SUPPLEMENTAL FIGURES AND TABLES

Suppl. Fig. S1. Peak Z score distribution and KEGG functional analysis. Related to Figure 1.

(A) Distribution of the Z scores for all sliding windows considered by the peak-finding algorithm along the mouse genome. The chosen cutoff for peak calling is depicted by the dotted line.

(B) Subset of the top significantly enriched KEGG terms identified for direct and indirect upregulated PGC-1 α target genes.

(C) Subset of the top significantly enriched KEGG terms identified for direct and indirect down-regulated PGC-1 α target genes.

(D) ChIP-Seq signal around the promoter region of the five directly down-regulated genes (*Cacna1s, Mybph, Myh1, Myh4, Pfkfb3*) involved in regulating the contractile properties of fast-twitch muscle fibers.

Α

Motif name	z	z	Z avg.	Z avg.	Directly	Indirectly	Directly	Indirectly
	direct	indirect	direct	indirect	activated	activated	repressed	repressed
Group 1: motifs only directly	activate	d by PGC·	·1alpha					
SP1.p2	3.99	0.61	9.76	0.33	1	0	0	0
ELF1,2,4.p2	3.11	1.32	7.59	3.13	1	0	0	0
PAX4.p2	2.50	1.53	6.11	-3.68	1	0	0	0
LMO2.p2	2.36	1.65	5.78	3.98	1	0	0	0
HNF4A_NR2F1,2.p2	2.26	1.54	5.52	3.64	1	0	0	0
GTF2I.p2	2.09	2.38	5.10	-5.80	1	0	0	1
Group 2: motifs directly and i	indirectly	v activate	d bv PG	C-1alpha				
ESRRA.p2	6.04	15.49	14.78	37.94	1	1	0	0
NR5A1,2.p2	3.53	7.73	8.66	17.00	1	1	0	0
ZNF143.p2	2.48	4.65	6.05	9.68	1	1	0	0
NFY{A,B,C}.p2	2.37	3.56	5.80	7.62	1	1	0	0
ESR1.p2	2.33	4.53	5.69	11.04	1	1	0	0
RXR{A,B,G}.p2	2.29	4.30	5.59	10.50	1	1	0	0
Crown 2: matifs only indirect	ly a attiva	had by DC	C 1 alah	_				
NPE1 p2			2 01	a 6 2 1	0	1	0	0
	1.00	2 07	2.91	5 77	0	1	0	0
	0.88	2.97	2.09	6.25	0	1	0	0
ENF. PZ	0.75	2.77	1.77	6.35	0	1	0	0
	0.71	2.54	1.71	6.20	0	1	0	0
	0.54	2.52	0.04	6 1 2	0	1	0	0
	0.40	2.51	2 00	0.1Z	0	1	0	0
NKV2 1 n^2	0.60	2.40	2.05	5.02	0	1	0	0
DEST n2	0.00	2.43	1.40	5.33	0	1	0	0
	1 70	2.41	1.15	5.70	0	1	0	0
POUSE1 SOV2/dimorl n2	0.24	2.52	4.50	5.25	0	1	0	0
	0.24	2.32	0.57	5.05	0	1	0	0
RXRG dimer p3	1.67	2.24	4.09	4.89	0	1	0	0
	1.07	2101			Ū	-	· · ·	Ũ
Group 4: motifs only indirect	ly repres	sed by PC	GC-1alph	าล				
IRF1,2,7.p3	1.77	24.23	4.34	-14.48	0	0	0	1
NFKB1_REL_RELA.p2	0.50	6.54	1.19	-16.01	0	0	0	1
TLX13_NFIC{dimer}.p2	0.84	4.91	-2.05	-11.97	0	0	0	1
STAT2,4,6.p2	0.35	4.81	0.52	-9.67	0	0	0	1
DMAP1_NCOR{1,2}_SMARC.p	0.25	4.22	-0.60	-8.73	0	0	0	1
RUNX13.p2	0.09	3.94	0.11	-9.61	0	0	0	1
NFATC13.p2	0.16	3.46	-0.24	-8.42	0	0	0	1
GATA13.p2	1.21	3.39	-2.92	-8.04	0	0	0	1
TBP.p2	1.11	3.20	2.71	-4.04	0	0	0	1
ZIC13.p2	0.20	2.99	-0.46	-7.24	0	0	0	1
AIF6.p2	0.24	2.97	-0.51	-7.25	0	0	0	1
ILX2.p2	0.57	2.86	1.37	-6.76	0	0	0	1
IFAP2B.p2	1.75	2.72	4.26	-6.61	0	0	0	1
SPI1.p2	1.69	2.70	4.14	-6.19	0	0	0	1
MEF2{A,B,C,D}.p2	0.97	2.67	2.35	-6.51	0	0	0	1
	1.07	2.62	2.57	-5.80	0	0	0	1
	1.38	2.56	3.37	-6.25	0	0	0	1
LEF1_ICF7_ICF7L1,2.p2	0.17	2.55	0.37	-6.11	0	0	0	1
	0.74	2.55	1.79	-0.17	0	0	0	1
	2.00	2.39	5.82 E 10	-5.42	1	0	0	1
GIFZI.PZ	2.09	2.38	5.10	-5.80	1	0	0	1
	0.30	2.38	0.79	-5.12	0	0	0	1
ZNF304.02 TGIE1 n2	0.04	2.54	-1.33	-5.27	0	0	0	1
	0.57	2.54	1.54 _2 42	-5.08	0	0	0	1
r_{ADI}	0.99	2.23	-2.43	-5.43 E 20	0	0	0	1
	1 02	2.1/ 2.12	0.50 2 ⊑1	-5.28	0	0	0	1
MYOD1.p2	1.49	2.05	3.65	-4.99	0	0	0	1

