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1- Model Description 

In this study, we have employed the Earth System Model developed at the Institut 

Pierre Simon Laplace (IPSL) for the Coupled Model Intercomparison Project phase 5 

(CMIP5): IPSL-CM5A-LR (1). 

 

IPSL-CM5A-LR combines the major components of the climate system: the 

atmosphere and land models are the atmospheric general circulation model LMDZ5A 
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(2) and the land-surface model ORCHIDEE (3). The atmospheric and land 

components use the same regular horizontal grid with 96 × 95 points, representing a 

resolution of 3.75°× 1.87°. The atmosphere has 39 levels on the vertical. 

The oceanic component, NEMOv3.2 (2, 4), offers a horizontal resolution of 2° refined 

to 0.5° in the tropics and 31 vertical levels. NEMOv3.2 is coupled to the sea ice 

model LIM2 (5) and the marine biogeochemistry model PISCES (6). 

PISCES simulates the biogeochemical cycles of carbon, oxygen and nutrients using 

24 state variables. Macronutrients (nitrate and ammonium, phosphate, and silicate) 

and the micronutrient iron limit phytoplankton growth and thus improve the 

representation of their dynamics (6, 7). Inorganic carbon pools are dissolved inorganic 

carbon, alkalinity and calcite. Total alkalinity includes contributions from carbonate, 

bicarbonate, borate, hydrogen, and hydroxide ions (practical alkalinity). For dissolved 

CO2 and O2, air-sea exchange follows the quadratic wind-speed formulation (8) 

PISCES distinguishes two classes for phytoplankton (nanophytoplankton and 

diatoms), for which growth is parametrized using the (9) formulation but limited by 

external availability of nutrients. Diatoms differ from nanophytoplankton because 

they need silicon and more iron (10) and because they have higher half-saturation 

constants due to their larger mean size. In PISCES, zooplankton is described by two 

size classes: microzooplankton and mesozooplankton. The ratios between carbon, 

nitrate, and phosphate are considered constant and held to the values proposed by (11) 

for all plankton classes. However, internal concentrations of iron are simulated 

prognostically in both phytoplankton classes, as is silica in diatoms. Phytoplankton 

growth depends on external concentrations of nutrients and light availability, while 

chlorophyll concentration is simulated prognostically following (12). 

 

2- Data 

2-1 Sea Surface temperature 
In this study, we used two observed datasets for sea surface temperature (SST) in 

order to account for observational uncertainties in our skill-score estimates. The two 

datasets we considered are those described in (13) and (14). 

 

2-2 10 meters winds 
Zonal winds at 10 meter were used in the study in order to assess benefits of 
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initialization. For this purpose, we employed product provided by the NCEP 

reanalyses described in (15). 

 

2-3 Net Primary Productivity 
Similarly to SST, we used several estimates of NPP that were derived from satellite 

measurements of SeaWiFS (1997-2008) and MODIS (2002-2012) and the  VGPM 

(16) and Eppley-VGPM algorithms (17). These products are developed at the Oregon 

State University:     http://www.science.oregonstate.edu/ocean.productivity/index.php.  

 

 

2-4 Skipjack Tuna Catch Biomass 
Data were collected from purse seine for Skipjack Tuna from 1991 to 2012 over the 

Tropical Pacific (30°S-30°N). These data were provided by the IATTC and the 

WCPFC for respectively the Eastern part and the Western part of the Pacific Ocean. 

Catch per units were combined into a 1°x1° grid on the basis of the following criteria: 

- monthly data 

- no domestic fisheries is not included 

- cell grid representing less than three vessels are excluded (the umber of vessels 

taken into account in a 1°x1° grid roughly reduces by half compared to those 

considered for a 2°x2° grid) 

The two datasets are then 

- combined in a 1°x1° regular Mercator grid 

Considering that the last criterion has large consequences on the biomass catch 

estimates, we have conducted a basic assessment of the resolution of the two datasets. 

Correlation between estimated oscillations for catch biomass estimated from the 1°x1° 

gridded dataset and those estimated from the 2°x2° gridded dataset reaches up to 0.8 

which shows the rather good agreement of the two gridded datasets.  

 

3- Experimental Design 

3-1- Spin-up 

As explained in (1) and (18), IPSL-CM5A-LR has been spun-up for several century in 

order to produce initial state for both dynamical and biogeochemical components of 
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the Earth System Model. 

