Supporting Information 1

2

A genetically engineered Pseudomonas putida for 3

1,2,3-trichloropropane bioremediation 4

5

6	Ghufrana Samin ^{1,3} , Martina Pavlova ^{2, \$} , M. Irfan Arif ¹ , Christiaan P. Postema ¹ , Jiri Damborsky ² ,
7	Dick B. Janssen ^{1#}
8	¹ Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute,
9	University of Groningen.
10	² Loschmidt Laboratories and Research Centre for Toxic Compounds in the Environment,
11	Faculty of Science, Masaryk University, Brno, Czech Republic
12	³ Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad
13	Campus, Pakistan.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

^{\$} Current address: Favea, Bozeny Nemcové 580, 742 21 Koprivnice, Czech Republic
[#] For correspondence: E-mail: d.b.janssen@rug.nl; Tel: (+31) 50-3634008; Fax: (+31) 50-3634165; Address: Nijenborgh 4, 9747 AG Groningen, The Netherlands.

29 Figures

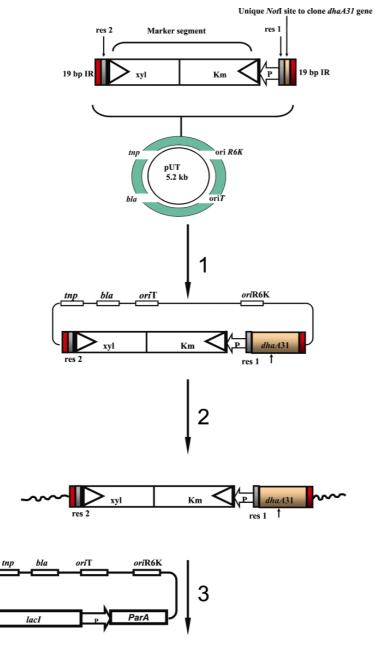
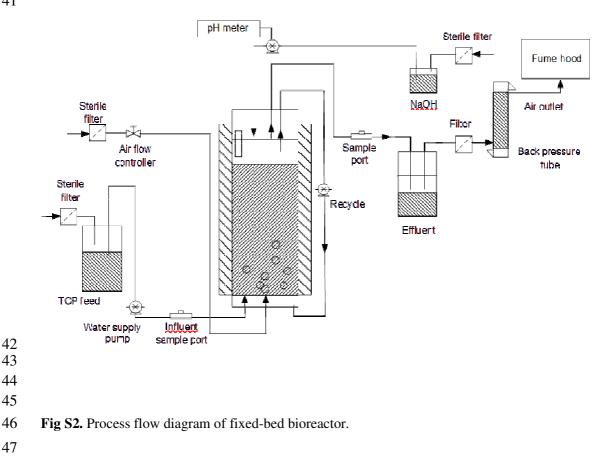
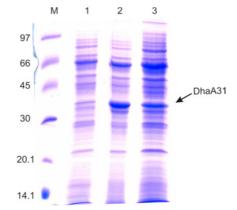
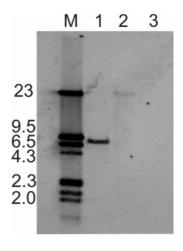




Fig S1. Integration of the *dhaA31* gene into the genome of strain MC4. Steps: 1) Construction of pUT31B by cloning the *dhaA31* gene with the *dhlA* promoter into the unique NotI site, which is present between the insertion sequences of the pUT delivery vector (1); 2) Introduction of pUT31B into strain MC4 by triparental mating (1-3). The exconjugants obtained were tested for kanamycin resistance, yellow coloration with catechol, haloalkane dehalogenase activity and growth on DCP as sole carbon source; 3) The resolvase gene *parA* on vector pJMSB8 was

- 37 introduced into MC4 derivatives by triparental mating to remove kanamycin resistance gene and
- 38 the *xylE* marker (4). The resulting colonies were confirmed to have lost the marker segment.
- 39
- 40
- 41



