

FIG S1. Unbiased difference electron density for streptogramin antibiotics with only one compound at a time bound to the ribosome. Unbiased F_{obs} - F_{calc} difference electron density contoured at 3.0 standard deviations from the mean is shown for A) linopristin, B) quinupristin, C) dalfopristin under hydrolyzing conditions, D) flopristin, and E) dalfopristin.

FIG S2. Binding of linopristin to the ribosome either alone or in the presence of flopristin. Structures of the 70S ribosome bound to either linopristin alone (yellow) or to the streptogramin combination NXL 103 (cyan) are shown. The differences between both structures are indicated by arrows.

FIG S3. A pre-formed binding pocket for streptogramin B due to streptogramin A binding. A2062 is shown for the vacant ribosome (green), when ribosomes are bound to streptogramin A only, and when the combination of streptogramin A + B is bound. A) dalfopristin only (purple), dalfopristin + quinupristin (salmon). B) flopristin only (orange), flopristin + linopristin (cyan).

FIG S4. Hydrolysis of dalfopristin as a function of pH. A) Natural log of the area responses plotted against time for dalfopristin in pH 6.0 CAMH II media and pH 7.4 phosphate buffer. B) Disappearance of dalfopristin and the formation of virginiamycin M, the normalized area responses of dalfopristin and virginiamycin M are plotted against time for pH 7.4 and pH 6.0. C) First-order derived half-lifes ($t_{1/2}$) based on the data in (A).

А

Bacillus subtilis Bacillus_anthracis Listeria_monocytogenes Staphylococcus_aureus Streptococcus_pneumoniae Streptococcus_pyogenes Enterococcus_faecalis Enterococcus_faecium Lactobacillus_plantarum Clostridium_difficile Propionibacterium_avidum Escherichia_coli Klebsiella_pneumoniae Vibrio cholerae Haemophilus_influenzae Moraxella_catarrhalis Pseudomonas_aeruginosa Legionella_pneumophilia

Bacillus_subtilis Bacillus anthracis

744	753	1782	2015	2055	2067 2070	2439 2043	2052
ACGU	JGAAAAGU	AGCA	. AA	ACGGAAA	GACCCCGUGGAG	UACCCCGGGG	AUAACAG
ACGUU	JGAAAAGU ······	AGCA	AA	ACGGAAA	GACCCCGUGGAG ····	UACCCCGGGG	AUAACAG
ACGUU	JGAAAAGU ······	AGCA	AA	ACGGAAA	GACCCCGUGGAG ····	UACCCCGGGG	AUAACAG ······
ACGUU	JGAAAAGU ······	AUCA	- AA	ACGGAAA	GACCCCGUGGAG …	UACCCC <mark>GG</mark> GG	AUAACAG
ACGUU	JGAAAA <mark>GU</mark> ······	AUCA	AA	ACGGAAA	GACCCCAUGGAG …	UACCCU <mark>GG</mark> GG	AUAACAG
ACGUU	JGAAAA <mark>GU</mark> ······	AUCA	- AA	ACGGAAA	GACCCCAUGGAG …	UACCCU <mark>GG</mark> GG	GAUAACAG
ACGUU	JGAAAA <mark>GU</mark> ······	AUCA	- AA	ACGGAAA	GACCCCAUGGAG …	UACCCU <mark>GG</mark> GG	GAUAACAG
ACGUU	JGAAAA <mark>GU</mark> ······	AUCA	AA	ACGGAAA	GACCCCAUGGAG …	UACCCU <mark>GG</mark> GG	GAUAACAG
AAGUU	JGAAAAUU ······	AUCA	AA	ACGGAAA	GACCCCAUGGAG …	UACCCUGGGG	GAUAACAG
GCGUU	JGAAAAGC ······	ACCA	- AA	ACGGAAA	GACCCCAUGGAG …	UACCCU <mark>GG</mark> GG	GAUAACAG ······
CAGUU	JGAAAAUG ······	· ACCA ·····	•• AA •••••	ACGGAAA	GACCCCG-GGAC …	····· UACCCCGGGGG	GAUAACAG ······
AUGUU	JGAAAAAU ······	· AUUA ·····	AA	- ACGGAAA	GACCCCGUGAAC …	····· UACUCCGGGG	GAUAACAG ······
AUGUU	JGAAAAAU	AUUA	AA	ACGGAAA	GACCCCGUGAAC …	····· UACUCCGGGG	GAUAACAG
AUGUU	JGAAAAAU	· AUUA ·····	AA	ACGGAAA	GACCCCGUGAAC …	UACUCCGGGG	GAUAACAG
······ AUGUU	JGAAAAAU	· AUUA ·····	•• AA ••••••	ACGGAAA	GACCCCGUGAAC …	····· UACUCCGGGG	GAUAACAG
UCGUU	JGAAAAGC ······	· AUUA ·····	•• AA ••••••	- ACGGAAA	GACCCCGUGAAC …	····· UACUCUGGGG	GAUAACAG
CCGUU	JGAAAAGG ······	· AUUA ·····	•• AA ••••••	ACGGAAA	GACCCCGUGAAC …	····· UACUCCGGGG	GAUAACAG
AUGUU	JGAAAAAU ······	AUUA	·· AA ·····	ACGGAAA	GACCCCGUGAAC ···	UACUCCGGGG	AUAACAG
***	****	* *	**	******	***** * *	*** * ***	******
2500	2500				2506 2601	2610	
2500 I	2508	2553 J	1 1	1 2580 Z		1	gram stain
CUCC	GAUGUCGG	• UGU •••••	UACGCG A	AGCUGGGUI	JCA ······ ACAGUUCO	GUCCCU	+

