Supplemental Table 1. PCR and qRT-PCR primers used in this study

Primer designation	Oligonucleotide sequence (5'-3')	
PCR primers		
5' SphI hogA	GCATGCGAAGACTGATTCAGATAATTAGTTC	
5' SalI hogA	GTCGACCTGATGATCTCCACTGTCTGAAC	
3' BamHI hogA	GGATCCTATTCCCCGACGACAAGAAGATTTGC	
3' EcoRI hogA	GAATTCCTCCGTTGAAAGGCAGTCAGG	
<i>hogA</i> Up	CGAGACCTTGTCACATTGGCGTCAACTC	
hogA Down	GATGCCTCCTGTCAAGATTGCAATGAAC	
qRT-PCR primers		
<i>atfA</i> -F	CACAGAACACGAACATGGATATG	
atfA-R	CTGATTGGAAACAGCGAATTG	
atfB-F	CAGCGAAGTGCTCAACCTCAAGAACG	
<i>atfB</i> -R	GATCGCATGGGAGAAACCAGATCG	
<i>catB</i> -F	GGTGTTCAAATCATGGATGAGGAAG	
<i>catB</i> -R	CTGCTCAGTCTCGGCAAAGTAGTTG	
<i>trxB</i> -F	GATGGTATCGGTGGTACAGAGCTG	
<i>trxB</i> -R	CTCATTGTCAGGACCATCGTTCCA	
<i>msnA</i> -F	ACACAAGGTTCGTCGGTGACTACTATAG	
<i>msnA</i> -R	CGTTGATGAAGACAGGAGTCATGG	
<i>srrA-</i> F	CCACAGCCTTAGTATATCCGAAGATGAGC	
srrA-R	GAGTCCGTCGAAAGCAGTATCAATGA	
<i>trxA</i> -F	CAGGAGAAGGTTATCGAATCCAAG	
<i>trxA</i> -R	GTCGACATCGATCTTGTAGAATTTGG	
<i>ypdA-</i> F	CTACGCTTGACGACATGAAAGAACAC	
<i>ypdA-</i> R	GCTTTTTCCATCTTCTTAAAGGTGC	
18S RNA-F	CCACCCGTGTTTACTGTACCTTAG	
18S RNA-R	GGAACCAAGAGATCCATTGTTGAAAG	

DNA Fragment	Sequence ^a	PCR product (bp)
catl	F 5' GCGCATCGTGTTGCTAACT 3'	518
	R 5' ATTCGCCAAGAATGGATCTG 3'	
trxB	F 5' TACCTGGTCGGAGAGTGAAAG 3'	521
	R 5' AACGACTTTGCTGTGCACC 3'	
cat1-1	F 5' ATCCCAAGACAGGAAGGTAC 3'	259
	R 5' ATTCGCCAAGAATGGATCTG 3'	
cat1-2	F 5' GCGCATCGTGTTGCTAACT 3'	259
	R 5' TGTCTTGGGATGCGAATG 3	
trxB-1	F 5' ATAATTAAAGCCGCCTATTTCC 3'	263
	R 5' AACGACTTTGCTGTGCACC 3'	
trxB-2	F 5' TACCTGGTCGGAGAGTGAAAG 3'	258
	R 5' GGCTTTAATTATGGCGTTCAG 3'	

Supplemental Table 2. Primer sequences used to generate double-stranded DNA fragment probes for EMSA

^a F represents forward primers and R represents reverse primers.

Supplemental Figure 1. Osmotic stress does not affect AF production in *A. flavus*. Thin layer chromatography (TLC) analysis of *A. flavus* 70S, psl82, and ΔveA top-agar inoculated cultures after 5 days of incubation. The medium was supplemented with 0.6M NaCl, 0.7M KCl, or 1.0M sorbitol to generate osmotic stress. The arrows indicate two unknown *veA*-dependent compounds. Standard is shown on each side of the TLC silica plate. The experiment was carried out in duplicates.

Supplemental Figure 2. *veA* is necessary for proper response to oxidative stress. Photographs of point-inoculated *A. flavus* 70S, psl82, and ΔveA cultures on YGT supplemented with increasing amounts of menadione. 1= 70S, 2= psl82, and 3= ΔveA . Cultures were incubated at 30 °C for 5 days.

