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Overview

We adapted the Wells-Riley approach for assessing the infection risk in
indoor air environments to evaluate tuberculosis transmission in an endemic
setting, by evaluating contact time in multiple environments. We utilized an age-
structured model, drawing upon demographic, epidemiologic, and social contact
data, together with carbon dioxide measurements in common indoor environments,

from a peri-urban township near Cape Town, South Africa.

Model

The risk of tuberculosis transmission in an indoor space was first rigorously
studied by Wells and Riley [1], who exposed guinea pigs to air from a tuberculosis
ward and measured infection rates under controlled conditions. The Wells-Riley
equation relates tuberculosis infection probability to the number of infectious
individuals in a space (I), the breathing rate (p), the rate of generating infectious
quanta (q), the duration of exposure (t) and the room ventilation rate (Q). The
probability of at least one infection (P) occurring during time t follows the Poisson

probability mass function:
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Ipqt
P=1—exp(—%)

Among the difficulties in applying this equation broadly in epidemiology and
public health fields has been the effort required to evaluate the room ventilation
rate, particularly under conditions in which rooms are occupied. The approach of
using exhaled carbon dioxide (CO2) as a natural tracer gas with which to evaluate
building ventilation has been described in the Air Quality literature for many years
[2]. Rudnick and Milton [3] demonstrated how carbon dioxide measurements could
be applied to modify the Wells-Riley equation [1] for evaluating respiratory
infectious disease transmission in an indoor environment. For this approach, they
introduced the ‘rebreathed fraction’ (f), or proportion of breathed air that was
exhaled from other room occupants, as a means to model transmission without
measuring air flow explicitly. The rebreathed fraction—the volume of expired air
(Ve) in the total room air volume (V)—can be estimated from the ambient CO>
concentration ([COz]p), the outdoor air CO2 concentration ([CO],), and the

concentration of CO2 in expired air ([CO].) by the following relationship:

Ve _ [CO], — [CO]o

v [CO],

The fraction of air rebreathed from infectious individuals is this rebreathed fraction
(f) multiplied by the proportion of infectious individuals in the room (I/n). Rudnick
and Milton demonstrated that the rate of exposure to infectious quanta is therefore
given by multiplying the respiration rate (pt), the fraction of air that was expired
from infectious individuals (fI/n) and the concentration of infectious quanta in

exhaled breath (q/p). The Wells-Riley equation can then be reformulated as:
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Flqt
P=1—exp(—qu)

Here n is the number of individuals in the room, f is the averaged rebreathed
fraction, and the other parameters are the same as formulated by Wells and Riley
(above). We draw upon this formulation to model tuberculosis transmission across
multiple environments using data on CO2 concentration in these settings along with
contact data structured by age and setting.

The probability of being infected by an individual of age group a while in
environment k is a function of the time spent in that environment (T,x) and the
number of contacts in that environment (Cax). The median time per encounter is
multiplied by the number of non-contiguous encounters reported per age group a in
environment k (Eax). The probability that a person of age group a is infected in
environment k is a function of the amount of time spent in that environment per
encounter, the number of encounters, and the probability of there being an
infectious TB case there. Following the modified Wells-Riley equation above, the
probability of infection per encounter in which I infectious persons among n total

individuals (C contacts + 1, the referent individual) are present is:

fil 4T

Pa,k(l)zl_exp(_c k+1)
a,

The prevalence of TB (Y) in compartment k is the product of the tuberculosis
prevalence (B) and the population weight (W) for each age group, and the weighted
contact time spent in each location:

Cj kT kEj 1 BiW;

Y, =
: 7 Zi Ci,kTi,kEi,k
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The population weight is defined by the proportion of population in age
group j. For the own household and other household environments, because some
contacts in one’s own household represent contacts reported as “other household”
from their counterpart, and vice versa, we further weighted the prevalence by the
amount of contact time spent in that setting, by age group. Because social mixing
between age groups in schools is thought to be limited, all contact time between
children in schools was assortative according to their five year age strata. The
probability () of there being m infectious contacts of an individual in age group a of

age j is assumed to be Poisson distributed:

(Ca,kYk)meXp (_Ca,kyk)
m!

9a,k (m) =
We modeled up to two simultaneous infectious contacts, as the probability of
having more than two simultaneous infectious contacts in one environment was
<0.001. For each contact an individual has, it may be either a one-time contact or
recurring. For recurring contacts, the probability of being infected in d days in
location k is a function of the probability of having m infectious contacts, 8(m),
among the recurring contacts multiplied by the probability of infection given m

infectious contacts, P(m), over d*E encounters:

dEa,k
Raie(d) = 1= (1 = Bgue(m) (1 = (1 = Pore(m)) ™))
For non-recurring contacts, the probability of being infected in d days is
governed by an equation for the probability of infection if there are m contacts, P(m)

times the probability of having m contacts, 8(m) over the course of d*E encounters:
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m

The overall probability for an individual in age group a of being infected depends

proportion of contacts that are recurrent (r) in each setting, and is given by:
Po=1-] | @ =reRe( = (1 =mINes0)

