
Supplemental Methods 

RNA-seq  

5 µg of total RNA was polyA-enriched, fragmented and converted into a library of Illumina-

compatible sequencing templates with Illumina mRNA-seq sample preparation kit according to 

the manufacturer’s instructions. The cDNA library was size-fractionated in a 1% agarose gel. 

200-250 bp fragments were isolated and amplified by PCR with Illumina primers PE1 and PE2 

for 15 cycles. The integrity and quality of total RNA and size-selected libraries was evaluated 

with Bioanalyzer 2100 (Agilent Technologies). Cluster formation, primer hybridization and 

single-end sequencing was performed as per the manufacturer’s recommendations in the Weill 

Cornell Genomic Resources Core Facility on the Illumina Genome Analyzer IIx. Raw reads were 

mapped to the annotated mouse genome (Ensembl NCBIM37, Version 61.37.n, 36817 genes and 

93809 transcripts) with the CLC Bio Genomic Workbench 4.8 software allowing up to 2 

mismatches with the reference sequence. Multireads with more than 10 genomic matches were 

discarded. Low frequency multireads (2-10) were allocated using weighting function based on 

the distribution of unique reads at each paralog implemented in the CLC Bio Genomic 

workbench RNA-seq analysis module (see Table S1 for the summary of read distribution). The 

expression levels were normalized to the total exon length and the total number of mapped reads 

in a sample and expressed RPKM as in [1]. Out of 36,817 genes annotated in Ensembl 

NCBIM37, 10,338 genes with RPKM (reads per kilobase per million reads) > 1 in at least one 

experimental condition (U, D, L or L+D) were selected for further analysis. To exclude non-

responsive genes, we filtered out all genes with the fold change of the mean group RPKM < 1.4 

[2, 3]. The expression levels of 2,606 remaining genes were log2-transformed and compared 

using ANOVA with p-values corrected for multiple measurements using Benjamini-Hochberg 

false discovery rate (FDR) set to 0.1 [4]. 551 genes that passed FDR threshold were considered 

to be differentially expressed in at least one treatment condition. 



 

ChIP-seq 

ChIPs were performed as described in the main Experimental Procedures except cross-linking 

was performed in 1% methanol-free formaldehyde (Pierce). Chromatin was fragmented to 200-

500 bp with Bioruptor (Diagenode; 17x30 sec cycles, high power at 4°C), cleared at 14,000 rpm 

at 4°C for 20 min and immunoprecipitated with 7 µg rabbit polyclonal anti-GR antibody (Santa 

Cruz Biotechnology, sc1004) and 40 µl of 50% protein A/G plus-agarose slurry per reaction at 

4°C overnight. The quality of DNA shearing and library preparations was verified by 

Bioanalyzer (Agilent). The libraries were prepared and sequenced with HiSeq2000 by the 

Epigenomics Core Facility of Weill Cornell Medical College at average depth of 100 million 

reads/sample and converted to FASTQ files using the Illumina CASAVA 1.8.2 pipeline. The 

reads that have passed Illumina internal quality control were mapped to mouse genome as in 

RNA-seq section except that all multireads were discarded. Peaks were called using the Chipseq 

peak finder implemented in Genomics Workbench v.5.5. Read obtained from the untreated 

BMMΦ immunoprecipitated with anti-GR antibodies were used to calculate a background 

distribution with window size of 200 bp. Analyses were performed with several FDR cutoffs (1 

to 5%) to optimize parameters and decrease the number of false-positive calls. Peaks were 

further filtered based on spatial distribution of forward and reverse reads orientation using the 

Wilcoxon rank test that tested whether the position of forward and reverse reads belonged to the 

same distribution with p<10-4. 

