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1. SPHERICITY CONDITIONS OF NON-SPIKED EIGENVALUES

Since eigenvalues can be rescaled by a constant, we assume that λ̄ = 1. Condition 1 is closely
related to the sphericity measure in John (1971, 1972) and the εm condition of Jung & Marron
(2009). Under the high dimension low sample size regime, Jung & Marron (2009) defined

εm =

(
p∑

v=m+1

λv

)2(
p

p∑
v=m+1

λ2
v

)−1

,

and derived their asymptotic results under the condition where ε−1
m = o(p). Since under Condi-

tion 1,

ε−1
m =

(
p

p∑
v=m+1

λ2
v

)(
p∑

v=m+1

λv

)−2

= (p−m)−2
p∑

v=m+1

p(λv − 1)2 + (p−m)−1p

= o(p) for fixed n,

Condition 1 implies the εm condition. The relative growth rate of n to p plays a critical role in 20

both conditions. For example, when (p−m)−1
∑p

v=m+1(λv − 1)2 = O(1), p must grow faster
than n2 to satisfy Condition 1. In Condition 2, we relax the assumption on (λv − 1)2 but add an
additional assumption on (λv − 1)4.
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2. NOTATIONS

Since EpΛ1/2ZZTΛ1/2ETp has the same eigenvalues as Λ1/2ZZTΛ1/2, with ETp U being the
corresponding eigenvector matrix, without loss of generality we assume that σ2Λ is the popu-
lation covariance matrix, and ev is the vth eigenvector. Let ϕv(·) be a function on a matrix that
returns its vth largest eigenvalue. Suppose suffixes A and B represent the first m and the remain-
ing coordinates of any given matrix, respectively. The sample covariance matrix S can then be
partitioned as

S =

(
SAA SAB
SBA SBB

)
,

and uTv and ZT can be partitioned as (uTA,v, u
T
B,v) and

(
ZTA , Z

T
B

)
, respectively.25

Let ΛA = diag(λ1, . . . , λm), ΛB = diag(λm+1, . . . , λp), Rv = ||uB,v||, and av =

(1−R2
v)
−1/2uA,v. By the singular value decomposition, Λ

1/2
B ZB = n−1/2VM1/2HT ,

where M = diag(µ1, . . . , µp−m) is a (p−m)× (p−m) diagonal matrix of the ordered
eigenvalues of SBB , V is a (p−m)× (p−m) orthogonal matrix, and H is an n× (p−m)
matrix. When n ≥ p−m, H is column-orthogonal. When n < p−m, the first n columns of H30

are orthogonal while the rest of the columns are zero. Let fv = λv+m − 1, we then have∑
i 6=j 6=k 6=l

fifjfkfl = 3
∑
i 6=j

f2
i f

2
j − 3

∑
i

f4
i ,

∑
i 6=j 6=k

f2
i fjfk = −

∑
i 6=j

f2
i f

2
j +

∑
i

f4
i ,∑

i 6=j
f3
i fj = −

∑
i

f4
i ,

∑
i 6=j 6=k

fifjfk = 2
∑
i

f3
i ,

∑
i 6=j

f2
i fj = −

∑
i

f3
i ,∑

i 6=j
fifj = −

∑
i

f2
i . (1)

3. PROOF OF THEOREM 135

3·1. Lemma 1
We introduce the following lemma for future use.

LEMMA 1. Suppose γp →∞ and n→∞ as p→∞. With either Condition 1 or 2,

p−1||ZTBZB − ZTBΛBZB|| → 0 in probability.

Proof. Step 1. We first truncate and centralize zij , as described in Yin et al. (1988) and Bai
& Yin (1993). Define a (p−m)× n matrix Z̃ with the (i, j)th element

z̃ij = zBij I(|zBij | ≤ σδpn1/4p1/4)− E
{
zBij I(|zBij | ≤ σδpn1/4p1/4)

}
,

where zBij is the (i, j)th element of ZB . By the truncation and centralization lemma (Yin et al.,
1988), there exists a sequence δp that converges to zero and satisfies

E(z̃ij) = 0, E(z̃2
ij)→ σ2, E(z̃4

ij) = O(1), E(z̃kij) = (δpn
1/4p1/4)k−4O(1) (k > 4),40

ϕ1(p−1Z̃T Z̃)− ϕ1(p−1ZTBZB) = o(1), ϕn(p−1Z̃T Z̃)− ϕn(p−1ZTBZB) = o(1). (2)

Since both ϕ1(p−1ZTBZB) and ϕn(p−1ZTBZB) converge to unity, p−1||Z̃T Z̃ − ZTBZB|| = o(1).

