for HMMER.
Output: H: sequences that pass the homology search.
1: for each target gene family Mi do
2: align S against Mi

3: add sequences that generate E-value ≤ p into Hi

4: end for
5: for each sequence s in H do
6: assign s to up to three families that generate the best E-values and update H
7: end for
8: return H

1

Procedure 2 Alignment-informed graph construction

Input: H: a list of N reads sorted by their alignment beginning positions; t∗: the alignment
overlap threshold; d∗: relative difference threshold.

Output: G: the overlap graph.
//add vertices to G

1: for i = 1→ N do
2: create a vertex Vi

3: add Vi to G
4: end for

//add edges to G
5: for i = 1→ N − 1 do
6: for j = i + 1→ N do
7: t =the alignment overlap between Vi and Vj

8: k =the sequence overlap between Vi and Vj

9: if t ≥ t∗ and |t− k|/t ≤ d∗ then
10: create an edge Ei,j

11: else if t ≤ t∗ then
12: break
13: end if
14: end for
15: end for
16: return G

2

Procedure 3 Pruning and optimization of overlap graphs

Input: G: the overlap graph.
Output: G: the overlap graph after pruning and optimization.

//remove transitive edges
for each edge in G 〈Vi, Vj〉 do

if there is a transitive edge between Vi and Vj then
remove 〈Vi, Vj〉

end if
end for
//simplify the overlap graph
while there exists a node that has a single outgoing edge and its successor has a single incoming
edge do

merge these two nodes. Update their corresponding in-edges and out-edges appropriately.
end while
//remove tips
for each node v in G do
if the in-degree or out-degree of v is zero and its coverage is less than 2 then

remove v
end if

end for
//remove redundant edges
find all rectangles R in G
for path p in R do

if there is another path that has the same starting and ending nodes and the coverage is higher
than p then

remove p
end if

end for

Procedure 4 Guided graph traversal using multiple types of information

Input: G: the overlap graph; t: threshold for critical support.
Output: C: contigs.
for node v in nodes that have zero in-degree do

p = an empty path
DFS(G, v, t, p, C)

end for

3

Procedure 5 DFS(G, v, t, p, C)

Input: G: the overlap graph; v: the current node; p: the current path; t: the threshold for critical
support.

Output: C: the contigs.
add v into p
//evaluate critical support when a non-chimeric node is added.
if v has zero out-degree then

generate the contig from p and add it into C.
else if v is a non-chimeric node and the critical support of p is below t then

generate the contig from p and add it into C.
for v∗: each successor of v do
p∗ = an empty path.
DFS(G, v∗, p∗, t, C)

end for
else

DFS(G, v∗, p, t, C)
end if

Procedure 6 Contig scaffolding

Input: C: N contigs.
Output: S: scaffolds.

//use an indirect graph to keep paired-end reads between contigs.
for i = 1→ N do

create a node for each contig
end for
create a undirected graph H.
for i = 1→ N − 1 do
for j = 2→ N do

if there are paired-end reads between Ci and Cj then
create an edge 〈vi, vj〉 in H for Ci and Cj

end if
end for

end for
return all connected components in H

3 Experimental data sets and settings

3.1 Experiment on the Arabidopsis RNA-Seq data set

• The data set is archived in Short Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra)
under the accession number SRA047499.

• The HMM files can be downloaded from Pfam website: ftp://ftp.sanger.ac.uk/pub/

databases/Pfam/releases/Pfam27.0/Pfam-A.hmm.gz.

• The command used to run Velvet is: VelvetOptimiser-2.2.5/VelvetOptimiser.pl -s 51 -e 51
-f ‘-fasta -shortPaired -separate SRR360147.1.fasta SRR360147.2.fasta’ -t 4 –optFuncKmer
‘n50’

4

• The command used to run Oases is: ./oases pipeline.py -m 49 -M 61 -o Result -d “-fasta
-shortPaired -separate SRR360147.1.fasta SRR360147.2.fasta” -p “-ins length 350”

• The command used to run Trinity is: ./Trinity.pl –seqType fa –left SRR360147.1.fasta –right
SRR360147.2.fasta –JM 50G –output Trinity

• The command used to run IDBA-Tran is: idba tran -r SRR360147.both.fasta –mink 35 –maxk
61 –step 2 -o out dir

• The command used to run Trans-ABySS is to first run ABySS on a range of k-mers: abyss-pe
name=arabidopsis n=10 k=$kmer in=‘SRR360147 1.fastq SRR360147 2.fastq’, where kmer
is a variable from 35 to 61. We then ran trans-abyss pipeline on the assembled contigs.

• The command to run SAT-Assembler is: ./SAT-Assembler.sh -m all families.hmm
-f SRR360147.both.fasta -o out dir.

3.2 Experiment on the metagenomic data set of synthetic communities

• The data set is archived in SRA under the accession number SRA059004.

• The HMM model of family of butyrate kinase pathway genes can be downloaded from RDP’s
functional gene repository: http://fungene.cme.msu.edu/hmm_download.spr?hmm_id=310.

• The command used to run Velvet is: VelvetOptimiser-2.2.5/VelvetOptimiser.pl -s 53 -e 83
-x 2 -f “-fasta -shortPaired -separate SRR606249 end1.fasta SRR606249 end2.fasta” -t 4 –
optFuncKmer ‘n50’

• The command used to run IDBA-UD is: idba ud -r SRR606249 both.fasta –mink 53 –maxk
83 –step 2 -o output dir

• To run Meta-Velvet, we used the following steps: 1) ran velveth: velveth Result 55 -fasta
-shortPaired -separate SRR606249 end1.fasta SRR606249 end2.fasta; 2) ran velvetg: velvetg
Result -exp cov auto -ins length 260; 3) ran MetaVelvet: meta-velvetg Result -ins length 260

• The command used to run SAT-Assembler is: ./SAT-Assembler.sh -m buk rdp.hmm
-f SRR606249 both.fasta -o Result

3.3 Experiment on the human gut metagenomic data set

• The data set can be downloaded at: ftp://public-ftp.hmpdacc.org/Illumina/stool/

SRS015217.tar.bz2.

• The HMM file is the same as in the second experiment.

• The command used to run Velvet is: VelvetOptimiser-2.2.5/VelvetOptimiser.pl -s 51 -e 51 -f
‘-fasta -shortPaired -separate SRS015217.1.changed.fa SRS015217.2.changed.fa -fasta -short2
SRS015217.single.changed.fa’ -t 4 –optFuncKmer ‘n50’

• The command used to run IDBA-UD is: idba ud -r SRS015217.merged.fa -o output –mink
51 –maxk 81 –step 2

• To run Meta-Velvet, we used the following steps: 1) ran velveth: velveth Result 51 -fasta
-shortPaired -separate SRS015217.1.fa SRS015217.2.fa -fasta -short2 SRS015217.single.fa; 2)
ran velvetg: velvetg Result -exp cov auto -ins length 260; 3) ran MetaVelvet: meta-velvetg
Result -ins length 260

5

• The command used to run SAT-Assembler is: ./SAT-Assembler -m buk rdp.hmm
-f SRS015217.all.fa -o Result

6