 

Gene association network construction and analysis 

We included in the analysis co-expression data from GEO, interaction data from bioGRID, I2D 

interologus interaction database based on protein orthologies, molecular interactions from 

Pathways Commons and species-specific datasets and physical interactions [5]. The edges in 



these networks correspond to functional links derived from gene association databases that are 

weighted according to the evidence of co-association [6]. We allowed the algorithm to find up to 

20 genes that fit the overall network architecture based on the analysis of the composite network 

generated using either “equal by network” or GO-based network weighting. The gene list 

analysis was performed using the GeneMANIA Cytoscape plugin (ver. 3.1) within Cytoscape 

(ver. 2.8.3) network visualization and analysis environment (www.cytoscape.com). 

Network partitioning was performed with Clustermaker Cytoscape plugin (ver. 1.10) using the 

Newman-Girvan community clustering algorithm. The nodes in resulting modules were overlaid 

with gene-specific parameters reflecting the response to Dex and/or LPS treatments using 

Multicolored Node plugin (ver. 2.540) [7] and the enrichment of genes with common parameters 

was tested using Yates corrected χ2  test. Topological parameters were determined with a 

Cytoscape plugin NetworkAnalyzer [8] and compared to association networks generated from 10 

sets of random genes that are not expressed in BMMΦ (referred to as “non-expressors”). 

 

Gene functional enrichment analysis 

Gene ontology (GO) analysis was performed with BiNGO 2.44 Cytoscape plugin [9]. The 

significance of GO term enrichment was assessed by hypergeometric test corrected for multiple 

measurements using the Benjamini-Hochberg FDR correction with the significance level set to 

0.05. The list of GO-enriched categories was further processed with EnrichmentMap 1.2 [10] to 

create networks of GO categories in which the nodes represent individual GO gene sets and the 

edges are weighted based on the degree of overlap between connected gene sets. Input GO gene 

sets were filtered for significance by setting the uncorrected p-values to 0.001 and FDR q to 0.1. 

The GO networks were generated with the Jaccard coefficient set to 0.37, arranged using the 

Cytoscape weighted force-directed layout and manually adjusted for clarity. 

 



Modeling of expression data 

The experiments were performed 3 times with BMMΦ prepared from 3 independent mice. 

BMMΦ were plated at 2 million per well in a 6-well plate one day prior to treatment. BMMΦ 

were treated with 100 nM Dex for up to 9 h and the expression levels of Dex-responsive genes 

were determined by qPCR (the expression level at t=0 was set to 1). The expression data were 

subjected to the global least-square fit to an equation describing the expression of a jointly 

regulated gene (Z) in the I-FFL under the control of a master TF (X) and an X-activated strong 

repressor (Y, Figure 4C). The non-linear least-square fitting was performed using the DataFit 

software (Oakdale Engineering) to a user-defined function [11] 

(1)  Z(t)=[et+ ln(fet - f+1)  - 
f
1

ln(fet - f+1) ]e-t  , 

where f as a fitting parameter equal to the fold activity change of a master TF (X) and t is time. 

We used the coefficient of determination  
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2 )()ˆ(1 , where iẐ  is the ith predicted value of Z, that reflects the 

proportion of variation which is explained by the regression model as a goodness of fit 

measurement (Figure 4C). The accumulation of Y and Z over time is described by the following 

ordinary differential equations: 

(2) dY/dt = β1*X –α1*Y and   

(3) d[Z]/dt = β2*X /Y– α2*[Z],  

where α1 and α2 are degradation rates for Y and Z, respectively, and β1 and β2 are maximal rate 

of production of Y and Z, respectively. Eq 2 and 3 were solved numerically using the Runge-

Kutta-Fehlberg numerical integration algorithm as implemented in Polymath 6.1 ordinary 

differential equation solver (Polymath Software) and the goodness of fit to experimental data 

was evaluated by calculating R2. The best numerical solution shown in Figure 4C for the 



equations (2) and (3) was achieved with the following parameters: β1=β2=1, α1=1.2, α2=1; 

X=22 that were derived from the initial data fitting to equation (1).  
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