Bacillus_subtilis	CUCGAUGUCGG	UGU	UACGCGAGCU	JGGGUUCA ····	ACAGUUCG	GUCCCU	+
Bacillus_anthracis	······CCUCGAUGUCGG		UACGCGAGCU	JGGGUU <mark>C</mark> A·····	A <mark>CA</mark> GUUCG	GUCCCU	+
Listeria_monocytogenes	CCUCGAUGUCGG	U <mark>G</mark> U	CACGCGAGCU	JGGGUU <mark>C</mark> A ····	ACAGUUCG	GUCCCU	+
Staphylococcus_aureus		U <mark>G</mark> U	UACGCGAGCU	JGGGUU <mark>C</mark> A·····	A <mark>CA</mark> GUUCG	GUCCCU	+
Streptococcus_pneumoniae	CCUCGAUGUCGG	U <mark>G</mark> U	CACGCGAGC	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCC <mark>U</mark>	+
Streptococcus_pyogenes		U <mark>G</mark> U	CACGCGAGCU	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCC <mark>U</mark>	+
Enterococcus_faecalis	CCUCGAUGUCGG	U <mark>G</mark> U	CACGCGAGCU	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCCU	+
Enterococcus_faecium		U <mark>G</mark> U	CACGCGAGC	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCCU	+
Lactobacillus_plantarum		U <mark>G</mark> U	UACGCGAGCU	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCCU	+
Clostridium_difficile		U <mark>G</mark> U	UACGCGAGCU	JGGGUU <mark>C</mark> A·····	ACAGUUCG	GUCCCU	···· +
Propionibacterium_avidum			CACGCGAGCU	JGGGUU <mark>C</mark> A·····	···· ACAGUUCG	GUCCCU	+
Escherichia_coli	CUCGAUGUCGG	U <mark>G</mark> U	UACGCGAGCU	JGGGUU <mark>U</mark> A ····	ACAGUUCG	GUCCCU	-
Klebsiella_pneumoniae	CCUCGAUGUCGG		UACGCGAGCU	JGGGUU <mark>U</mark> A ·····	ACAGUUCG	GUCCCU	
Vibrio_cholerae	CCUCGAUGUCGG		UACGCGAGCU	JGGGUU <mark>U</mark> A·····	ACAGUUCG	GUCCCU	
Haemophilus_influenzae	CCUCGAUGUCGG	U <mark>G</mark> U	UACGCGAGCU	JGGGUU <mark>U</mark> A ·····	···· A <mark>CA</mark> GUUCG	GUCCCU	
Moraxella_catarrhalis			UACGCGAGCU	JGGGUU <mark>U</mark> A…	ACAGUUCG	GUCCCU	
Pseudomonas_aeruginosa	CCUCGAUGUCGG		UACGCGAGCU	JGGGUU <mark>U</mark> A…	···· ACAGUUCG	GUCCCU	
Legionella_pneumophilia			UACGCGAGCU	JGGGUU <mark>U</mark> A ·····	ACAGUUCG	GUCCCU	
	*****	***	*******	***** *	*******	******	

FIG S5. Sequence alignment of 23S rRNA of various Gram-positive and Gram-negative pathogens. A) Residues within 10Å of either streptogramin A or B component are shaded in red. Positions 1782-2586 (shaded in blue) form a base pair that lines the binding site of streptogramin B. Watson-Crick base pairs that are not conserved are indicated by red lines. The red asterisk indicates position 1781. B) Structure of Synercid (green sticks) with all residues shown that are within 10 Å of either streptogramin component. U1782-U2586 base pair is indicated by magenta sticks. Watson-Crick base pairs are shown in cyan sticks. Nucleotide 1781 is shown in yellow sticks.