Spin-up strategy follows the sequential steps: 

(1) After initialisation with modern climatologies, a first online spin-up is performed 

with the dynamical components (atmosphere, oceans, sea-ice, land surface) only for 

600 years with fixed preindustrial condition (19). 

(2) Once the climate of the model is steady, a climatology of the last 50 years is 

computed in order to forced the biogeochemical components of the land and the 

oceans offline. After initialisation with observed climatologies of nutrients, carbon-

related fields and oxygen, PISCES is spun-up offline for 3000 years for marine 

biogeochemistry. 

(3) The initial conditions for marine and land biogeochemical reservoirs performed in 

step (2) are used to initialised the marine and land components of IPSL-CM5A-LR. 

Once, all the components are initialised, IPSL-CM5A-LR is run for an other 330 

years for online adjustment.   

 

3-2- The non-initialized simulation 

In this study, the non-initialized simulation corresponds to one member of the 

historical simulations ensemble performed with IPSL-CM5A-LR for CMIP5 (19). 

This means that IPSL-CM5A-LR is forced by observed changes in the atmospheric 

chemical composition (natural and anthropogenic green house gases and aerosols), 

solar constant and land use between 1850 and 2005. Initial conditions come from the 

sequential spin-up explained above. 

From 2005 to 2011, IPSL-CM5A-LR is forced by changes in atmospheric chemical 

composition following the Representative Concentration Pathway 4.5 (RCP45) 

according to CMIP5 decadal framework except for the volcanoes background that has 

been removed here.  

 

3-3- The initialized simulation 

As explained, although Earth system models are able to capture the relationship 

between NPP and climate-state, the phasing and the amplitude of these variations are 

poorly reproduced in non-initialized simulations. To partly overcome this difficulty, 

we took advantage of the initialization strategy used at the IPSL and apply for the first 
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time to an Earth System Model: IPSL-CM5A-LR. This simple initialization scheme, 

developed for seasonal forecast, consists of relaxing SST anomalies of the IPSL-

CM5A-LR to observations. The nudged simulation has thus been performed by 

relaxing SST anomalies of the IPSL-CM5A-LR to (13) reconstruction between 1949 

to 2011 with a restoring coefficient of 40 W/m2/K 

This methodology was employed at IPSL for CMIP5 decadal framework to smoothly 

phase IPSL-CM5A-LR variability with the observed one. With IPSL-CM5A-LR, (20) 

demonstrated that this initialization strategy gives encouraging results for the 

prediction of the Atlantic meridional overturning circulation in the CMIP5 decadal 

framework (accounting for volcanoes background).  

 

3-3- The hindcasts 

The initialized simulation provides initial or starting conditions for a set of ten-year-

long, three-member ensemble hindcasts that are performed every years from 1987 to 

2001 to cover the 1997-2011 period (Figure S1 for NPP and S2 for SST). There is no 

SST restoring during the ten years of simulations for the hindcasts (meaning that the 

model is not guided anymore by observed SST anomalies in these simulations).  

As in (20), the hindcasts ensemble is created by applying a white noise perturbation 

on SST from the nudged simulation with an anomaly that has been chosen randomly 

for each grid points in the interval ±0.05°C. Grid points under sea-ice cover are not 

perturbed. Note that this hindcast ensemble follows the same set up as the hindcasts 

published for the short-term CMIP5 experiment except that the background volcanic 

aerosols imposed from 2006 onward in the scenario RCP45 is not imposed here.  

 

3-4- Sensitivity experiments in a perfect model framwork 

The experimental set-up of these sensitivity experiments relies on several ensemble 

model simulations. The reference simulation consists in a 1000-year-long 

preindustrial simulation of IPSL-CM5A-LR (1800-2799 in model years). Ten 20-

years-long ensembles simulations were performed for five starting dates: 1901, 2056, 

2066, 2071 and 2171. Ensemble simulations were generated by applying a random 

noise in a range of [-0.05—0.05] °C uniformly on the oceanic sea surface 

temperature. This experimental set-up has been widely used and is detailed in (21). 
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4- Statistical Methods 

4-1- Post-treatments 

Each simulations used in this study has been regridded on a regular Mercator (or 

regular) grid of 1°x1° of resolution. Annual anomalies are computed after removing a 

linear drift for all lead times of the hindcasts. Monthly anomalies are computed after 

removing mean seasonal cycle computed over the whole period (1991-2012). 

