1. Brief description of Modest AdaBoost [26].

- 1. Given training instances $(x_1, y_1), ..., (x_N, y_N)$, initialize instance weights $D_0(i) = 1/N$;
- 2. For m = 1,...,M and while $f_m \neq 0$
 - a. Use distribution $D_m(i)$ and weighted least squares to train weak classifier:

$$h_m(x) = \arg\min_{h} \left(\sum_{i=1}^{N} D_m(i) \bullet (y_i - h(x_i))^2 \right)$$
 (1)

b. Compute the *inverted* distribution

$$\overline{D_m(i)} = (1 - D_m(i))\overline{Z_m} \tag{2}$$

c. Compute

$$P_m^{+1}(x) = P_{D_m}(y = +1 \wedge h_m(x)); \overline{P}_m^{+1}(x) = P_{\overline{D_m}}(y = +1 \wedge h_m(x))$$
(3)

$$P_m^{-1}(x) = P_{D_m}(y = -1 \land h_m(x)); \overline{P}_m^{-1}(x) = P_{\overline{D}_m}(y = -1 \land h_m(x))$$
(4)

d. Set

$$f_m(x) = (P_m^{+1}(1 - \overline{P}_m^{+1}) - P_m^{-1}(1 - \overline{P}_m^{-1}))(x)$$
(5)

Update the weight distributions

$$D_{m+1}(i) = \frac{D_m(i) \exp(-y_i f_m(x_i))}{Z_m}$$
(6)

3. Construct the final classifier

$$\mathbb{F}(x) = \sum_{m=1}^{M} f_m(x) \tag{7}$$

where $\overline{Z_m}, Z_m$ are normalization factors, P_m^{+1}, P_m^{-1} denote the probability that the weak classifier $h_m(x)$ assigns label $\{+1,-1\}$ to the instance x under the weight distribution D_m , and similarly $\overline{P_m}^{+1}, \overline{P_m}^{-1}$ denote the probability under the inverted weight distribution $\overline{D_m}$. From formula (6), we can see that the weight increases ($D_{m+1}(i) > D_m(i)$) for those misclassified instances ($y_i f_m(x_i) < 0$). The inverted weight distribution $\overline{D_m}$ conversely assigns higher weights to those correctly-classified instances. $\overline{D_m}$ pays more attention to those hard-to-classify or noisy instances, and D_m pays more attention to those regular or noise-free instances. The hypothesis yielded in each round of training $f_m(x)$ takes both $\overline{D_m}$ and D_m into account (see formula (5)), and then all the hypothesises are finally combined into a decision committee (see formula (7)).

2. Formal definitions of SP, SE, MCC, overall accuracy (Acc) and F1 score.

$$p_{l} = M_{l,l}, q_{l} = \sum_{i=1, i \neq l}^{L} \sum_{j=1, j \neq l}^{L} M_{i,j}, r_{l} = \sum_{i=1, i \neq l}^{L} M_{i,l}, s_{l} = \sum_{j=1, j \neq l}^{L} M_{l,j}$$

$$p = \sum_{l=1}^{L} p_{l}, q = \sum_{l=1}^{L} q_{l}, r = \sum_{l=1}^{L} r_{l}, s = \sum_{l=1}^{L} s_{l}$$
(8)

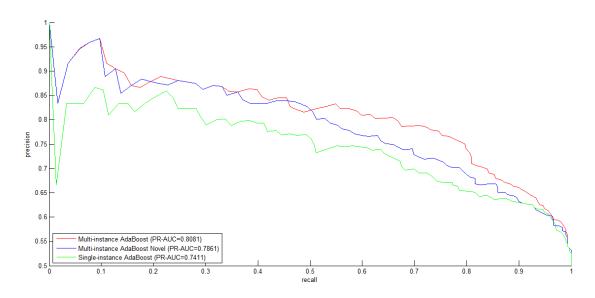
$$SP_l = \frac{p_l}{p_l + r_l}, l = 1, 2..., L$$

$$SE_l = \frac{p_l}{p_l + s_l}, l = 1, 2..., L$$
 (9)

$$MCC_{l} = \frac{(p_{l}q_{l} - r_{l}s_{l})}{\sqrt{(p_{l} + r_{l})(p_{l} + s_{l})(q_{l} + r_{l})(q_{l} + s_{l})}}, l = 1, 2..., L$$

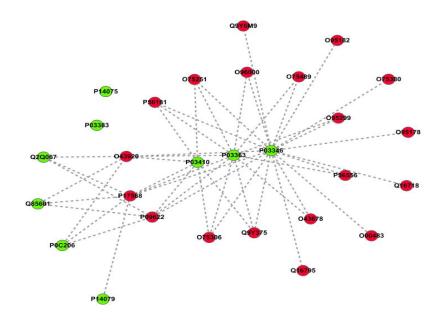
$$Acc = \frac{\sum_{l=1}^{L} M_{l,l}}{\sum_{i=1}^{L} \sum_{j=1}^{L} M_{i,j}}$$

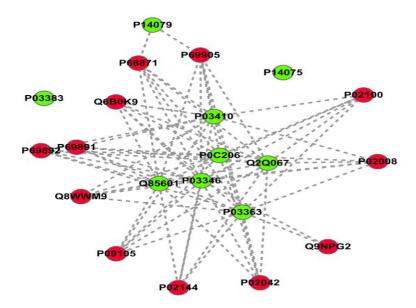
$$MCC = \frac{(pq - rs)}{\sqrt{(p+r)(p+s)(q+r)(q+s)}}$$
(10)


where the confusion matrix $M_{i,j}$ records the counts that class i are classified to class j and L denotes the number of labels.

$$F1_score = \frac{2 \times SP_l \times SE_l}{SP_l + SE_l}, l = 1 \text{ denotes the positive class}$$
 (11)

3. Figure S1 ROC curve for three experimental settings (Multi-instance AdaBoost, Multi-instance AdaBoost Novel, Single-instance AdaBoost) on the dataset S


4. Figure S2 Precision-Recall curve for three experimental settings (Multi-instance AdaBoost, Multi-instance AdaBoost Novel, Single-instance AdaBoost) on the dataset S


5. Table S1 $\,$ 10-fold cross validation performance estimation on on the dataset S

	Multi-instance AdaBoost			Multi-instance AdaBoost Novel			Single-instance AdaBoost		
	SP	SE	МСС	SP	SE	МСС	SP	SE	МСС
Positive (interaction)	0.7393	0.8060	0.6066	0.7129	0.7559	0.5541	0.7128	0.6722	0.5088
Negative (non-interaction)	0.7868	0.7157	0.5949	0.7402	0.6957	0.5445	0.6899	0.7291	0.5191
[Acc; MCC]	[76.09%; 0.5991]			[72.58%; 0.5486]			[70.07%;0.5134]		
[ROC-AUC; PR-AUC]	[0.8307; 0.8081]			[0.8045; 0.7861]			[0.7768; 0.7411]		
F1 Score	0.77			0.73			0.69		

6. Figure S3 The predicted HTLV-human PPI sub-network GO:0006120 (biological process: mitochondrial electron transport, NADH to ubiquinone). The green node denotes HTLV protein and the red node denotes human protein.

7. Figure S4 The predicted HTLV-human PPI sub-network GO:0005344 (molecular function: oxygen transporter activity). The green node denotes HTLV protein and the red node denotes human protein.