FIG S6. U-U base pair in the streptogramin B binding site. Structure of Synercid (A) and NXL 103 (B) with the U1782-U2586 base pair lining the binding site of the streptogramin B binding site.

FIG S7. Isothermal titration calorimetry of ribosomes with streptogramins. A) Titration of the 70S ribosome with quinupristin. B) Titration of the 70S ribosome pre-bound to dalfopristin with quinupristin. C) Titration of the 70S ribosome with linopristin. D) Titration of the 70S ribosome pre-bound to flopristin with linopristin.

FIG S8. Chemical properties of U-U and C-C base pairs. The base pairing geometry and hydrogen bonding pattern is retained between a U-U (A) and a C-C (B) base pair however, the orientation of dipole moment vectors and their magnitude changes between a uracil (A) and a cytosine (B). Dipole moment vectors are indicated by an arrow and the magnitude of the dipole moment vector is shown in Debyes in parentheses.³⁴

Antibiotic	NXL 103	Synercid	flopristin	lino- pristin	dalfo- pristin	quinu- pristin	dalfo- pristin hyd.	
	Crystallographic statistics							
Space group	P212121							
Unit cell dimensions (Å ³)	212.0 x 434.7 x 623.9	211.3 x 432.3 x 621.4	211.8 x 433.1 x 623.9	211.5 x 433.9 x 621.8	210.2 x 433.0 x 619.2	211.1 x 432.7 x 631.9	210.6 x 434.6 x 625.0	
Resolution (Å) ^a	70 - 3.00 (2.90 - 2.80)	70 - 3.00 (2.90 - 2.80)	70 - 3.05 (3.00 - 2.90)	70 - 3.15 (3.10 - 3.00)	70 - 3.05 (3.00 - 2.90)	70 - 3.05 (3.05 - 2.95)	70 - 3.10 (3.00 - 2.90)	
$R_{meas}(\%)^a$	15.5 (107.6)	15.9 (143.2)	15.7 (76.6)	16.0 (107.6)	14.7 (93.5)	14.3 (81.4)	19.7 (99.6)	
$I / \sigma (I)^a$	5.38 (0.56)	6.62 (0.56)	4.39 (0.72)	4.76 (0.68)	6.77 (0.63)	5.04 (0.75)	3.9 0.55)	
Completeness (%) ^a	89.2 (86.8)	94.1 (87.6)	87.4 (75.3)	90.0 (86.2)	94.3 (87.1)	93.3 (88.6)	90.1 (80.6)	
Measurement redundancy ^a	2.6 (2.0)	3.2 (2.5)	2.1 (2.0)	2.8 (2.2)	3.0 (2.13)	1.8 (1.5)	2.1 (1.9)	
CC(1/2) (%) ^a	99.2 (36.9)	99.4 (29.6)	98.9 (57.0)	99.5 (39.8)	99.3 (44.4)	99.1 (37.2)	98.4 (39.1)	
	Refinement statistics							
Resolution (Å)	70 – 2.8	70 – 2.8	70 – 2.9	70 – 3.0	70 – 2.9	70 – 2.95	70 – 2.9	
No. Reflections	1,244,949	1,296,566	1,093,642	1,017,015	1,169,356	1,118,451	1,126,727	
R/R_{free} (%)	21.5 / 26.0	22.5 / 27.1	23.5 / 27.9	22.5 / 27.4	22.0 / 26.4	24.9 / 28.2	22.3 / 26.5	
No. Atoms	288,396	288,423	288,258	288,320	288,277	288,328	288,258	
RMSD Bond Length (Å)	0.005	0.004	0.006	0.007	0.006	0.006	0.006	
RMSD Angles (°)	0.902	0.872	1.113	1.209	1.069	1.159	1.094	

^aValues in parentheses are given for highest resolution bin.