Suppl. Fig. S2. Motif activities clustered by Z score in direct/indirect activation/repression. Related to Figure 2.

(A) Motifs showing different types of regulation (1=yes, 0=not).

Suppl. Fig. S3. siRNA knockdown efficiency for the putative PGC-1 α partner TFs. Related to Figure 4

(A-F) siRNA knockdown efficiency for ATF3 (A), GTF2I (B), JUN (C), NFE2L2 (D), NFYC (E) and ZFP143 (F) knockdown. Bars represent fold change over GFP/siCtrl levels. Error bars represent SEM. *p < 0.05; **p < 0.01; ***p < 0.001.

Suppl. Table 1. Real-time primer sequences. Semiquantitative real-time PCR primers used for validation experiments.

Real-time PCR primers used for testing the efficiency of the ChIP				
Gene promoter or intron	Forward primer	Reverse primer		
<i>Tbp</i> intron	TGTGAGCTCCTTGGCTTTTT	ATAGTTGCCCAGCAATCAGG		
promoter of Aco2	CACCGATAGTTGCTTTCCAGATAC	AACCATCTGACAGGCATAGTCAAT		
promoter of Cycs	AAGGGCGCCCTCTGGGCACATC	ATCCCCGTCGCGCGCTCACCG		
promoter of Acadm	CCTTGCCCGAGCCTAAAC	GTCTGGCTGCGCCCTCT		
promoter of Atp5b	CTGGAAACTTCCACCCTCACTA	GAGAGGTTTTTGGCGGAACTA		
promoter of <i>Idh3a</i>	GGACGGCGTCAAGGTCAAG	GCCTAGGTGGCCTGTCTGTG		
$PGC-1\alpha$ exon 2	TGAGGACCAGCCTCTTTGCCC A	CGCTACACCACTTCAATCCACCC		

