

Figure S1. Examples of LC-MS of some peptides used in this study.

Figure S2. A) 2D [¹H, ¹H] NOESY spectrum of Myxinidin acquired in 10 mM sodium phosphate buffer pH=7.4; **B**) One dimensional proton spectra of Myxinidin in phosphate buffer (red) and in presence of TFE (50/50 v/v) (black). The H_N and aromatic proton region is reported in panel B.

Figure S3. Comparison of 2D [¹H, ¹H] TOCSY (right side) and 2D [¹H, ¹H] NOESY (left side) of Myxinidin in phosphate buffer/TFE (50/50 v/v).

Figure S4. H α chemical shift deviations from random coil values (δ_{obs} - δ_{rc}) evaluated in a solution containing 50% TFE. Data are set equal to zero for the unassigned H α chemical shift of Gly1.

Table S1. Chemical shifts ppm of Myxinidin evaluated at 298 K in 10 mM sodium phosphate buffer pH=7.4/TFE (50/50 v/v).

Residue	H _N	Нα	Нβ	Нγ	Others
1Gly					
2Ile		4.07	1.84	$\begin{array}{c} H\gamma_{CH2} \\ 1.28\text{-}1.42 \\ H_{\gamma CH3} \\ 0.84 \end{array}$	Ηδ _{CH3} 0.92
3His	8.22	4.33	3.10-3.19		Ηδ2 6.99 Ηε1 7.78
4Asp	7.64	4.49	2.83-2.85		
5Ile	7.59	3.97	2.05	Ηγ _{CH2} 1.26-1.64 Ηγ _{CH3} 0.98	Ηδ _{CH3} 0.88
6Leu	7.86	4.18	1.56-1.81	1.82	0.88-0.92
7Lys	7.70	4.10	1.59-1.68	1.12-1.20	Ηδ 1.61 Ηε 2.93
8Tyr	7.80	4.64	3.01-3.27		Ηδ 7.25 Ηε 6.90
9Gly	8.09	3.97			
10Lys	7.78	4.75	1.80-1.93	1.51	Ηδ 1.75 Ηε 3.06
11Pro		4.51	2.32	2.06-2.10	Нб 3.74-3.84
12Ser	7.72	4.30	3.91		

Table S2. Statistics for Myxinidin NMR ensemble of structures.

NOE upper distance limits	142
Angle constraints	42
Residual target function, Å ²	0.35
Residual NOE violations	
Total Number	2
Number >0.2 Å	2
Maximum violation, Å	0.27
Residual angle violations	
Total Number	0
Atomic pairwise RMSD, Å	
Backbone atoms (a.a. 2-9)	0.24±0.06
Ramachandran statistics ^{&}	
Residues in core regions	92.2%
Residues in allowed regions	6.1%
Residues in generous regions	1.7%
Residues in disallowed regions	0.0%

[&]Procheck NMR analysis (residues 1-12) (*Laskowski RA et al., (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 8 (4): 477-486*).

Table 38. Myxinidin analogues MIC on different microbial strains								
MIC value (µM)								
Peptide	E. coli	P. aeruginosa	S. typhimurium	K. pneumonia	S. aureus			
Myxinidin	5	30	20	10	10			
G 1	>50	10	3	>50	10			
I 2	>50	>50	>50	>50	30			
Н 3	>50	15	10	30	20			
D 4	>50	>50	>50	30	5			
15	20	10	4	20	20			
L 6	>50	>50	>50	20	5			
K 7	15	15	15	20	10			
Y 8	20	>50	>50	20	10			
G 9	5	15	10	10	10			
K 10	15	>50	>50	10	20			
P 11	>50	30	10	30	10			
S 12	>50	>50	>50	30	>50			

Table 4S. Myxinidin analogues MIC on different microbial strains						
MIC value (µM)						
Peptide	E. coli	P. aeruginosa	S. typhimurium	K. pneumonia	S. aureus	
Myxinidin *	5	30	20	10	10	
WMR-NH ₂ *	2	2	1.2	3	2.2	
WMR-COOH	10	4	10	20	4	
MH3R- NH ₂ *	5	20	5	5	10	
WMH3R-NH ₂	5	30	25	15	5	
WMH3R-COOH	15	5	8	30	15	
MD4R- NH ₂ *	2.2	10	3	3	10	

Table 28 Munimidin analogues MIC on different microbial strains

WMD4R-NH ₂	8	35	12	6	4
WMD4R-COOH	8	12	10	12	8

* The data relative to these peptides have been obtained in a previous work (16).

Table 5S. Lipid composition of different bacteria						
lipid	E. coli	P. aeruginosa	S. typhimurium	K. pneumonia	S. aureus	
PE	85	60	76	82	0	
PG	10	21	17	5	57	
CL	5	11	7	6	19	