Step 2. We largely follow the combinatorial argument described in Bai & Silverstein (2010).
Suppose there are two sets of integers, ξ = (ξ1, . . . , ξk+1) with ξ1 = ξk+1 and ζ = (ζ1, . . . , ζk),
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where the ξus range from 1 to n and the ζus range from 1 to p−m. A graph G(ξ, ζ) is con- 45

structed by connecting k edges from ξu to ζu and another k edges from ζu to ξu+1. See Fig-
ure 3.1 of Bai & Silverstein (2010). An edge is single if there are no other edges to share
the same two vertices. For the graph G(ξ, ζ), let Z̃G(ξ,ζ) =

∏k
u=1 z̃ξu,ζu z̃ξu+1,ζu . Two graphs

are isomorphic if there exist a permutation of ξ and a permutation of ζ such that the graphs
are identical. The canonical graph for each isomorphic group is defined as ξ1 = ζ1 = 1, ξu ≤ 50

max(ξ1, . . . , ξu−1) + 1, and ζu ≤ max(ζ1, · · · , ζu−1) + 1. Let r + 1 and s be the number of
distinct elements in ξ and ζ, respectively. Let An = p−1Z̃T (ΛB − I)Z̃ and ∆(k, r, s) be a set of
canonical graphs with no single edge. It can be shown that

E
{

tr(Akn)
}

= p−k
k−1∑
r=0

n∏
n1=n−r

n1

k−r∑
s=1

∑
j1 6=···6=js

∑
ms,1,...,ms,s

s∏
i=1

f
ms,i

ji

∑
G∈∆(k,r,s)

E(Z̃G),

where ms,1 ≥ · · · ≥ ms,s ≥ 1 and
s∑
i=1

ms,i = k.

Step 3. Since E(Z̃G) = O(1) for all G ∈ ∆(2, r, s), 55

E
{

tr(A2
n)
}

= p−2n
∑
j1 6=j2

fj1fj2O(1) + p−2n
∑
j1

f2
j1O(1) + p−2n(n− 1)

∑
j1

f2
j1O(1)

= p−2n(n− 1)
∑
j1

f2
j1O(1) = o(1), (3)

under Condition 1. Applying Markov’s inequality, for any ε > 0,

pr
{

max
v=1,...,n

ϕv(A
2
n) > ε

}
≤ pr

{
tr(A2

n) > ε
}
≤ ε−1E

{
tr(A2

n)
}

= o(1),

indicating that ||An|| = op(1). Thus, Lemma 1 holds under Condition 1. Using the same ap-
proach in (3) with (1)–(2), it can be shown that

E
{

tr(A4
n)
}

= (n3 + n3/2p1/2)p−4
∑
j1 6=j1

f2
j1f

2
j2O(1) + (n4 + n2p)p−4

∑
j1

f4
j1O(1),

which converges to zero under Condition 2. Therefore, ||An|| = op(1), which concludes the
proof. 60

3·2. Convergence of sample eigenvalues
We first assume that cv (v ≤ m) is bounded away from zero. The vth eigenvalue of S is

dv = ϕv(n
−1ZTAΛAZA + n−1ZTBΛBZB). Since ||λ−1

v ΛA|| = O(1) (v ≤ m), and n−1ZAZ
T
A −

σ2I = o(1), we can obtain∥∥∥(nλv)
−1Λ

1/2
A ZAZ

T
AΛ

1/2
A − λ−1

v σ2ΛA

∥∥∥ = o(1).

By the continuity of eigenvalues and Lemma 1, λ−1
v ϕv(n

−1ZTAΛAZA)− σ2 = o(1) (v ≤ m),
and γ−1

p ϕv(n
−1ZTBΛBZB)− σ2 = op(1) (v > m). For v > m, ϕv(n

−1ZTAΛAZA) = 0,
since ZTAΛAZA has rank m. Further, by Weyl’s inequality (Bhatia, 1997), ϕv(S) ≤
ϕv(n

−1ZTAΛAZA) + ϕ1(n−1ZTBZB) and ϕv(S) ≥ ϕv(n−1ZTAΛAZA) + ϕn(n−1ZTBZB). 65
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Hence,

dv/λv − σ2c−1
v (cv + 1) = op(1) (v ≤ m),

dv/γp − σ2 = op(1) (v > m).