 

4-2- Skill-score 

Two skill-scores are used in this study: the anomaly correlation skill-score and the 

root-mean-square skill-score. They are both widely employed in seasonal and decadal 

forecast to assess model predictions against observations. 

Skill-score computation are performed by comparing observed time series against a 

“reconstituted” time series, which is composed by the years of the hindcasts pending 

on the lead time as presented in the Figure S3. This methodology has been introduced 

by (22) for assessing benefits of initialization on North Atlantic surface temperature. 

Further explanations on this method, which is widely used to assess decadal 

predictions, are available in (23, 24). Here, hindcasts are performed in order to 

conserve the length of the observed time series. That is, hindcasts are conducted 

retrospectively as presented on the Figure S3.  

Following this methodology, the anomaly correlation skill-score between model 

prediction (p) and observations (o) over N years is computed as follows:
 

 

Where the bar indicates the temporal averaging operator. 

The significance of the AC-SS is tested against a two-tailed t-test with N-2-1 degree 

of freedom (that is also estimated with Bretherthon‘s formulae (25)). 

The root-mean-square error skill-score is given by:
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The RMSE-SS is tested against the standard deviation of the observations. This means 

that the ensemble is spread is assessed against the observed variations of a given 

variable. 

 

5- Mechanisms of initialization 

In this section, we briefly describe how marine productivity has been initialized 

trough SST nudging. 

Figure S4 shows correlations of monthly deseasonalized for SST, surface zonal winds 

and NPP of the observation-derived datasets with the initialized simulation on the one 

hand, and with the non-initialized simulation on the other hand. This allows to assess 

the benefits of the initialization scheme for SST, surface zonal winds and marine 

productivity. On Figure S4, it appears clearly that SST nudging improves phasing and 

amplitude of simulated surface zonal winds and NPP in the Tropical Pacific (30°S-

30°N), where correlations are significantly different from zero at 95% confidence 

level. Similar patterns are not apparent on the non-initialized simulation. Surface 

zonal winds are thus initialized through SST restoring within the Tropical Pacific. 

This is explained by the fact that SST nudging improves the representation of the 

meridional gradient of SST and consequently sea-level pressure though air-sea 

exchanges inducing a correction of the surface zonal winds thanks to the thermal 

winds imbalance. 

 

A simplified scheme is proposed in Figure S5 to explain mechanisms we suggest to be 

responsible of NPP initialization. On this scheme, we suggest that NPP variability has 

been substantially improved in term of variability in response to two pathways: one 

related to ocean dynamics and the other to biogeochemical dynamics. 

First, the dynamical pathway represents the dynamical adjustment of the winds to the 

more realistic meridional SST gradients (and its temporal variability). This dynamical 

adjustment leads to a better representation of zonal winds over a large fraction of the 

Tropical Pacific (26). Since variations of surface zonal winds are initialized through 

SST nudging, the variations of the upwelling of the Eastern Equatorial Pacific is 

better represented in the initialized simulation compared to that of the non-initialized 

one. The upwelling replenishes surface nutrients during the La Niña events, which 

stimulates growth of phytoplankton, and hence leads to a better representation of the 
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spatiotemporal variability of the NPP. 

Second, the biogeochemical pathway concerns the fact that the marine biology is also 

directly affected by SST and therefore SST nudging. This latter modifies the growth 

rate of phytoplankton and the grazing rate of zooplankton, both related to 

environmental temperature. This response occurs also at short time scale and 

represents the quickest adjustment of marine biogeochemistry to SST nudging. 

Compared to the dynamical pathway, the biogeochemical response is of a lesser 

importance. Nevertheless, the biogeochemical pathway still contributes to the phasing 

of NPP variations to those of SST in response to the various ENSO events.  

Figure S6 illustrates impacts of SST restoring on the mixed-layer depth (as proxy of 

the Equatorial upwelling) and the surface nutrients (dissolved iron and nitrate). On 

this Figure, variations of surface nutrients, mixed layer depth and SST averaged over 

the tropical Pacific are stronger in the nudged simulations than in the free run; their 

timing are also consistent with the various ENSO events represented by the Nino3.4 

index (Figure S6d). 

