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Supporting Text 

 
 

Estimating the degree of overexpression from the ASKA plasmids 

The typical protein expression level difference between the native genomic locus and the high-

copy overexpression plasmid was estimated by two approaches. In the first approach, we used 

literature data to calculate the fold change overexpression of a typical enzyme. A quantitative 

systems-wide analysis of protein copy numbers in individual E. coli cells provides information 

for 291 enzymes (1). The median expression level of these enzymes in the native genomic 

context is 22.6 copy/cell. While a similar comprehensive dataset for the expression levels from 

the high copy plasmid pCA24N is not available, the protein copy number for one overexpressed 

enzyme has been estimated as >1.8x105 copies/cell (2). This gives a typical expression level 

difference of ~4 orders of magnitude. 

 In the second approach, we experimentally measured the activity of one of the enzymes 

(LacZ) which was identified as a positive hit both in our in silico and experimental surveys for 

phenotypic novelties (i.e. LacZ increases fitness on phenylgalactoside when strongly 

overexpressed). Following standard protocols (3), we carried out enzyme activity measurements 

using the lysate of E. coli cells that were grown in the same conditions as the samples for our 

genome-wide overexpression screen (see SI Materials and Methods for details). Comparing the 

β-galactosidase activity from cells harbouring the plasmid pCA24N-LacZ-(gfp-) and the empty 

vector PCA24N (without an ORF) using the substrate ortho-nitrophenyl-β-galactoside (3), we 

detected an expression level difference of ~500. We note that this figure is likely to be an 

underestimate of the typical expression difference as the 50 μM isopropyl-β-D-

thiogalactopyranoside (IPTG) induces not only the expression of the plasmid-encoded LacZ, but 
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also that of the native gene copy as well. Taken together, we estimate that the typical fold change 

increase in protein expression level in our experimental setup is in the range of 3 – 4 orders of 

magnitude. 
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SI Materials and Methods 

 

Reconstruction of the Escherichia coli underground metabolism 

The Escherichia coli underground metabolism reconstruction (hereby termed iRN1260u) is an 

extension to the native metabolic network of Escherichia coli K-12 MG1655 (4), termed 

iAF1260. For each EC number in the iAF1260 reconstruction we collected and evaluated weak 

side activities from experimental studies included in the BRENDA database. Reactions were 

considered as side reactions (underground reactions) when the corresponding substrates were 

listed in the BRENDA ‘substrate’ section, but not in the ‘natural substrates’ section. To evaluate 

the correctness of the classification, we examined the associated literature to ensure that the 

reaction was indeed experimentally studied for that particular enzyme. Then we examined the 

chemical properties (e.g. atom composition) of the substrates and products of the reactions as 

stored in the KEGG, PubChem, ChEBI, and ChemIDPlus databases. If the information extracted 

from the individual databases was consistent, then the reaction was further examined as a whole 

for correct stoichiometry, i.e. atom and electron compositions of the substrates equal that of the 

products. Finally, the reactions were added to the existing iAF1260 reconstruction and they were 

linked to the corresponding enzymes. The metabolite abbreviations were taken from the iAF1260 

model when possible. In addition to BRENDA, underground reactions were added directly from 

the literature (for details see Dataset S1). In particular, numerous underground activities from 

different haloacid dehalogenase-like hydrolases were obtained from a systematic medium-scale 

study by Kutznetsova et al. (5) and were included in the reconstruction. 

Beyond the reconstruction of underground reactions, our framework also allowed the 

extension of the E. coli iAF1260 network by 122 new native reactions. The data comes from 
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literature information, the BRENDA (section ‘natural substrates’), and the BiGG (6) databases. 

To broaden the space of possible growth environments, this list of 122 new native reactions also 

includes 65 new exchange (transport) reactions. These transport processes were included in the 

reconstruction to maximize the coverage of nutrient metabolites that can possibly be taken up by 

the cell. Among these are the transporters involved in true-positive predictions of the metabolic 

model, i.e., predicted and experimentally confirmed novel growth phenotypes provided by 

underground metabolism (see results in the main text). The complete dataset can be found in the 

Supplementary information as an Excel file (Dataset S1) and as a computational SBML model 

(Dataset S6, also downloadable from http://group.szbk.u-szeged.hu/sysbiol/papp-balazs-lab-

resources.html). Throughout the paper, the native network (E. coli iAF1260 + 122 new native 

reactions) was tested against the extended network (native network + one or more underground 

reactions, see below). 

 

 

Evaluation of the underground metabolic reconstruction  

The general approach of adding underground reactions to the native metabolic repertoire as 

described above was evaluated by examining published enzyme kinetic parameters and large-

scale metabolomic data sets. We performed two analyses to demonstrate that the assembled 

underground reactions occur at very low rates in E. coli. 