When cv = o(1), γ−1
p λ1(n−1ZTAΛAZA)→ 0. Hence, dvγ−1

p = σ2 + op(1), which concludes
the proof.70

3·3. Convergence of sample eigenvectors
The proof largely follows the arguments in Paul (2007) and Lee et al. (2010). We assume

without loss of generality that σ2 is unity. From the definitions of eigenvalues and eigenvectors,{
SAA + SAB(dvI − SBB)−1SBA

}
av

=
{
SAA + n−1Λ

1/2
A ZAHM(dvI −M)−1HTZTAΛ

1/2
A

}
av = dvav, (4)75

and

aTv

{
I + n−1Λ

1/2
A ZAHM(dvI −M)−2HTZTAΛ

1/2
A

}
av = (1−R2

v)
−1. (5)

We first assume that cv (v ≤ m) is bounded away from zero. Let

ηv = c−1
v (cv + 1), Rv =

∑
k 6=v
{ηv(λk − λv)}−1 λveA,ke

T
A,k,

Dv = λ−1
v

{
SAA + SAB(dvI − SBB)−1SBA − ηvΛA

}
,

where eA,v contains the first m elements of ev. From (4), it can be shown that(
λ−1
v ηvΛA − ηvI

)
av = −Dvav +

(
λ−1
v dv − ηv

)
av.

SinceRv
(
λ−1
v ηvΛA − ηvI

)
= I − eA,veTA,v,

(I − eA,veTA,v)av = −RvDvav +
(
λ−1
v dv − ηv

)
Rvav,

which indicates that av − ev = op(1) if both ||RvDv|| and |λ−1
v dv − ηv|||Rv|| are op(1). For

k = 1, . . . ,m and l = 1, . . . ,m, we show that

eTA,kDveA,l = λ−1
v eTA,kSAAeA,l

+ λ−1
v eTA,kSAB(dvI − SBB)−1SBAeA,l − λ−1

v ηve
T
A,kΛAeA,l. (6)80

The first term of (6) is

λ−1
v eTA,kSAAeA,l = (nλv)

−1(λkλl)
1/2ZTA,kZA,l =

{
λ−1
v (λkλl)

1/2op(1), k 6= l,
λ−1
v λk {1 + op(1)} , k = l,

(7)

and the third term of (6) equals {
0, k 6= l,
λ−1
v ηvλk, k = l.

(8)

From Proposition 1 of Lee et al. (2010),

n−1ZTA,kHM(dvI −M)−1HTZA,l =

{
op(1), l 6= k,
n−1tr

{
M(dvI −M)−1

}
+ op(1), l = k.
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Although Proposition 1 of Lee et al. (2010) requires that ||HM(dvI −M)−1HT || = O(1),
it can easily be shown that the same result holds for ||HM(dvI −M)−1HT || = O(1) +
op(1). Since µn(dv − µn)−1 < n−1tr

{
M(dvI −M)−1

}
< µ1(dv − µ1)−1, and both µ1γ

−1
p 85

and µnγ−1
p are 1 + op(1),

n−1tr
{
M(dvI −M)−1

}
= {1 + op(1)} {cv + cvop(1)}−1 + op(1). (9)

Hence, the second term of (6) equals{
λ−1
v (λkλl)

1/2op(1), k 6= l,

λ−1
v λk

[
{1 + op(1)} {cv + cvop(1)}−1 + op(1)

]
, k = l.

(10)

Summing up (7), (8), and (10), we get

eTA,kDveA,l = λ−1
v (λkλl)

1/2op(1) (k = 1, . . . ,m; l = 1, . . . ,m).