 

In this work, we hypothesize that initialization of surface zonal winds ensure a better 

representation of the upwelling Eastern Equatorial Pacific. To investigate the validity 

of this hypothesis, we computed monthly cross-correlations between variations of the 

mixed layer depth averaged over the Tropical Pacific and SST, nutrients and NPP 

respectively averaged and integrated over the Tropical Pacific (considered here as co-

variables). Figure S7 shows the results of these computations. On this Figure, strong 

positive (negative) correlations at negative time lags indicate that the mixed layer 

fluctuations leads positive (negative) anomalies of the given co-variables. On the 

contrary, positive time lags indicate that anomalies of the given co-variables take the 

lead of the mixed layer fluctuations. 

Figure S7 shows that variations of the mixed layer depth drives changes in SST and 

surface nitrate concentration within a month, while it influences NPP and dissolved 

iron at seasonal timescale (6-8 months). This confirms that variations of the upwelling 

tend to control subsequent variations of SST and biological elements.  

 

Finally, the repartition of nutrient supply due to vertical mixing in response to the 
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variations of the upwelling and due to the regenerated loop of nutrients (through the 

remineralization of the organic matter) of nutrients ensures a good representation of 

the magnitude and the phasing of the Tropical Pacific NPP during the various ENSO 

events (Figure S8). For this analysis, we have recomputed offline the regenerated and 

preformed nitrate from apparent oxygen utilization (AOU). We have employed this 

proxy since in our model, PISCES (6) remineralization of dissolved organic matter 

can occur within both oxic and anoxic waters. The splitting between the two types of 

organic matter degradation depends on the local oxygen concentration with a 

threshold fixed in time to 6 micromoles per liter. This formulation assumes implicitly 

that the degradation rates for oxic respiration and denitrification are identical. 

On this Figure, we show the variance of regenerated nitrate and preformed nitrate 

integrated between the surface and 100 m. From this Figure, we demonstrate that the 

spatiotemporal distribution of preformed nitrate differs from that of regenerated 

nitrate. Such repartition results from the fact that lateral advection of preformed 

nitrate is more pronounced than that of regenerated nitrate (Figure S8ab). However, 

regions away from the influence of the Equatorial upwelling (20°S-20°N) exhibit a 

stronger sensitivity to the recycling processes than the vertical supply of preformed 

nutrients, especially in the Northern part of the Tropical Pacific. Such a repartition is 

consistent with previous studies performed with regional model forced by 

atmospheric observations (27). In term of phasing, anomalies of regenerated and 

preformed nitrate are generally out of phase, but seem to be both driven by the various 

El Niño/La Niña events. 

Of this Figure, we can conclude that the nitrate variability within the Tropical Pacific 

is prominently governed by an upwelling-driven nutrients supply. Nonetheless, 
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recyclcing processes seem to play a substantial role for a fraction of Tropical Pacific 

area away from the Equatorial tongue. Such mechanisms potentially play a role in the 

persistence of nutrients and NPP anomalies as well as in the predictability of NPP. 

 

6- Persistence: property responsive of differences in predictive skill 

As pointed out in the main text, mechanisms explaining the largest predictability for 

NPP rely on the fact that the biogeochemical system exhibits a longer memory than 

the SSTs.  

To evaluate these differences, we computed normalized spectral density for NPP, SST 

and surface chlorophyll (Chl) from the 1000 years of the spin-up simulation of IPSL-

CM5A-LR. This simulation provides a sufficient number of decades to accurately 

determine low-frequency modes of variability (28). It does not include the influence 

of external forcings (like anthropogenic climate change), which could favor the 

emergence of low frequency modes of variability for SST (due to global warming) 

compared to NPP. Figure S9 presents the normalized wavelet power spectrum for 

yearly time series of NPP, Chl and SST averaged over the Tropical Pacific. It proves 

the existence of low frequency variations for Chl and NPP, which share common 

features in terms of variations and amplitude between the 30-year and 130-year 

periods (multi-decadal time scales). SST variations in the Tropical Pacific are 

confined to time scales smaller than 30 years, and hence reveal the prominent 

influence of ENSO events at the interannual time scale.  

We estimated how the existence of long-term memory properties could affect 

predictability by computing persistence (auto-correlation function). The computation 

of persistence relies on the simplest statistical model mimicking memory in a 

dynamical system (29). It is called a first order auto-regressive model (AR1) and can 

be written as follows: 

€ 

dX(t)
dt

= αX(t) +ε (t)  where  is a time evolving variable, 

€ 

ε(t)  is a Gaussian white 

noise and  is analogous to time. 