First, we tested whether underground reactions are catalyzed by lower kinetic efficiency 

compared to the native reactions of the same enzymes. To this end, we collected reactions from 

BRENDA with measured kcat and Km values. We were able to retrieve high quality data for 13 

different enzymes for which the in vitro conditions for native and underground substrates were 
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the same (see Table S1). Subsequently, the catalytic efficiencies (kcat / Km) of the native and 

underground reactions of the same enzyme were compared using a Wilcoxon matched-pairs 

signed rank test. 

Second, we tested whether underground metabolites (i.e. those consumed and/or 

produced by underground reactions only) are less likely to be present in the metabolome of E. 

coli compared to native metabolites (i.e. those consumed and/or produced by at least one native 

reaction). We used two complementary information sources for this test: metabolite presence 

from i) the E. coli Metabolome Database (ECMDB) (7) and ii) from two large-scale 

metabolomics studies (8, 9). 730 compounds from our reconstruction could be matched with 

metabolites from ECMDB using KEGG, CAS, or ChEBI identifiers. In a similar vein, 488 

metabolites from our reconstruction could be matched with compounds in the union of the two 

large-scale metabolomics studies (8, 9). 

 

Network distance and shared subsystems between native and underground reactions 
 
The dataset 

To test whether pairs of native and underground reactions belonging to the same enzyme are 

non-randomly distributed in the network, we focused on a subset of our compiled underground 

reaction set. We used data from a systematic measurement of phosphatase activities in the 

haloacid dehalogenase-like phosphatase family of E. coli (5). It includes enzymes acting on a 

wide range of phosphorylated metabolites, including carbohydrates, nucleotides, organic acids, 

coenzymes, and small phosphodonors. This study investigated the activity of 23 enzymes against 

a panel of 80 substrates in an all-against-all fashion, thereby providing comprehensive data on 

pairs of native – underground reactions that are catalyzed by the same enzyme. We considered a 
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reaction to be underground if the activity of the enzyme towards it was an order of magnitude 

lower than the activity towards the primary substrate (i.e. the one with the highest activity). We 

chose this threshold because it captured 90% of the native activities published in the iAF1260 

reconstruction for the corresponding enzymes. Processing this dataset yielded 350 native-

underground reaction pairs for our analysis (Dataset S5). 

 

Network distance and subsystem classification 

The network distance between each native – underground reaction pair was computed using the 

shortest distance method implemented in the igraph software package (10). For this purpose, we 

built a graph representation of the metabolic network in which two reactions were defined as 

adjacent if the product of one reaction is the substrate of the other. Cofactors and small 

molecules with high abundance in the network (H2O, NH3, etc.) were excluded from the graph. 

 Subsystem classification of reactions was taken from the iAF1260 reconstruction. 

Functional classification was not available for 32% of reactions in our dataset. In such cases, the 

corresponding subsystem classes were predicted based on the classification of the closest native 

reactions in the network. Specifically, for each reaction with unknown subsystem classification, 

we first determined its neighboring reactions based on the graph representation of the network. 

Next, we assigned the classes of the neighbors to the unclassified reaction by taking into account 

the number of reactions (n) in which their intermediate metabolite is participating. In particular, 

each assigned class was weighted by 1/n of the metabolite linking the unclassified and the 

classified reaction (thus, reactions connected through rare metabolites had a stronger influence 

on the class assignment). Finally, the reaction with the unknown subsystem classification was 
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assigned the class with the highest score. Leave-one-out validation on native reactions showed 

that this simple prediction algorithm has 72% accuracy for predicting subsystem memberships. 

 

Statistical procedure 

The statistical significances of the network distance and subsystem co-membership observed for 

the 350 native – underground reaction pairs were assessed by employing a randomization 

procedure. To this end, we randomized the enzyme-reaction associations in the dataset in a series 

of iterative steps as follows. Each enzyme-reaction association in our dataset is labelled as 

native, underground or no association. In each step we randomly selected two enzyme-reaction 

associations E1-R1 and E2-R2 in such a way that the label of E1-R1 is identical to that of E2-R2 

(and is either native or underground) and the label of E1-R2 is identical to that of E2-R1 and 

differs from E1-R1. Next, we swapped the labels of E1-R1 and E1-R2 and those of E2-R1 and E2-

R2.This randomization process was repeated for another pair of reaction-enzyme associations 

until all were targeted at least once. This procedure conserves the degree distribution of both 

enzymes and reactions while randomizing the labels of enzyme-reaction associations. We note 

that, on average, the randomization process resulted in four changes per enzyme-reaction 

association. The set of randomized native-underground reaction pairs was generated from the 

randomized enzyme-reaction associations. We generated 10,000 such random variant native-

underground sets for statistical analyses.  