Decomposing RvDveA,l =
∑

k 6=v λv {ηv(λk − λv)}
−1 eA,ke

T
A,kDveA,l, we conclude that 90

||RvDv|| = op(1). Since ||Rv|| = O(1) and
∣∣dvλ−1

v − ηv
∣∣ ||Rv|| = op(1),

av − ev = op(1). (11)

From the same argument of (9),

n−1λvZ
T
AvHM(dvI −M)−2HTZAv =

1 + op(1)

cv + cvop(1)
+ op(1) = c−1

v + op(1).

Using (11),

(5) = {ev + op(1)}T
{
I + n−1Λ

1/2
A ZAHM(dvI −M)−2HTZTAΛ

1/2
A

}
{ev + op(1)}

= 1 + c−1
v + op(1). (12) 95

By combining (11) and (12),

〈ev, uv〉 = 〈eA,v, av〉 (1−R2
v)

1/2 = c1/2
v (1 + cv)

−1/2 + op(1), (13)

which completes the proof for the case where cv is bounded away from zero.
Now we assume cv = o(1). Without loss of generality, we only consider the first eigenvector.

Since eT1 u1 < (1−R2
1)1/2, all we need to show is that R1 → 1. The first sample eigenvalue is

d1 = uT1 Su1 = uTA,1SAAuA,1 + 2uTA,1SABuB,1 + uTB,1SBBuB,1. (14) 100

The first term of (14) is

uTA,1SAAuA,1 = n−1uTA,1Λ
1/2
A ZAZ

T
AΛ

1/2
A uA,1

≤ (1−R2
1)ϕ1(n−1Λ

1/2
A ZAZ

T
AΛ

1/2
A ) = (1−R2

1)λ1 {1 + o(1)} ,
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and the second term of (14) is

uTA,1SABuB,1 ≤ λ
1/2
1 ||uA,1|| max

v=1,...,m

(
n−1zTA,vZ

T
BΛ

1/2
B uB,1

)
105

≤ R1λ
1/2
1 (1−R2

1)1/2 max
v=1,...,m

(
n−1||Λ1/2

B ZBzA,v||
)

≤ R1λ
1/2
1 (1−R2

1)1/2n−1

(
m∑
v=1

zTA,vZ
T
BΛBZBzA,v

)1/2

= R1γp
{
c1(1−R2

1)
}1/2

Op(1),

where zA,v is the vth row vector of ZA, and the second inequality is obtained by the Cauchy-
Schwarz inequality. The third term of (14) is uTB,1SBBuB,1 < R2

1µ1. Combining all the three110

terms, we get (d1 − µ1)γ−1
p ≤ R2

1 − 1 + op(1). Since d1 − µ1 ≥ 0 by the interlacing inequality
(Horn & Johnson, 1990), we conclude that R1 → 1, which completes the proof.

4. PROOF OF COROLLARY 1
Since λv/γαp converges to c̃v as p→∞, cv converges to∞, c̃v, and 0 for α > 1, α = 1, and

α < 1, respectively, as p→∞, the results in Corollary 1 can be easily obtained.115

5. PROOF OF THEOREM 2
5·1. Convergence of sample principal component scores

Without loss of generality, we assume corr(pv, p̂v) ≥ 0. Let p̄v and p̄∗v be the averages of
elements in pv and p̂v, respectively. From SAAuA,v + SABuB,v = dvuA,v, we obtain

pTv p̂v

n(σ2λvdv)1/2
=

1

(σ2λvdv)1/2
eTA,vSAAuA,v +

1

(σ2λvdv)1/2
eTA,vSABuB,v120

=
d

1/2
v

σλ
1/2
v

eTA,vuA,v =
d

1/2
v

σλ
1/2
v

eTv uv. (15)

Since eTv uv −
{
cv(cv + 1)−1

}1/2
= op(1) and λ−1

v dv − σ2c−1
v (cv + 1) = op(1), (15) con-

verges to unity in probability, and n−1/2JT
{
pv(σ

2λv)
−1/2 − p̂vd−1/2

v

}
= op(1) where J =

(1, . . . , 1)T . Thus,

p̄vJ
T p̂v

n(σ2λvdv)1/2
=
p̄vJ

T
{
pv(σ

2λv)
−1/2 − pv(σ2λv)

−1/2 + p̂vd
−1/2
v

}
n(σ2λv)1/2

125

=
p̄2
v

σ2λv
−
p̄vJ

T
{
pv(σ

2λv)
−1/2 − p̂vd−1/2

v

}
n(σ2λv)1/2

= op(1). (16)