S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus	1 MTTNEEPTR-TOIPGTVFEIGNRYNDMPVGMGAFGLVCSATDTIGOPVAIKKIMKPFS 1 MA EFVR-AOIFGTTFEIGSRYTDLOPVGMGAFGLVCSARDOLTGOPVAVKKIMKPFS 1 MA EFVR-AOIFGTTFEIGSRYTDLOPVGMGAFGLVCSARDOLTGOPVAVKKIMKFFS 1 MA EFVR-AOIFGTTFEIGSRYTDLOPVGMGAFGLVCSARDOLTGOPVAVKKIMKFFS 1 MA EFVR-AOIFGTTFEIGSRYTDLOPVGMGAFGLVCSARDOLTGOPVAVKKIMKFFS
A.niger A.nidulans A.oryzae A.flavus	1 MAEPTR-SOTLGTTPETINRYSDLOPVGLGAPGLVCSAYDMITROPVAIKKMMKPPS 1 MAEPTR-SOTLGTTPETISRYANGOPVGLGTAGVVCSAYDLISSOVVAIKKMMKPPH 1 MAEPTR-SEVLGSVFDTINRYVNVRPVGLGAPSLVCSAYDLISGOVAIKKULNPPA 1 MAEPNR-SEVLGSVFDTINRYVNVRPVGLGAPSLVCSAYDLVRGQAVAIKKULNPPA
S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	60 TAVLAKRTYREIKLLKHLRHENLICIQDIFISPLEDIYFYTELQGTDHRLLQTRELEKQ 57 TPVLSKRTYREIKLLKHLRHENTISLSDIFISPLEDIYFYTELLGTDHRLLTSRPLEKQ 57 TPVLSKRTYREIKLLKHLRHENTISLSDIFISPLEDIYFYTELLGTDHRLLTSRPLEKQ 57 TPVLSKRTYREIKLLKHLRHENTISLSDIFISPLEDIYFYTELLGTDHRLLTSRPLEKQ 59 TATULAKRTYREIKLLKHLRHENTISLSDIFISPLEDIYFYTELLGTDHRLLTSRPLEKQ 57 NATLAKRTYREIKLLKHLRHENTISLSDIFISPLEDIYFYTELLGTDHRLLTSRPLEKQ 57 STSVAKRTYREIKLLKHLRHENTIGLSDIFISPLEDIYFYTELLGTDLHRLLTSRPLEKQ 57 TANAKQTYREIKLLKHLRHENTIGLSDIFISPLEDIYLTELLGTDLHRLLTSRPLEKQ 57 TANAKQTYREIKLLKQLRHENTIGLCDVFISPRTDYYLVTELLGTDLHRLLCGPLESK 57 TANAKQTYREIKLLKQLRHENLIGLCDVFISPRTDYYLVTELLSTDLARLLEAGPLEPQ
S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	120 FUQYFLYQIL RGLKYVHSAGVIHRDLKPSNILINENCDLKIC 117 FIQYFLYQIL RGLKYVHSAGVVHRDLKPSNILINENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILINENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILINENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILINENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILINENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILVIDENCDLKIC 117 FQYFTYQIL RGLKYHSAGVVHRDLKPSNILVIDENCDLKIC 117 FQUFTYQIL RGLKYHSAGVVHRDLKPSNILVIDENCDLKIC 117 FQUFTYQIL RGLKYHSAGVVHRDLKPSNILVIDENCDLKIC 117 FQUFTYQIL RGLKYHSAGVVHRDLKPSNLVIDENCDLKIC 117 FQUFTYQIL RGLKYHSAGVVHRDLKPSNLVIDENCDLKIC
S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	162 DFGLARIQDPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMIEGKPLFPGKD 159 DFGLARIQDPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLPFGKD 159 DFGLARIQDPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLFPGKD 159 DFGLARIQDPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLFPGKD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLFPGKD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLFPGKD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLFPGKD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQRYGSKVDEWDIWSGCILAEMLIGRPLFPGCD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQRYGVEVDIWSAGCVIAEMLFGKPLFPGCD 159 DFGLARIQEPQMTGYVSTRYYRAPEIMLTWQRYGVEVDIWSAGCVIAEMFNGKPLFPGCD 177 DFGLSRPQDHRMTGYVSTRYYRAPEWMLTWQRYGVEVDIWSAGCVIAEMFNGKPLFPGQD
S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	222 HVHQFSIITDLLGSPFKDVINTICSENTLKFVTSLPHRDPIFFSERFKTVEPDAVD 219 HVNQFSIITELGTPPDDVIQTICSENTLRFVKSLPKRERQPLANKFKNADPDAVD 219 HVNQFSIITELGTPPDDVIQTICSENTLRFVKSLPKRERQPLANKFKNADPEAVD 219 HVNQFSIITELGTPPDDVIQTICSENTLRFVKSLPKRERQPLANKFKNADPEAVD 219 HVNQFSIITELGTPPDDVIRGICSENTLRFVKSLPKRERQPLANKFKNADPEAVD 219 HTNQFFITDLGNPPDEVIRGICSENTLRFVKSLPKRERQPLANKFKNADPEAID 219 HTNQFFITDLGNPPDEVIRGICSENTLRFVKSLPKRERQPAFWATLFPDSDENAID 219 HTNQFFITDLGNPPDEVIRGICSENTLRFVKSLPKRERQPAFWATLFDSDRNLALN 219 HTNQFFITDLGNPPDEVIRGICTTTTTVEIIRSLERREPFPLQSVIQNLDDSARS 237 PINQFYTILDVGNPSDKFISRICTTTVEIIRSLERREPFPLQSVIQNLDDSARS
S.cerevisiae A.clavatus A.fischerianus A.funigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	278 LLERMLVPDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVDTWRVMMY 275 LLERMLVFDPKKRIRATEALAHEYLSPYHDPTDEPEAEKFDWSFNDADLPVDTWKIMMY 275 LLERMLVFDPKKRIRAGEALAHEYLSPYHDPTDEPEAEKFDWSFNDADLPVDTWKIMMY 275 LLERMLVFDFKKRIRAGEALAHEYLSPYHDPTDEPEAEKFDWSFNDADLPVDTWKIMMY 229 LLERMLVFDSKKRIRAGEALAHEYLSPYHDPTDEPEAEKFDWSFNDADLPVDTWKIMMY 275 LLGEMLFDFDKRISAAKALEHFYLSVYHDFTDEPEAEKFDWSFNDADLPVDTWKIMMY 275 LLGEMLFDFDKRISAAKALEHFYLSVYHDFTDEPEAEKFDWSFNDADLPVDTWKIMM 275 LLGEMLFDFDKRISAAEKALEHFYLSVYHDFTDEPIAERFDWSFNDADLPVDTWKIMM 275 LLERMLVFDPQRRISAECHAHEWKAPYHDFTDEPIAERFDWMFNGGEFDKEMIKEMI- 275 LLERMLFDPQERISAEEAI0HFYMKWYHDFTDEPIAERFDWMFNGGEFDKEMIKEMI- 293 LLERMLTDPQERISAEEAI0HFYMKWYHDFTDEPIAERFDWMFNGGEFDKEMIKEMI-
S.cerevisiae A.clavatus A.fischerianus A.funigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	338
S.cerevisiae A.clavatus A.fischerianus A.fumigatus A.terreus A.niger A.nidulans A.oryzae A.flavus	388 HSHNGAGTTGNDHSDIAGGNKVSDHVAANDTITDYGNQAIQYANEFQQ