To investigate whether the network-level distribution of underground – native reaction 

pairs is influenced by the chemical similarity of their substrates, we also performed a modified 

statistical analysis in which the chemical similarity of the substrates was constrained. Chemical 

similarity of substrate pairs was measured by the Tanimoto similarity of the corresponding 
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chemical fingerprints (11). During randomization, swapping was allowed only if the chemical 

similarities of the substrates of reaction A and B were above a certain similarity threshold. 

Results of this modified randomization procedure are shown in Figure S2. 

 

Identifying reactions that are capable of carrying a non-zero flux 

The capability of each reaction of carrying a non-zero flux in steady state was determined as 

previously (12). Briefly, using the constraint-based modelling framework of flux balance 

analysis (13), we minimized and maximized in turn each individual reaction flux under the 

governing biochemical constraints and identified those reactions for which both the minimal and 

maximal achievable flux was zero. These reactions were considered to be incapable of carrying a 

flux in steady state (i.e. blocked). To estimate the set of reactions that can carry a flux in the 

native and extended network, respectively, we considered a condition where all external nutrients 

are available for uptake and secretion; this scenario identifies reactions that can possibly be 

active under at least some conditions. We identified 1257 and 1393 non-transport reactions that 

are capable of carrying a non-zero flux in the native and in the extended network, respectively. 

 

 

 

Elementary Flux Mode analysis 

Elementary Flux Mode (EFM) analysis was employed for two purposes: i) to examine whether 

underground reactions participate in biomass-forming pathways and ii) to investigate the 

properties of these pathways. EFM (14) is a mathematical representation of a biochemical 



10 
 

pathway and is defined as a minimal set of reactions that can operate at steady state while taking 

into account the directionality of irreversible reactions. Since enumerating all EFMs in a 

genome-scale metabolic network is computationally infeasible (15), we employed and modified 

a previously published method (16) to obtain a sample of EFMs. 

According to the sampling algorithm of Kaleta et al. (16), a single random EFM can be 

obtained by minimizing the sum of fluxes if i) the network is in steady state, ii) all reversible 

reactions are represented as two irreversible reactions, both carrying only positive fluxes, iii) an 

objective reaction is constrained to carry a non-zero flux, and iv) a random set of reactions is 

removed from the network. We modified this method to gain a random sample of EFMs 

containing two objective reactions (e.g. a biomass reaction and a selected other reaction of 

interest). Accordingly, we constrained two objective reactions to carry non-zero fluxes and 

applied the minimization method of Kaleta et al. (16). However, the minimization of the sum of 

fluxes in a network where two reactions are constrained to carry non-zero fluxes might result in a 

steady-state flux distribution that is not an EFM (e.g. two separate reaction cycles each 

containing one of the objective reactions). To filter out these biologically irrelevant cases, we 

evaluated each candidate EFM by performing a second minimization in which only one objective 

was constrained to a non-zero level while all reactions that were not active in the candidate EFM 

were removed. If the flux distribution after the second minimization step matched the candidate 

EFM, it was accepted as a verified EFM. We repeated the above procedure for each reaction of 

interest until we gained a sample of 100,000 verified EFMs. Subsequently, all EFMs were 

normalized by the glucose uptake flux, to ensure that the yield of an EFM was equivalent to the 

flux of biomass reaction. In addition to calculating biomass yield, we also counted the number of 

reactions in each EFM and used as a measure of pathway length. 
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Properties of EFMs that contain either the native or the underground reaction of the same 

enzyme were compared using a one-sample t-test on the rank-sum test statistics of the paired 

samples. This test is especially robust to differences in the distributions of the paired samples. 

Accordingly, for each enzyme with an assigned underground reaction, we first divided EFMs 

into two groups based on whether they contained the native reaction(s) or the underground 

reaction(s) of the enzyme. Next, we ranked all EFMs from these two sets based on their property 

of interest (e.g. yield) and calculated the rank-sum test statistic to compare these two 

populations. Such a test statistic was in turn determined for each enzyme. Finally, for both 

pathway yield and length, we applied a one-sample t-test on the rank-sum test statistics to 

examine whether EFMs containing the underground reaction show an overall difference from 

those containing the native reaction. 

