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Exciton Rate Equation
If a circularly polarized light pumps K valley only, the evolution
of the density of excitons (NK and NK′ on K and K′ valleys)
can be described by the following rate equations as
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where τ is the exciton life time at both K and K′ valley, τ−1K is
the K ↔K ′ intervalley scattering rate, and A is the exciton gen-
eration rate. The degree of photoluminescence polarization P
depends on the steady values of the density of excitons NK and
NK′ as P= NK −NK′
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Carrier Lifetime in Monolayer and Bilayers
The carrier dynamics measurement was carried out using the time-
resolved pump-probe technique. A passive mode-lock Ti:sapphire
laser, with 150-fs pulses and an 80-MHz repetition rate, is used to
pump a fiber crystal so as to generate the pulse white laser. The
output light with the 580-nm wavelength selected by a bandpass
filter is used as the pump pulse, and almost resonates to the A
exaction transition. After passing the delay line, it is focused on the
sample surface by using a 50x microscope objective. The probe
pulse with wavelength of 630 nm is combined with the pump pulse
by a dichromic beamsplitter, and focused on the sample with normal
incidence. The reflection of probe pulse is collected and detected by
photodiode. The output photocurrent is detected by a lock-in am-
plifier, which modulates the pump pulse with the frequency of 100
kHz generated by a photoelastic modulator chopper. All of the
measurements were performed under ambient conditions. The
curve of ΔR=R as a function of delay time is shown in Fig. S1.
After fitting by the exponential equation, we get three carriers
lifetime for monolayer and bilayer WS2 shown in Table S1.

Exchange Interaction
The bright exciton basis states assume the form
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at K (K′) valley, where ΨK
μe
ðreÞ and ΨK

νh
ðrhÞ are electron and hole

Bloch wave functions with electron spin state μe and hole spin
state νh at K valley. φ2D

1s ðρÞ is the ground state of 2D exciton
envelop function with the relative coordinate ρ= re − rh;
k= kðcos θ; sin θÞ and R denote the exciton center-of-mass wave-
vector with angular θ and its center-of-mass position, respectively.
The exchange coupling Jintraex between the radiative electrons

and holes in the same valley has the form (1)
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which is independent of valley index and thus does not contribute
to the depolarization. Here, feh corresponds to the modulus
square of the envelope function of the electron–hole relative
motion evaluated at zero distance.
The depolarization of exciton actually results from the in-

tervalley electrons and holes exchange coupling, which is de-
scribed as the coupling between the two valley configurations of
the bright excitons as Hex = J intereh jBK ihBK′j+ h:c: Here the cou-
pling strength is (2)
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where V ðkÞ= R V ðrÞeik•rdr denotes the Coulomb interaction in
k space, A is the area of the 2D plane, G are reciprocal lattice
vectors, φðqÞ= R φ2D

1s ðρÞeiq•ρdρ is the wavefunction for relative
motion in momentum space, and uKðK′Þμe

ðreÞ and uKðK′Þνh
ðrhÞ are

the periodic parts of the electron and hole Bloch wave functions
ΨKðK′Þ

μe
ðreÞ and ΨKðK′Þ

νh
ðrhÞ. Because we have V ðG+ kÞ<<V ðkÞ

from k< <G, the short range part of the exchange interaction
is negligible.
For the long-range exchange interaction, by using the kp ex-

pansion and assuming the periodic parts of Bloch wave functions
can be replaced by the ones at Dirac points as uK+qμeðvhÞ ≈ uKμeðvhÞ, the
exchange interaction strength is simplified as
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where a is the lattice constant of monolayer transition metal
dichalcogenides, t is the hopping amplitude, and Δ is the band
gap. Here,

��φ2D
1s ðρ = 0Þ��2 corresponds to the probability density

of finding the electron and hole to spatially overlap, which is
1=a2B ∼E2

B with the exciton Bohr radius aB and binding energy
EB. Therefore, the exchange interaction is proportional to the
square of the exciton-binding energy.
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Fig. S1. Carrier lifetime measurements. Here, ΔR=R is a function of the delay time for monolayer (red curve) and bilayer (black curve) WS2.

Table S1. The lifetime for monolayer and bilayer WS2 sample

Carrier lifetime Monolayer (ps) Bilayer (ps)

T1 3 0.6
T2 14 12.0
T3 118 89.0
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