	U1782-U2586ª	C1782-C2586 ^b
dalfopristin	509 ± 36	486 ± 15
hydrolyzed dalfopristin	192 ± 19	158 ± 12
virginiamycin M	182 ± 13	169 ± 11
flopristin	130 ± 7	145 ± 9
linopristin	513 ± 43	269 ± 13
quinupristin	279 ± 31	192 ± 6

Table S2. IC50 values for individual streptogramin components determined by cell-free translation assays

^aWild type *E. coli* cell extract bearing a U1782-U2586 base pair

^bMutant *E. coli* cell extract bearing a C1782-C2586 base pair reflecting the streptogramin binding pocket in Gram-positive pathogens.

Mean IC50 values (nM) from a representative experiment performed in triplicate are shown with standard deviation.

		U1782-U2586 ^b		C1782-C2586°			
	single dose	+ 560 nM linopristin	+ 200 nM quinupristin	single dose	+ 280 nM linopristin	+ 200 nM quinupristin	
dalfopristin	509 ± 36	137 ± 27	187 ± 27	486 ± 15	303 ± 21	407 ± 24	
hydrolyzed dalfopristin	192 ± 19	122 ± 22	118 ± 27	158 ± 12	193 ± 26	259 ± 16	
virginiamycin M	182 ± 13	129 ± 14	110 ± 17	169 ± 11	193 ± 14	213 ± 11	
flopristin	130 ± 7	92 ± 17	94 ± 21	145 ± 9	159 ± 16	192 ± 16	

Table S3. IC50 values of streptogramin A components in the presence of either linopristin or quinupristin at their respective IC50 values^a (exact values are indicted)

^aMean IC50 values (nM) from a representative experiment performed in triplicate are shown with standard deviation.

^bwild type *E. coli* cell extract bearing a U1782-U2586 base pair

[°]mutant *E. coli* cell extract bearing a C1782-C2586 base pair reflecting the streptogramin binding pocket in Gram-positive pathogens.

	U1782-	U2586ª	C1782-C2586ª		
	linopristin ^e	quinupristin ^d	linopristin ^c	quinupristin ^d	
single dose	809 ± 47	304 ± 26	361 ± 17	211 ± 23	
+ 500 nM dalfopristin	178 ± 25	147 ± 18	177 ± 12	155 ± 11	
+ 150 nM hydrolyzed dalfopristin	504 ± 54	301 ± 35	228 ± 23	255 ± 17	
+ 150 nM virginiamycin M	707 ± 45	279 ± 32	349 ± 16	261 ± 13	
+ 110 nM flopristin	711 ± 36	314 ± 25	351 ± 16	268 ± 10	

Table S4. IC50 values of streptogramin B components in the presence of streptograminA components at their respective IC50 value (exact values are indicated)

^awild type *E. coli* cell extract bearing a U1782-U2586 base pair

^bmutant *E. coli* cell extract bearing a C1782-C2586 base pair reflecting the streptogramin binding pocket in Gram-positive pathogens.

Absolute IC50 values (nM) of either ^conly linopristin or ^donly quinupristin are different compared to Table S1 due to a different pipetting procedure (see Materials and Methods). Mean IC50 values (nM) from a representative experiment performed in triplicate are shown with standard deviation.

Injectant	Cell content	K _a [M ⁻¹]	$K_a error [M^{-1}]^a$	$K_a error$ [% of K_a] ^b	K _d [nM] ^c	$K_d error$ $[nM]^d$
	708	2.41E+07	1.19E+07	49	41.5	20.5
		4.23E+07	1.63E+07	39	23.6	9.1
oristii		1.52E+07	5.07E+06	33	65.8	21.9
Inuinp	70 + dalfopristin	8.75E+07	3.26E+07	37	11.4	4.3
		1.31E+08	1.18E+08	90	7.6	6.9
		6.25E+08	7.45E+08	119	1.6	1.9
	70S	2.78E+07	1.46E+07	53	36.0	19.0
		2.12E+07	1.26E+07	59	47.2	28.0
linopristin		2.77E+07	1.07E+07	39	36.1	13.9
	70S + flopristin	6.84E+07	1.12E+08	164	14.6	23.9
		5.90E+07	1.80E+07	31	16.9	5.2
		3.78E+08	2.66E+08	70	2.7	1.9

Table S5. K_a values measured by isothermal titration calorimetry (ITC)

^aError in K_a from ITC experiment.

^bThe error in K_a is given as the percentage of K_a .

 $^{c}K_{d}$ is the inverse of K_{a} .

^dThe error in K_d results from the percentage error in K_a applied to K_d . All experiments were carried out in triplicate.