 

 

Metabolite toxicity analysis 

To characterize the toxicity of metabolites, we predicted IC50 values (half maximum inhibitory 

concentration) of both native and underground metabolites using a QSAR-based algorithm 

called EcoliTox (17). The algorithm was trained on experimentally determined IC50 values of a 

diverse set of 94 compounds in E. coli and predicts IC50 based on molecule structure with high 

accuracy (R2=0.71 between predicted and measured values). We note that the set of 94 training 

compounds was selected to provide a representative set of chemicals with maximal chemical 

diversity and is not specific to the E. coli metabolome. Thus, the method is expected to 

accurately predict the toxicity of both native E. coli metabolites and that of compounds not 

present in E. coli. Molecule structures in mol file format were automatically extracted from 
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KEGG and ECMDB databases using KEGG identifiers of the metabolites and supplemented 

with manually retrieved structural data when KEGG ID was unavailable. 

To test whether underground metabolites show especially low IC50 values, we performed 

pairwise tests as follows. First, we selected underground reactions in which either the substrate 

or the product (or both) is a novel metabolite in the network. Then we compared, in a pairwise 

manner, the IC50 values of the underground and the corresponding native metabolites associated 

with the same enzymes using a Wilcoxon rank-sum test. In the case of multiple substrates and/or 

products per enzyme, we took their mean value before conducting the pairwise comparison. 

Repeating the analysis by separately considering substrates and products for each enzyme gave 

very similar results (P=0.77). 

 

 

Expression Dependent Gene Effects (EDGE) analysis 

The EDGE algorithm (18) quantifies the consequences of inducing the expression of metabolic 

genes on the objective function (e.g., maximum growth flux) within a genome-scale metabolic 

network. The EDGE score of a reaction determines whether the enzyme is (i) beneficial - 

contributing towards the realization of the objective (positive score), (ii) detrimental to the 

objective (negative score), or (iii) neutral with respect to the objective (zero score). The score is 

the result of comparing the maximal value of the objective function between two functional 

states of the reaction: (a) when the reaction carries a minimal finite flux and (b) when the 

reaction is constrained to carry no flux. In the case of reversible reactions in state (a), a minimal 

flux through either direction is required, and the minimum value of the objective function is 

taken into account: 
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  ko
backward
up

forward
upr GRGR,GRmin=E   

where Er is the EDGE score of reaction r, GR is the objective function and up stands for state (a) 

while ko stands for state (b). 

We calculated the EDGE scores for all the native and underground reactions and defined their 

toxic (detrimental, i.e., negative score) or non/toxic (beneficial or neutral, i.e., positive or zero 

score, respectively) character. Subsequently, we compared the frequency of toxic reactions 

among the native and the underground reactions associated with the same enzyme using a paired 

Wilcoxon test. Essential reactions were excluded from both tests because, by definition, only 

native reactions can be essential under standard nutrient conditions and, according to the 

definition of EDGE score, essential reactions cannot be toxic. 

 

In silico analysis of the adaptive potential of underground metabolism in novel 

environments 

Identifying environments in which underground reactions confer growth advantage 

To assess whether underground reactions confer growth in non-standard conditions, we defined a 

comprehensive set of minimal media to test for in silico growth. The list includes 2754 minimal 

media encompassing the complete range of nutrient sources that can be imported into the 

network (Dataset S2). First, we determined which nutrients can be utilized as carbon (C), 

nitrogen (N), phosphorus (P), and sulfur (S) sources in a minimal medium in the presence and 

absence of oxygen by the native metabolic model and by the native model extended with all 

underground activities (extended model). We employed flux balance analysis (FBA) to calculate 

growth capabilities across conditions using the Sybil package (19) in the R programming 
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environment (20). FBA is a computational technique for identifying the maximal biomass yield 

(a proxy for growth) of large-scale metabolic networks in steady-state (13). The native and the 

extended models were able to grow (i.e. produce biomass) in 645 and 664 conditions, 

respectively. For further analyses we used those conditions in which the extended model can 

grow. Conditions in which the underground reactions conferred a benefit were defined as those 

where adding the underground reaction set increased biomass yield by at least 5% over the native 

network. We applied this threshold to ignore marginally small and potentially irrelevant gains in 

biomass yield. The mathematical framework of flux balance analysis relies on maximizing the 

biomass yield within the feasible solution space defined by the structure of the network and the 

constraints imposed. Because adding hundreds of reactions to the native network increases the 

size of the feasible solution space, the extended network is expected to have a slightly increased 

maximum yield under most conditions. 