50

48

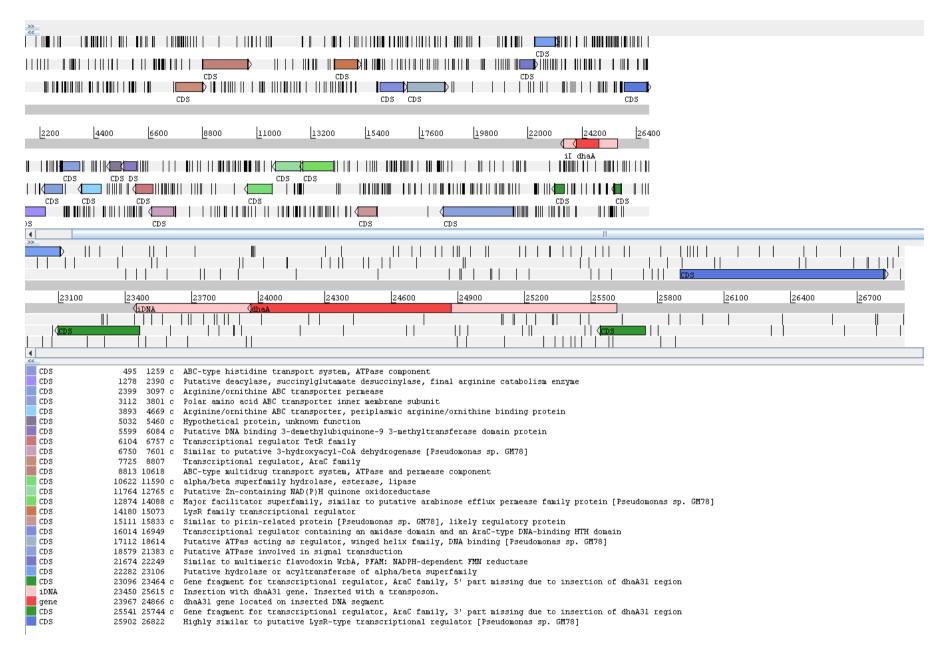

49

Fig. S3. Haloalkane dehalogenase expression in derivatives of *P. putida* MC4. Slots: M, marker
proteins; 1, cell-free extract of strain MC4; 2, strain MC4(pIS31B); and 3, strain MC4-5222
carrying the chromosomally integrated *dhaA31* gene. All cultures were grown on DCP as carbon
source.

55

- 56 Fig. S4. Detection of chromosomally integrated *dhaA* DNA by Southern hybridization.
- 57 Hybridization was performed with a 2-kb fragment (*dhlA* promoter, *dhaA31* gene and terminator)
- as a probe with non-radioactive DIG-labeling and SalI digested chromosomal total DNA of strain
- 59 MC4-5222 (lane 1); MC4-52 (lane 2); and MC4 (lane 3). M, fragment size markers.
- 60

62	Fig S	S5. Artemis display of the 26,912 bp contig (contig 1007) harboring the inserted DNA fragment with the DhaA31-encoding gene on the reverse
63	com	plement. The upper part shows the overall organisation of the region. The middle part is a close-up of the region where the insert (dsiplayed in pink) with
64	the a	<i>thaA31</i> gene (in red) is located. The insert is positioned in an open reading frame encoding a putative protein similar the transcriptional regulators of the
65	AraC	C family. The interrupted open reading frame is shown in green. The lower part shows the annotation of the genes in the 26,912 bp contig, as obtained
66	with	the RAST server and by BLAST searches. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank
67	unde	er accession number JOJW00000000. The version described in this paper is version JOJW01000000.
68		
69		
70	Refe	prences
71		
72	1.	de Lorenzo V, Timmis KN. 1994. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5-derived and Tn10-
73		derived minitransposons. Methods Enzymol. 235: 386-405.
74	2.	Ditta G, Stanfield S., Corbin D, Helinski DR. 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene
75		bank of <i>Rhizobium meliloti</i> . Proc. Natl. Acad. Sci. USA 77:7347-7351.
76	3.	Bosma T, Kruizinga E, de Bruin EJ, Poelarends GJ, Janssen DB. 1999. Utilization of trihalogenated propanes by Agrobacterium radiobacter
77		AD1 through heterologous expression of the haloalkane dehalogenase from <i>Rhodococcus</i> sp. strain m15-3. Appl. Environ. Microbiol. 65: 4575-
78		4581.
79	4.	Panke S, Sanchez-Romero JM, de Lorenzo, V. 1998. Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through
80		an ortho-cleavage degradation pathway. Appl. Environ. Microbiol. 64: 748-751.

6