Supporting Information

Xu et al. 10.1073/pnas.1406234111

Fig. S1. TFIIS-mediated cleavage of 10A RNA primer with 3'-5' linkage (Left) and 2'-5' linkage in the end (Right). Time points vary from 10 s to 1 h.

Fig. S2. RNA pol II stalls at all of these three positions. In A-C, the left section is the elongation through the wild-type template, and the right section is the elongation through the linkage altered template. The concentration of NTP is 25 μ M. (*A*) RNA pol II elongation starts from 10A primer. Time points are 0, 30 s, 5 min, 20 min, 1 h, 2 h, and 4 h, from left to right. (*B*) RNA pol II elongation starts from 11A primer. Time points are 0, 30 s, 2 min, 5 min, 20 min, and 1 h, from left to right. (*C*) RNA pol II elongation starts from 12C primer. Time points are 0, 30 s, 2 min, 5 min, 20 min, and 1 h, from left to right.

Fig. S4. Effects of α -amanitin during mismatched UTP incorporation. (A) Mismatched UTP incorporation rates in the absence (-) and presence (+) of α -amanitin. (B) Effects of α -amanitin on UTP incorporation. The effects of α -amanitin refer to folds of the rate changes before and after treatment of α -amanitin.

Fig. S5. Representative kinetic fitting curves of nucleotide incorporation in the presence of 2'-5' linkage alteration. (*A*) Kinetic curves of nucleotide incorporation after the RNA primer with 2'-5' linkage in the end (see scaffold 10A in Fig. 2A). (*B*) Kinetic curves of nucleotide incorporation in the DNA template with 2'-5' linkage at the addition site (see scaffold 10A in Fig. 3C).

Table S1.	Effects of linkage	alteration in the	DNA templat	te on pol II 🕯	transcriptional efficie	ency
-----------	--------------------	-------------------	--------------------	----------------	-------------------------	------

Reaction	Linkage	$k_{\rm pol}$, min ⁻¹	<i>K</i> _d , μΜ	k_{pol}/K_d , $\mu M^{-1} \cdot min^{-1}$	Decrease*
10A + ATP	3′–5′	750 ± 210	90 ± 20	8.3 ± 3.0	~260
	2′-5′	17 ± 1	530 ± 60	0.032 ± 0.004	
11A + CTP	3′–5′	450 ± 20	52 ± 5	8.7 ± 0.9	~1,200
	2′-5′	6.3 ± 0.1	890 ± 70	0.0071 ± 0.0006	
12C + GTP	3′–5′	180 ± 30	78 ± 45	2.3 ± 1.4	~1,000
	2′–5′	3.8 ± 0.1	1,700 ± 100	0.0022 ± 0.0001	

*Decrease = $(k_{pol}/K_d)_{3'-5'}/(k_{pol}/K_d)_{2'-5'}$.

Table S2.	Effects of linkage	alteration in the DI	NA template on	pol II transcri	ptional fidelity
			•	•	

Checkpoint	Linkage	Reaction	$k_{\rm pol}$, min ⁻¹	<i>К</i> _{d,арр} , µМ	k _{pol} /K _{d,app} , μM ⁻¹ ·min ⁻¹	Discrimination*
	3′–5′	10A + ATP	750 ± 210	90 ± 20	8.3 ± 3.0	$(4.4 \pm 1.8) \times 10^5$
Nucleotide incorporation		10A + UTP	0.015 ± 0.003	800 ± 60	$(1.9 \pm 0.4) imes 10^{-5}$	
	2′-5′	10A + ATP	17 ± 1	530 ± 60	0.032 ± 0.004	910 ± 200
		10A + UTP	0.13 ± 0.01	3700 ± 700	$(3.5 \pm 0.7) imes 10^{-5}$	
	3′–5′	11A + CTP	450 ± 20	52 ± 5	8.7 ± 0.9	$(1.0 \pm 0.3) \times 10^{5}$
Nucleotide extension		11U + CTP	0.26 ± 0.05	3000 ± 700	$(8.7 \pm 2.6) imes 10^{-5}$	
	2′-5′	11A + CTP	6.3 ± 0.1	890 ± 70	0.0071 ± 0.0006	270 ± 60
		11U + CTP	0.021 ± 0.002	810 ± 150	$(2.6 \pm 0.5) \times 10^{-5}$	
Checkpoint	Linkage	Reaction	C	Cleavage rate (k_{obs} , min ⁻¹)		Discrimination [†]
3′–5		11A	0.6 ± 0.1			12 ± 3
Proofreading		11U	7.3 ± 1.6			
	2′-5′	11A		9.5 ± 0	.8	1.3 ± 0.1
		11U		12 ±	1	

*Discrimination = $(k_{pol}/K_{d,app})_{ATP}/(k_{pol}/K_{d,app})_{UTP}$; $(k_{pol}/K_{d,app})_{11A}/(k_{pol}/K_{d,app})_{11U}$. *Discrimination = $(k_{obs})_{11A}/(k_{obs})_{11U}$.

PNAS PNAS