 

 

Identifying underground reactions that confer a growth advantage in novel nutrient 

environments 

To identify underground reactions which confer a growth advantage either individually or in 

combination with other underground reactions, we focused on conditions where the extended 

network had at least a 5% growth advantage. First, we employed an exhaustive in silico multiple 

reaction knockout test (21) to identify all underground reactions contributing to growth 

advantage in a given condition. Next, we reinserted individual reactions or reaction sets showing 

considerable phenotypes into the native network and tested whether they recovered the growth 

advantage observed for the complete set of underground reactions. We considered a phenotype 
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recovered if removing the reaction(s) from the extended network resulted in the loss of the 

growth advantage, while the subsequent reinsertion of the reaction(s) into the native network 

resulted in the regain of the growth advantage with as few reactions as possible. Loss and regain 

of a phenotype was defined as the relative growth advantage being less than 20% and more than 

80% of that seen for the extended network. The rationale behind these thresholds is that only a 

mere 1.05% of all reaction knockout phenotypes fall between these two values. All observed 

growth advantages can be recovered by adding at most three underground reactions to the native 

network.  

 

 

Genome-wide screening for genes that can enhance growth in novel environments when 

overexpressed 

We carried out a genome-wide screen to identify underground reactions that enhance growth 

when their activity is amplified. The impact of E. coli ORF overexpression on growth efficiency 

was tested in a wide array of carbon sources using a protocol adopted from Soo et al. (22). A 

graphical overview of the workflow is presented in Figure S3. 

 

Basic procedures of the competition experiments  

In brief, the method relies on the competition of a population of cells transformed by a pooled 

library of overexpression plasmids in the presence of an ordered array of carbon sources, 

followed by the identification of ORFs that were enriched during the competition experiment. To 

this end, the complete set of E. coli K-12 Open Reading Frame Archive library (ASKA) was 

grown in the original host strain E. coli K-12 AG1 (23) in 96-well plates (growth conditions: 37 
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Cº, 280 rpm, LB medium). An equal aliquot of each member of the ASKA library (each well of 

the 96 well plates) was pooled together and the plasmid DNA (pCA24N-ORF-GFP(-)) was 

isolated. The resulting plasmid preparation of the ASKA library, as well as the empty vector 

pCA24N (without an ORF), were transformed into E. coli MG1655 by electroporation. The 

transformed samples were grown in mineral salts minimal medium (MS-minimal) that contains 

0.8% glycerol as a sole carbon source to avoid glucose-mediated catabolite repression. When cell 

culture density reached OD600=1, protein expression was induced by isopropyl-β-D-

thiogalactopyranoside (IPTG) at a concentration (50 µM) where the growth effect of 

overexpression toxicity is reduced (22). After 2h of induction, cells were harvested by 

centrifugation and re-suspended in MS-minimal without carbon source and were starved for 1h 

at room temperature. At this point, a fraction of the cells from the ASKA pool and the negative 

control (empty plasmid) were used to isolate plasmid DNA. These preparations were subjected to 

next-generation sequencing with the SOLiD System (Life Technologies) to determine the 

diversity of the pooled library. Samples for sequencing were prepared as described previously 

(24). To evaluate the presence of each ORF, the number of sequence reads covering the 

corresponding ORF was compared in the two samples in the same manner as in RNA-Seq 

whole-transcriptome analyses. ORFs in the ASKA pool covered by more reads than 95% of the 

ORFs in the negative control (genomic background) were considered as present. 86.7% of the 

known enzyme-encoding ORFs were detected in the pooled ASKA library at the beginning of 

the growth experiments. 

 

Nutrient conditions studied 
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The set of investigated nutrient environments included 190 different carbon sources present on 

PM1 and PM2A phenotype microarray plates (25) (Biolog Inc.). This list was extended by a set 

of 4 carbon sources on which the in silico analysis predicted innovation via underground 

reactions, but were not present on either PM1 or PM2A plates (Ethylene glycol, L-

Glyceraldehyde, D-Lyxose and Phenylgalactoside). To prepare the nutrient array, carbon sources 

were suspended in 100 µl MS-minimal media supplemented with 50 µM IPTG and 20 µg/ml 

chloramphenicol, then transferred to standard 96-well plates. The final concentrations of the 

carbon sources not present on phenotype microarray plates were set to 20 mM. Each well of the 

96-well plates was inoculated with approximately 2*106 cells from the above-described cell 

preparations either expressing the pooled ASKA library or the empty plasmid.  

 

 

Monitoring growth and detecting growth differences 

Growth was monitored at OD600 for 7 days (30 C°, 1000 rpm in automated plate readers (BioTek 

Inc, USA). The pooled ASKA library and the negative control (empty vector) populations were 

always monitored simultaneously on two identically arranged 96-well plates. The temperature 

was decreased to 30 C° to minimize the heat-induced unfolding of the overexpressed proteins 

and to minimize evaporation of the samples. For the latter reason, plates were also sealed with 

gas permeable sealing foil (Breath Easy, Sigma). Two biologically independent replicates of 

these experiments were carried out. Following the 7th day, 2 µl from each well was used to 

inoculate fresh media of the corresponding carbon sources and growth was monitored for an 

extra 5 days. After the 5th day, a second transfer was carried out to let the cells grow on fresh 
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medium for another 5 days. This gradual library enrichment procedure was expected to enable 

the detection of even minor growth differences between the ASKA pool and the negative control.  