The latent tuberculosis prevalence at age (Lq) is therefore given by the following

equation:

a

Lazl—l_[(l—Pi)

i=1

Data

Using portable carbon dioxide (CO2) detection devices (EasyView® 80 CO2
analyser, Extech Instruments, Waltham, MA and custom developed monitors using
COZIR™ Ambient sensors, Gas Sensing Solutions Ltd, Glasgow), ambient air in four
environments—public transit vehicles, schools/creches, workplaces and
households—was sampled by nine volunteers to assess mean and ranges for CO>
concentration (Table 1). Volunteers collected 17,124 observations of CO;
concentration in various locations throughout day and night. We used the mean and
standard error of sets of concentration observations for each setting. The outdoor
air COz concentration (C,) was also sampled, and was cross-referenced with city
estimates. The concentration of COz in breath, C,, is determined by Dubois body
surface area (Ap), respiratory quotient (RQ), breathing rate (r) in L/min and level of

physical activity (mets, M) [2].
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The number of daily contacts in each location and time spent in each location
were elicited from a diary study involving 571 residents of a South African township
[4]. These data are stratified by age group in years (0-4,5-9,10-14,15-19,20-24,25-
29,30-34,35-39,40-44,>45). Individuals documented number of indoor contacts and
amount of time spent in each setting, using blocks of time: 0-15 minutes, 15-60
minutes, 1-2 hours, 2-4 hours, 4-8 hours, 8-12 hours, and > 12 hours. If multiple
non-contiguous encounters occurred in the same setting, these were reported as
separate encounters. We utilized median contacts and time spent per encounter,
and we used triangular distributions defined by the median and interquartile range
in uncertainty analysis.

We utilized data on the population age distribution from a recent census in
this community (Figure S4), and we estimated tuberculosis incidence by age from a
study of tuberculosis notifications in Cape Town, South Africa (Figure S3) [5]. We
estimated tuberculosis prevalence from incidence by multiplying notifications by
the estimated duration of undiagnosed tuberculosis in this community. We excluded
individuals with extrapulmonary tuberculosis from transmission calculations, which
eliminated most tuberculosis in young children. Because the estimate of infectious
quanta generation was derived from smear positive individuals, we weighted smear
negative individuals by 0.2 (smear positive individuals were weighted by 1.0)., the
estimated relative infectiousness of smear negative patients compared with smear
positive patients [6,7], to compose an ‘effective’ tuberculosis prevalence. We

assumed that the average duration of infectiousness was one year, based on a
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published estimate from this community [8], and we examined a broad range of
estimates in sensitivity analysis (Table S1).

Data on the proportion of contacts in each setting that were one-time versus
recurrent were not available from the contact diary study. We therefore examined a
range of recurrence rates of contact from 0% to 100%. For our base case, we
assumed that all contacts in households, schools and workplaces were recurrent,
and that no contacts in public transit were recurrent. We examined the alternative

scenarios in sensitivity analysis.

Parameter Estimation

The rate at which individuals generate infectious particles (q) is highly
uncertain. The two published estimates (1.25 quanta/hour and 8.5 quanta/hour,
respectively) were among symptomatic, smear-positive, hospitalized patients,
which may be higher than the general population of undiagnosed tuberculosis
patients [1,9]. We therefore estimated g by fitting the model to observed data on
latent tuberculosis prevalence in various age groups in this community [10]. We
used a simplex descent algorithm to find q that minimized the least-squares
differences between modeled and observed data. We also estimated q for varying

estimates of the duration of undiagnosed active tuberculosis.

Uncertainty and Sensitivity Analyses
For the main model results, we performed uncertainty analysis by drawing
from a normal distribution defined by the mean and standard error of CO; estimates

for each setting and triangular distributions defined by the median and interquartile
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range for contacts and hours spent in each setting. We used a Latin Hypercube
sampling strategy [11], drawing from 1,000 sets of parameters to create median and

95% uncertainty intervals for model estimate.
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Supplementary Tables

Table S1. Sensitivity analysis of contact recurrence and duration of
infectiousness on estimates of the quantum production rate and percentage of
tuberculosis transmission that occurred in own households.

Quantum Production ~ %TB Transmitted Sum of
Parameters Rate (q) in Households Squares
All contacts recurrent 0.94 quanta/hour 15.59% 1.0e-2
No contacts recurrent 0.27 quanta/hour 59.5% 2.1e-2
All contacts recurrent, except in public transit 0.89 quanta/hour 15.6% 1.0e-2

. 0

Duration of Infectiousness, 4 months 5.69 quanta/hour 5.4% 1.3e-2
Duration of Infectiousness, 18 months 0.44 quanta/hour 24.2% 1.0e-2

For the base case scenario, we assumed that all contacts were recurrent except in
public transportation, and that the duration of infectiousness was 12 months.

10
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Supplementary Figures Legend

Figure S1. Median contacts and hours spent in each of five key locations (a.

households; b. public transit; c. school; d. workplaces; e. other households). Each

point represents one observation (individual). Marginal histograms for contacts and

hours shown above and to the right, respectively, of each figure.

Figure S2. Median number of indoor contacts by age and location.

Figure S3. Tuberculosis notifications (cases per 100,000 population) in Cape Town

by age and smear status.

Figure S4. Age distribution of residents living in study township (2010 Census).

Figure S5. Modeled annual risk of infection by age group, with 95% credible

intervals.

11
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Figure S1a.
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Figure S1b.
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Figure Slc.
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Figure S1d.
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Figure Sle.
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Figure S2.
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Figure S3.
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Figure S4.
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Figure S5.
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