Gene or	Forward + reverse primer		FOS binding site	Peak position
gene				
promoter				
<i>ТGF</i> в1 ^{*1}	F:	TTTGAGACTTTTCCGCTGCT	chr7:26472349-26472356	(see reference 1)
	R:	GGTCCTGCCTCCTTGCGA		
Nr0b2	F:	GGTACAGCCTGGGTTAATGAC	chr4:133109008-133109015	chr4:133108962-133109162
promoter	R:	ACTGCCTGGATGCCCTTTAT		
Gprc5a	F:	TGATGTCATGAGCCTCACCC	chr6:135011471-135011478	chr6: 135011398-135011598
promoter	R:	TAGCTGTCATTGAGGGCACT		
Dbt	F:	AAGGGGCAAAGCAATTCAGG	chr3: 116215241-116215248	chr3: 116215152-116215352
promoter	R:	CTTAGAAAATGTGGTCAGATGCA	chr3: 116215242-116215249	chr3: 116215152-116215352

Real-time PCR primers used for testing the knockdown efficiency by siRNAs				
Gene	Forward primer	Reverse primer		
Rn18s	AGTCCCTGCCCTTTGTACACA	CGATCCGAGGGCCTCACTA		
Fos	TACTACCATTCCCCAGCCGA	GCTGTCACCGTGGGGATAAA		
Jun	TGGGCACATCACCACTACAC	TCTGGCTATGCAGTTCAGCC		
Atf3	TCTGCGCTGGAGTCAGTTAC	CCGCCTCCTTTTCCTCTCAT		
Gtf2i	TTCGAAGGCTTTGCAAGGAAG	TTCGGGGTCCTCACTGGTTT		
Nfe2l2	AGTGGATCCGCCAGCTACTC	ATGGGAATGTCTCTGCCAAA		
Nfyc	CCACCAGTTCTACGACCACC	GGCCTGTACAATCTGCACCT		
Zfp143	GTGGTCGGTCCTTTACCACA	AAATGCCCTCCCACATCCAG		

Real-time primers used for target gene validation				
Gene	Forward primer	Reverse primer		
Aim1l	CCTGTTGCGTCCATAAGGGT	GCTCTGAGTTCCACATCCCC		
Atp1b1	GCTACGAGGCCTACGTGCTA	TGCCACAGTCCTCGAAAATC		
Atp5g1	CAGAGGCCCCATCTAAGCAG	TGTCCCGGGAAATGACACTG		
Cdk15	ATGCAGTTGCTACCACCGTT	CCGTGGAACTGGATGCTTCT		
Cdr2l	GGAACAGGAAAACGAACGGC	ACCACCGTGTACTCACGTTC		
Crb3	CCGGACCCTTTCACAAATAGC	CTCTGTCTGCCGCTTTTCC		