Growth curves derived from OD600 measurements were analyzed both during and at the 

end of the incubation periods. To increase the number of potential hits in the initial screen, we 

used two criteria to identify conditions where an ORF possibly increases growth when 

overexpressed: (i) Visually discernible difference between the growth curve of the ASKA pool 

and that of the negative control or (ii) The growth curve of the ASKA pool has a reproducibly 

larger integral (i.e. area under the growth curve) than that of the negative control in any of the 

three rounds of library enrichments. Carbon sources fulfilling any of these criteria were 

considered for an ASKA ORF enrichment analysis (see protocol below). To ensure that no 

relevant carbon source remained unexplored, they were ranked based on the differences between 

the growth curve integrals of the ASKA pool and that of the negative control after each round of 

library enrichment (Dataset S3). Starting from the top of the lists (i.e. highest integral 

differences), we performed the ORF enrichment test on each carbon source until no further 

carbon sources with enriched ORFs were found (Dataset S3). 

 

Identifying enriched ORFs 

The enrichment of ORFs during the competition experiments was tested with the following 

protocol (adopted from Soo et al. (22) with minor modifications): cells from wells were plated 

out onto LB agar plates with chloramphenicol. Using vector-specific primers, the ASKA ORFs 

were amplified by PCR from at least 8 of the resulting colonies. The sizes of the PCR products 

were analyzed using agarose gel electrophoresis. PCR product pairs with the same size were 

purified (Zymo Clean and Concentrator kit) and sent to sequencing. ASKA ORFs represented at 
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least twice out of the 8 examined colonies were considered as candidates for ORFs that provide 

enhanced growth when overexpressed. Out of the 194 carbon sources 63 were tested for enriched 

ORFs and 41 of them gave candidate ORFs for further examination. In 10 of these carbon 

sources, the very same ORF (eutE) showed a marginal enrichment. As this set of 10 carbon 

sources proved to be very diverse, the growth effect of eutE was considered as aspecific and 

excluded from further analysis (for details, see Dataset S3). 

 

Verification of genes that enhance growth in novel environments when overexpressed 

To verify the beneficial effect of the identified ORFs, additional growth experiments were 

carried out with specific overexpressing ASKA strain – carbon source pairs only. In brief, 

instead of competing a pooled collection of ASKA strains, here we tested the impact of 

individual ORFs on growth in specific environments. 27 ORFs identified in the screening 

procedure were re-tested on one or more of the 31 corresponding carbon sources (Dataset S3). 

Each ORF was isolated from the original ASKA collection and, following PCR verification, was 

retransformed into E. coli MG1655. Growth conditions and ORF induction were as described 

above. Growth measurements were carried out in three biological replicates for 4 days. 

Following the calculation of the growth curve integrals, a statistical procedure (one-sided paired 

t-test) was applied to determine the statistical significance of the growth differences between the 

ASKA strains and the corresponding negative controls. Growth curves of those ORF – nutrient 

pairs which showed a significant difference are plotted in Figure S4 and Figure 4B. This dataset 

was complemented by those ORF – carbon source pairs which were predicted in silico as novel 

environments where an underground activity is essential for growth (light green squares in 

Figure 3B), but were not detected in the high-throughput screen. Overall, we could test 7 such 
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cases experimentally for growth (see cases denoted by asterisk in Table S2B; the carbon source 

5-Amino-4-oxopentanoate could not be obtained commercially and the ORF responsible for the 

degradation of D-Arabitol could not be identified, thus these cases were excluded from 

verification). Out of the 7 tested ORF – carbon source pairs only 1 displayed growth in the 

verification assay (fumB in D-Tartrate), indicating that the genome-wide screen has a low false 

negative rate. 
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Figure S1. Novel metabolites introduced by underground reactions are underrepresented 

among empirically observed metabolites in metabolome datasets. 

Number of native and underground metabolites that are present / absent in large-scale 

metabolomics studies (8, 9) (see SI Materials and Methods for details). The difference is highly 

significant (P<10-15, Fisher’s exact test). Underground metabolites are defined as those that are 

consumed and/or produced by underground reactions only. 
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 Figure S2. Functional relatedness and short network distance between native and 

underground reactions is a by-product of chemical similarity. 