 Computation of the persistence allows estimating , which is the auto-correlation 
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coefficient. When  is significantly equal to zero, the memory of the system is 

considered loss.  

Figure 3 in the main text compares the persistence of yearly anomalies of SST, 

surface concentrations of nitrate and dissolved iron and NPP. This Figure shows that 

the NPP, nitrate and dissolved iron anomalies exhibit a larger persistence than the 

SSTs. This result supports the hypothesis of a longer memory of the biogeochemical 

system compared to SST in the Tropical Pacific. It suggests consequently that benefits 

of initialization are kept over several years for NPP and surface nutrients, not for SST. 

The persistence is a useful baseline to evaluate whether the model can produce a 

better prediction than the climatology elsewhere (20, 22, 30). In our case, we have 

shown that biogeochemical system (nutrients and NPP) exhibits a longer memory than 

SST independently from the use of a simple statistical model (AR1) or with a 

complex Earth System Model. This demonstrates that our model does a better job in 

predicting natural variations of NPP than an AR1 process based on the NPP 

climatology. 

Differences in terms of predictability between the AR1 and the complex Earth System 

model are partly attributable to oceanic transport. Figure 4 illustrates how anomalies 

of NPP induced by variations of the Equatorial upwelling are propagated poleward in 

course of time. Same lagged correlations are found for surface nitrate and dissolved 

iron (Figure 3). 

 

 

7- Evaluating robustness of NPP predictability horizon 

 

We applied two different approaches in order to assess the robustness of our 

estimation of the predictability horizon for NPP: 

First and in order to evaluate its robustness with the respect to the satellite-derived 

NPP product, we performed the same analysis for the NPP estimated from the 

MODIS measurements over the 2002-2012 period. Results are summarized on Figure 

S10. This figure presents the same skill-score diagram as on Figure 2c but for the NPP 

derived from MODIS. AC-SS and RMSE-SS found over this period are slightly lower 

than those corresponding to the SeaWiFS period. However, the estimate of the 
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effective predictability horizon of ∼3 years is robust. 

The second approach follows a method widely employed in the community and called 

“the perfect model framework” in order to conduct an in-depth evaluation of the net 

primary productivity potential predictability skill-scores. The philosophy of this 

approach relies on the sensitivity of the model to perturbations in initial conditions. 

The initial perturbation is supposed to represent atmospheric chaotic noise or 

uncertainty in the estimation of the climate state (31, 32) This approach represents an 

estimate of the upper limit of predictability based on having a perfect model and near 

perfect knowledge of the current state of the climate system (principally the state of 

the ocean). Although this situation is never likely to be achieved in practice, this 

approach is useful in identifying explicitly the climate predictability over a specific 

climate trajectory. In addition, this framework enables a complete description and 

sampling of the climate system. 

In this framework, model predictive skill is assessed with the metrics described in 

(33). This metrics is analogous to a root-mean-squared error. The RMSE, (Equation 

1) used by Msadek et al. (2010) considers the ensemble mean as baseline. Considering 

€ 

Xi  as the ith member of the M members of the ensemble (M=10) and 

€ 

X  as the 

ensemble mean, we express RMSE as follows: 

 

€ 

RMSE =
1
M

(Xi(t) − X (t))2
i=1

M

∑ ~ N(0, )    (1) 

Based on the perfect model framework analysis (Figure S11), we find that the 

predictability horizon for NPP varies in function of the starting dates. As such, this 

result demonstrates the sensitivity of the predictive skill to initial climate state (ENSO 

events). Nonetheless, this sensitivity is weak in average considering that only one of 

the five initial conditions has substantially altered the predictability of NPP. In 

average, the latter is estimated to 5.6 years across the five starting dates.  

This analysis shows that the 8-year-long predictability horizon is clearly the upper 

limit of predictability that can be expected from our model. The lower limit of the 

NPP predictability horizon is slightly higher than that found for SST (1 year). The 

lower limit is also comparable to result obtained for the NPP over the MODIS period 
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(Figure S10), which shows 3 years of potential predictability. 