Dot1l	TGACCTCAGATGAGGAGCCA	TGTCTTCGGGGGAGATTTGC
Eef1a2	CAAGATGGACTCCACGGAAC	CTGGGTTGTAGCCGATCTTC
Eif2b4	ACGGCAAGACCCAATCAGAG	AAGTTCTGCCTTACTCCGGC
Fa2h	GTGGACTGGCAGAAACCTCT	TCTGAGTGGAAGAGGCGAAT
Fabp3	CATGTGCAGAAGTGGAACGG	CTCACCACACTGCCATGAGT
Fam131c	CTGGCTACGTCATCCCTTGT	TCCAGCCTTTCCACTCGAT
Gabpa	GTCGAGGTGGTCATCGATCC	GTAATGTGCTTGGTGCCGTC
Gdf15	CACGCATGCGCAGATCAAAG	TGTGCATAAGAACCACCGGG
Gtpbp2	TGGAAACCTCAAAGCTCGGG	GTACGGAGGGTTGTTGGCTT
ll1a	TGCAAGCTATGGCTCACTTC	GATACTGTCACCCGGCTCTC
Inpp5j	ACAAGGGCGGAGTAAGTGTG	TGAAAGTTATCCTTGCGCTGT
Jam2	GTATTACTGCGAAGCCCGGA	CAACCGTTGCTATGATGCCG
Kdm5a	GTCTTCCGTGTGTCATCAGC	TTAGTCGGGGCAATTCAGGT
Ldhb	GACTCCGAAAATTGTGGCCG	TTCTCTGCACCAGGTTGAGC
Lpin1	CGGCCCTCAACACCAAAAAG	AATTCACCCCACAGCCAGAG
Lrrc2	GTGGAAGGAGCTGCCTGATT	AACAGCTCGATGTACGTGGG
Met	GCTGAGAAACTCTTCCGGCT	AGCCGGCCCATGAATAAGTC
Ndufa9	TTCTGTGGCTCATCCCATCG	TGTAGCCCCAAACACAGTGG
Nmnat1	GGTCGGTGATGCGTACAAGA	CCACGTATCCACTTCCACCC
Nppb	GGCCTCACAAAAGAACACCC	TGCCCAAAGCAGCTTGAGAT
Nr0b2	CCTCTTCAACCCAGATGTGC	GGGCTCCAAGACTTCACACA
Osbpl1a	TCCCCCAATCAGTGCATTCC	GCTTCTACACTCTTGCCCCA
Qrsl1	GTTGGATCAGGGTGCCCTAC	GGGGTTTCTAACTGGCCCAA
Rasl10b	AGACCTGGAAGTGCGGCTAC	GGCAGCGTGCACGTGTTT
Rrm2	TTGCAGCGAGTGATGGCATA	CCATGGCAATTTGGAAGCCA
Samm50	TTTTGATGGACTTGGGCGGA	TGAGATCGCCGCATTACCTC
Sbno2	AGACATCCCAGACACACCTG	TGAGAAGTGGAGTGCTGGAG
Slc25a4	GGTACTTCCCCACTCAAGCC	AGCAAAGTAGCGCCAGAACT
Slc25a35	TAGTCGTGGCAATGACACCC	TCCAAGATCCCCCGGTACAT
Slc6a19	TCCACTCAACCAGAACCAGAC	TGAGTCACTGATGGAAGTGGAG
Srxn1	CCAGGGTGGCGACTACTACT	AGGTCTGAAAGGGTGGACCTC
Stard7	CTCTACGGCCGCCTGTATTC	CGCCATCAAAACAGAGGCAT
Stk19	GTCCTCACTGTCCGAGATGC	CACCATGCTCAGTACAGCCT
Syt7	ACTGGGCAAACGCTACAAGA	TGCAGGCAACTTGATGGCTT
Tbrg4	AACGACAGCCGTACATTGGT	AGCTCCAGGCACTTGTCTTC
Tfam	GAGCGTGCTAAAAGCACTGG	GCTACCCATGCTGGAAAAACA
Tinagl1	TTCTTGTACCAGCGTGGCAT	CCCCACCCAGTGATCTTGAC
Tomm5	CGGAGGAGATGAAGCGGAAG	TATGGAGTGACTCGCAGCAG
Trak2	GCTGAAGAGACGTTCCGCTA	ATCTCGATCCCTCTCTGCCA
Trmt61a	GCTCCTTCTCCGTGCATT	TGCGCACATTGTAGACCTGT
Trp53inp2	TACCCCTCCCGCCTGTTTTA	CTGCCGGTGACATAAACGGA
Ttc7b	TGCTCCCCACGATCAAGAAC	ATCTCCCGACTCCTCTCGTC
Tusc2	GCAGTGCCTCCCTTCGTATT	CTGCCCATTCTTGGTGACGA
Twf2	TGCTACCTCCTCTTCCGACT	ATAGCATCTTCAGCCGCACC
VEGFα	CACGACAGAAGGAGAGCAGA	GGGCTTCATCGTTACAGCAG
Wnt7b	TTTCTCTGCTTTGGCGTCCT	GGCCAGGAATCTTGTTGCAG

SUPPLEMENTAL REFERENCES

¹Liu, G., Ding, W., Liu, X., and Mulder, K.M. (2006). c-Fos is required for TGFbeta1 production and the associated paracrine migratory effects of human colon carcinoma cells. Mol Carcinog *45*, 582-593