As shown in the main text (Figure 2 B-C), native and underground activities of the same enzyme 

are close in the network and often belong to the same metabolic subsystem. Here we test whether 

this non-random pattern remains statistically significant after controlling for the chemical 

similarity between reactants of native and underground reactions. To this end, we performed the 

same randomization test as described in SI Materials and Methods, but only swapped the labels 

of reaction pairs (i.e. native or underground) if their substrates showed a chemical fingerprint 

similarity of 0.4 or higher (as measured by the Tanimoto similarity coefficient (11)). Neither the 

high fraction of shared subsystems (A), nor the short network distances (B) between native – 

underground reaction pairs remain significant when only reactions with chemically similar 

substrates are randomized between enzymes (P=0.46 and P=0.2, respectively; red lines indicate 

observed values for underground - native reaction pairs annotated to the same enzymes in our 

reconstruction.). This indicates that the functional relatedness between native and underground 

activities of the same enzymes is a by-product of chemical constraints. 

A) 
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B) 
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Figure S3. Workflow of the genome-wide overexpression screen. 

The complete set of E. coli K-12 Open Reading Frame Archive library (ASKA) was pooled 

together and the resulting plasmid preparation was used to transform E. coli MG1655 cells. 

These cells, as well as the negative control, were grown in liquid culture and expression was 

induced with 50µM of IPTG. Cells from both cultures were used to inoculate an array of 194 

carbon sources. Growth of the pooled library was compared to that of the negative control at 

OD600 to identify carbon sources where the ASKA pool grows more efficiently than the negative 

control. To gradually enrich overexpression plasmids conferring a growth benefit, cells from 

each well were transferred into a fresh array of carbon sources and growth was monitored for 

two additional rounds. Cells from positive wells were plated onto LB agar plates. Eight of the 

resulting colonies were subjected to PCR analysis and sequencing to identify ORFs the plasmids 

of which had been enriched during growth. The procedure was adopted from Soo et al. (22) with 

modifications. See SI Materials and Methods for more details. 

 



25 
 

 
Figure S4. Growth curves of E. coli cells overexpressing ORFs that enable or improve 

growth in novel environments.  

Growth experiments confirmed the beneficial growth effect of ORF overexpression in 18 cases 

(panels A-R). Red curves show the growth of the overexpressing cells, while the blue one is the 

negative control (cells harboring the empty plasmid). Each curve represents the average of three 

biologically independent replicates and their standard error. Detailed description of the growth 

conditions and the data analysis are presented in SI Materials and Methods. We note that panels 

B, O, P, Q and R are also presented in the main text (Figure 4B). 
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Table S1. List of published catalytic efficiencies (kcat/Km) for native and underground 

reactions of the same enzymes.  

In cases of multiple substrates the median kcat/Km values are shown. Data were retrieved from the 

BRENDA database and associated literature. A Wilcoxon matched-pairs signed rank test 

demonstrates that underground reactions are catalyzed with significantly lower efficiency 

(kcat/Km) than native reactions of the same enzymes (P<0.001). 

 

EC Number 

  

Native Substrate(s) 

kcat/Km (s-1mM-1) 

Underground 

Substrate(s) 

kcat/Km (s-1mM-1) 

1.1.5.2 2344.16 10.47 

1.8.1.2 3680.98 37.98 

1.13.11.16 1115.38 21.39 

2.6.1.16 72 3.4 

2.7.1.15 309.68 0.03 

2.7.1.16 430.85 17.91 

2.7.1.17 11618.64 1.87 

2.7.1.39 5.2 0.1 

2.7.7.58 2037.04 9.53 

3.1.3.10 262.92 0.23 

4.2.1.2 4350 7.5 

5.1.3.2 2941.18 0.0014 

6.1.1.15 280 0.01 

 

 

 

 

 



30 
 

Table S2. Evaluation of in silico predicted growth advantages conferred by underground 

reactions 

A) Agreement between growth predictions of the extended metabolic network model in specific 

environments and the in vivo overexpression screen are summarized in a contingency table. We 

only considered enzyme-encoding ORFs which have underground reactions associated in the 

reconstruction and are also present in the ASKA library (112 ORFs). Carbon sources not present 

in the extended network were excluded from the analysis, leaving 105 conditions. We note that 

some of the carbon sources presented in Figure 4B were therefore excluded from this 

comparison. Thus, a total of 112 * 105 ORF – carbon source pairs were evaluated here. 

Statistical significance of the overlap between in silico and experimental results was assessed by 

Fisher’s exact test (P<10-13). All in silico predicted and experimentally evaluated ORF – carbon 

source pairs are listed in Table S2B (see below). The 5 true positive cases in the upper left cell of 

the table correspond to the 4 successfully predicted carbon sources and 5 ORFs listed in Figure 

4A. The one false negative case in the lower left cell is the mhpF – putrescine pair in Figure 4A. 