The fact that our effective predictability horizon estimated from satellite-derived 

observations falls within the distribution of potential predictability horizon diagnosed 

from a more exhaustive experimental setup (10 members for each starting date) 

demonstrates its robustness.  
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Figure 1 – Multiyear anomalies of marine productivity hindcasts compared with satellite-derived
observations and free climate model simulations over the SeaWiFS (1997-2008) and MODIS (2003-
2011) periods within the low-latitude Pacific oceans (30◦S-30◦N). Estimates spread from VGPM and
Epply-PM algorithms are given in green and the algorithm mean is shown in black ; the individual
hindcasts and their ensemble mean are shown in blue and red, respectively. Anomalies of marine
productivity from the free climate simulations is shown in the upper plots in dashed black lines for
individual experiments and with grey shading for the CMIP5 5 members ensemble mean.
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Figure 2 – As Figure 1, but for SST over the whole 1997-2011 period.
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Figure 3 – Simplified schema describing how benefits of initialization has been estimated. The obser-
vations (in solide black line) are only available over ten years. Nudged simulation (in solid red line)
is directly comparable to the observations time series. This simulation provides initial/starting condi-
tion for the hindcasts (here, the dashed lines in skyblue). Initial/starting conditions are indicated by
small red circles. Benefits of the initialization is estimated by combining the n year of the hindcasts
(n = 1, 2...10) into a reconstituted time serie (in solid blue line). Here, the scheme illustrated recons-
tituted time serie for the first year, the second year and the third year of the hindcasts, namely lead
time 1, 2 and 3 (with the abreviations LT1, LT2 and LT3). Anomaly Correlation Skill Score (AC-SS)
and Root Mean Square Error Skill Score (RMSE-SS) are computed by using observations/Nudged
simulations and the reconstituted time serie at the different lead time.
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Figure 4 – Assessement of benefits from initialization : Comparison of monthly anomalies correlations
between the observed dataset and the nudged simulation against the free simulation for (a)-(b) SST,
(c)-(d) zonal 10 meters winds abd (e)-(f) NPP. Correlations that passes a two-tailed t-test at 95%
significance level are countoured. Observed datasets are Reynolds et al., (2002) for the SST, VGPM
algorithm on the basis of SeaWiFS measurements for the NPP and Kistler et al., (2001) for the NCEP2
zonal 10 meters winds.
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Figure 5 – Simplified scheme of NPP initialization through SST restoring. Response of ocean physics
and biogeochemistry in the Tropical Pacific (30◦S-30◦N) to SST nudging is given in blue and green
respectively.
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Figure 6 – Monthly anomalies of surface concentrations of (a) nitrate and (b) iron, (c) mixed-layer
depth and (d) Nino3.4 SST index averaged over the 30◦S-30◦N Pacific ocean. Grey shading represents
the free CMIP5 5 members spread for iron, nitrate, mixed-layer depth and Nino3.4 SST index. Dashed
and bold lines indicate free CMIP5 5 members ensemble mean and nudged simulation, respectively.
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Figure 7 – Temporal cross correlations over the 1991-2011 period between variations of mixed-layer
and sea surface temperature (SST), net primary productivity (NPP) and surface concentrations of
nutrients (NO3 and dFe) within 30◦S–30◦N Pacific. The null hypothesis of a zero correlation is tested
against a t-test at 95% significance level and is indicated with red dashed lines.
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Figure 8 – Interannual variability in terms of standard deviation of regenerated nitrate (a, in mol)
and preformed nitrate (b, in mol) respectively integrated between the surface and 100 meters. Standard
deviation has been computed from the nudged simulation over the 1991-2011 period in the tropical
Pacific (30◦S-30◦N).



9

 Normallized Spectral Density [y−2]

P
e
ri

o
d
 [
y
]

2
7

2
4

8
4

2
9
4

0.5 1.0 1.5 2.0

SST
NPP
CHL

Figure 9 – Normalized wavelet Spectrum (in y−2) for sea surface temperature (SST, a), surface
chlorophyll (CHL, b) and net primary productivity (NPP, c) in the Tropical Pacific (30◦S–30◦N)
for the 1000-year-long preindustrial simulation performed with IPSL-CM5A-LR. Red and blue dots
indicate respectively the significance at 90% and 95% tested against a red noise spectrum.
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Figure 10 – As Figure 2c, but for MODIS measurement of NPP over the whole 2003-2011 period.
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Figure 11 – Evolution of the root-mean-squared error (RMSE), for NPP at the five starting dates.
The corresponding baseline (see Equations 1) is indicated with blue dashed lines.
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