Since (pv − p̄vJ)T (pv − p̄vJ)/(nσ2λv) = 1 + op(1), we can easily show that (p̂v −
p̄∗vJ)T (p̂v − p̄∗vJ)/(ndv) = 1 + op(1). Combining (15) and (16), we conclude the proof.
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5·2. Convergence of predicted principal component scores

Let u⊥v = (I − eveTv )uv
{

1− (uTv ev)
2
}−1/2. Then uv = (uTv ev)ev +

{
1− (uTv ev)

2
}1/2

u⊥v . 130

We partition u⊥v into
(
u⊥A,v, u

⊥
B,v

)
. Following the same argument in Lee et al. (2010),

λ−1
v E(p̂2

vj) = λ−1
v E(dv)→ σ2c−1

v (cv + 1), (17)

and

λ−1
v E(q̂2

v | uv) = (uTv ev)
2 + λ−1

v

{
1− (uTv ev)

2
}

(u⊥TA,vΛAu
⊥
A,v + u⊥TB,vu

⊥
B,v)

+ 2λ−1
v uTv ev

{
1− (uTv ev)

2
}1/2

eA,vΛAu
⊥
A,v

→ σ2cv(1 + cv)
−1 in probability. (18) 135

The proof follows from (17) and (18).

6. EXAMPLES

Example 1. Suppose there are two independent groups of variables, one with p1 variables and
the other with p2 variables, and the covariance structure is block compound symmetric. That is,
the population covariance matrix is 140

Σ =

{
(1− ρ1)Ip1,p1 0

0 (1− ρ2)Ip2,p2

}
+

(
ρ1Jp1J

T
p1 0

0 ρ2Jp2J
T
p2

)
,

where p = p1 + p2, Ip,p is a p× p identity matrix, and Jp is a p× 1 vector with all elements
equal to unity. Define rk = (pk − 1)/(p− 2) (k = 1, 2). Suppose the rks are bounded away
from 0, (p1 − 1)ρ1 ≥ (p2 − 1)ρ2, and (p1 − 1)ρ1 � (p2 − 1)ρ2. Then the first two population
eigenvalues, after rescaling, equal

λk =
1 + (pk − 1)ρk

C
≈ rkρk

C
p (k ≤ 2),

where C = 1− r1ρ1 − r2ρ2. The non-spiked eigenvalues are

1

C
(1− ρ1, . . . , 1− ρ1︸ ︷︷ ︸

p1−1

, 1− ρ2, . . . , 1− ρ2︸ ︷︷ ︸
p2−1

).

When ρ1 6= ρ2, the non-spiked eigenvalues are not identical, but Condition 1 holds if p� n2.
Now let us consider 3 scenarios for the ρks: large (ρk � 1/n), small (ρk � 1/n), and very small
(ρk � 1/n). From Theorem 1, the first two sample eigenvalues are consistent for large ρks,
inconsistent but separable from the bulk for small ρks, and indistinguishable for very small ρks. 145

Similarly, the first two sample eigenvectors are consistent for large ρks, neither consistent nor
asymptotically perpendicular to the corresponding population eigenvectors for small ρks, and
asymptotically perpendicular for very small ρks.

Example 2. Suppose there is a group of variables with a compound symmetric correlation
structure and another group of independent variables. Specifically, the population covariance 150

matrix is

Σ =

{
(1− ρ)Ip1,p1 0

0 Ip2,p2

}
+

(
ρJp1J

T
p1 0

0 0

)
.
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The first population eigenvalue, after rescaling, is

λ1 =
1 + (p1 − 1)ρ

C
� ρp1

C
,

where C = 1− r1ρ and r1 = (p1 − 1)/(p− 1). The non-spiked eigenvalues are

1

C
(1, . . . , 1︸ ︷︷ ︸

p2

, 1− ρ, . . . , 1− ρ︸ ︷︷ ︸
p1−1

).

We consider three scenarios on the sizes of the groups: large (p1 � p), moderate (p1 � p/n) and
small (p1 � p/n). From Theorem 1, the first eigenvalue is consistent for large p1, inconsistent
but separable from the bulk for moderate p1, and indistinguishable for small p1. The behaviors155

of sample eigenvectors can also be inferred from Theorem 1.
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