 

  Experimentally determined growth 

advantage 

  Yes No 

In silico predicted 

growth advantage 

Yes 5 11 

No 1 11743 
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B) List of ORF – carbon source pairs that were in silico predicted to confer growth advantage via 

underground reactions and could be evaluated experimentally. (++) indicates that the 

underground activity of the enzyme is essential for growth in silico, while (+) indicates that the 

addition of the underground activity to the native network increases growth in silico. (●) and (

○) indicate experimentally determined growth advantage and lack of growth advantage, 

respectively. Asterisk denotes cases which were predicted in silico as novel environments where 

an underground activity is essential for growth (light green squares in Figure 3B), but were not 

detected in the genome-wide screen. These ORF – carbon source pairs were nevertheless 

subjected to the verification assay as described in SI Materials and Methods. 

 

Carbon source 
Gene 
name 

In silico growth 
advantage 

Experimentally 
confirmed 

Phenylgalactoside lacZ ++ ● 

D-Lyxose yihS ++ ● 

D-Tartrate fumA ++ ● 

D-Tartrate* fumB ++ ● 

D-2-Deoxyribose rbsK ++ ● 

D-2-Deoxyribose* deoC ++ ○ 

D-Tartrate* fumC ++ ○ 

L-Glyceraldehyde* fucO ++ ○ 

D-Arabinose* rbsK ++ ○ 

L-Sorbose* rhaD ++ ○ 

Ethylene glycol* fucO ++ ○ 

L-Glyceraldehyde glpK ++ ○ 

L-Arginine nadE + ○ 

Glycolate dxs + ○ 

L-Proline adhE + ○ 

L-Proline mhpF + ○ 
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Table S3. Evaluation of growth advantages predicted by an alternative reconstruction 

based on a more recent version of the E. coli native network. 

Here we ask whether incorporating underground reactions into a more recent version of the E. 

coli native metabolic network (iJO1366, ref. (26)) has an effect on predicting metabolic novelties 

across carbon sources. In brief, we integrated our list of underground reactions into iJO1366 as a 

base network. Next, we generated in silico predictions across those carbon sources that were 

tested in our genome-wide overexpression screen and identified conditions where the iJO1366 

network extended with underground reactions showed at least 5% increased biomass production 

compared to the native iJO1366 network. Comparison of these in silico predicted gene – carbon 

source pairs with experimentally determined ones revealed a highly significant overlap (P<10-7, 

Fisher’s exact test). The contingency table of this comparison is shown below (this is analogous 

to Table S2A). We note that the underground reconstruction based on iJO1366 has somewhat 

lower prediction accuracy (e.g. 3 true positives instead of 5). Discrepancies between the two 

models can be largely attributed to the fact that the native iJO1366 network is already capable of 

utilizing D-tartrate and this growth phenotype relies on the very same reaction that we identified 

as underground (D-tartrate dehydratase associated with FumB). Published enzyme kinetic data 

clearly supports the underground nature of this reaction: the catalytic efficiencies of both FumA 

and FumB are 3 orders of magnitude lower for D-tartrate than for their native substrates (27). 

Thus, in the case of D-tartrate utilization, innovation is correctly predicted by our original 

iRN1260u reconstruction (through both fumA and fumB), but falsely predicted by the extended 

network built from iJO1366. We also found an opposite example: absence of growth on L-

arginine through overexpressing nadE is correctly predicted by the extended network based on 

iJO1366, but falsely by our original model.  
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  Experimentally determined growth 

advantage 

  Yes No 

In silico predicted 

growth advantage 

Yes 3 10 

No 3 11429 
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Other Supporting Information Files 
 
 
 
Dataset S1 (XLSX) Underground metabolic reconstruction of E. coli (iRN1260u). 

 

Dataset S2 (XLSX) List of nutrient environments defined for the in silico growth prediction 

analysis. 

 

Dataset S3 (XLSX) Summary of the results of the in vivo genome-wide screen. 

 

Dataset S4 (XLSX) Information on known or putative underground activities which allow / 

improve growth on specific carbon sources when amplified. 

 

Dataset S5 (XLSX) Set of native – underground reaction pairs derived from a systematic study 

of the haloacid dehalogenase-like phosphatase family of E. coli (Kuznetsova et al., 2006). 

 

Dataset S6 (XML) The underground metabolic reconstruction (iRN1260u) of E. coli as provided 

in a Systems Biology Markup Language (SBML) file. 
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