Supplemental Figure 3. Comparison of putative amino acid sequences of A. flavus HogA with those of homologs from other fungal species. Comparisons were done using sequences from Broad Institute (http://www.broadinstitute.org/anno tation/genome/aspergillus group/Mu ItiHome.html) and EMBOSS NEEDLE-Pairwise Sequence Alignment tool from FMBI-FBI (http://www.ebi.ac.uk/Tools/psa/emb oss needle/).

Supplemental Figure 4. Analysis of A. *flavus* deletion mutants by PCR and qRT-PCR.(A) Schematic depicting recombinational inactivation of the A. *flavus* 70S *hogA* gene with the pHogA-pyrG disruption vector that utilizes a *pyrG* selectable marker. (B) Successful inactivation of *hogA* was observed in three transformants as indicated by the presence of a 4.7 kb PCR product following amplification of genomic DNA with primers *hogA* Up (P1) and *hogA* Down (P2) (Suppl. Table 1). Amplification of the Af70 pyrG-1control DNA including a *hogA* locus produced a PCR product with the expected size of 3.3 kb. (C) qRT-PCR analysis of *hogA* expression in putative $\Delta hogA$ mutants and pyrG-1 isogenic control.

Supplemental Figure 5. *hogA* is dispensable for *A. flavus* response to osmotic stress.

Aspergillus.flavus wild type (1), and two $\Delta hogA$ mutants (2) and (3) were point-inoculated on PDA supplemented with 0.6M NaCl, 0.7M KCl, or 1.0M sorbitolto induce osmotic stress. Cultures were incubated for 5 days at 30°C.

Supplemental Figure 6. *hogA* is not critical for *A. flavus* response to oxidative stress. *Aspergillus flavus* wild type (1), and two $\Delta hogA$ mutants (2) and (3) were pointinoculated on YGT supplemented with increasing concentrations of menadione. Cultures were incubated for 3 days at 30 °C.

Supplemental Figure 7. veA is required for wild-type expression levels of A. *flavus atfB*. Relative expression levels of *atfB* in oxidative stress response 6 hr and 24 hr after addition of 15 mM hydrogen peroxide. psl82 was used as wild-type control. The relative expression levels were calculated using the method described by Kenneth and Schmittgen (26), and all values were normalized to the expression of the A. *flavus* 18S rRNA gene and to the greatest expression considered as 100.