Supporting information:

Click Modification of RNA at Adenosine: Structure and Reactivity of 7-Ethynyl- and 7-Triazolyl-8-aza-7deazaadenosine in RNA

Kelly J. Phelps, José M. Ibarra-Soza, Kiet Tran, Andrew J. Fisher and Peter A. Beal*

Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California (USA) 95616

Contents of Supporting Information:

Supplementary Figures

	Supplementary Figure 1	.S2
	Supplementary Figure 2	S2
	Supplementary Figure 3	S3
	Supplementary Figure 4	S3
Supple	ementary Information	
	Purification of RNAs	.S4
	Sequences of oligonucleotides used	.S4
	Inhibition of CuAAC reaction by duplex formation	S4
	CuAAC reaction for 7-EAA- and 5-EU-containing RNAs in GluR B sequence	
	CuAAC reaction for 7-EAA- and 5-EU- containing RNAs with other azides	.S5
Supple	ementary Tables	
	Table 1	S6

Supplementary Figure 1: Inhibition by a complementary DNA strand of CuAAC reaction involving a 21 nt 7-EAA-containing RNA and N-ethylpiperidine azide. Arrow indicates location of triazole product in gel.

Supplementary Figure 2: CuAAC reactions with N^2 -propargyl-2-aminopurine RNA. **A.** Structure of the N^2 -propargyl-2-aminopurine analog. **B.** Inhibition of CuAAC reaction involving a 21 nt N^2 -propargyl-2-aminopurine containing RNA and N-ethylpiperidine azide by complementary or control DNA. Arrow indicates location of triazole product in gel.

A.

5' - CAUUANGGUGGGUGGAAUAGUAUAACA - 3'

Β.

Supplementary Figure 3: Comparison of CuAAC reaction for 7-EAA- and 5-EU-containing RNAs in GluR B pre-mRNA-derived sequence. A. Sequence of RNA (N = site of modification).
B. Products for 5-EU- and 7-EAA-containing RNAs in reaction with a biotin triazole (A: 7-EAA, U: 5-EU, NR: no reaction control, R: reaction products after 7.75h). Arrow indicates location of triazole product in gel.

Supplementary Figure 4: Comparison of CuAAC reaction for 7-EAA- and 5-EU-containing RNAs with other azides. **A.** Structures of the modified ribonucleoside analogs (A: 7-EAA, U: 5-EU, 1: 11-azido-3,6,9-trioxaundecan-1-amine, 2: N-azidoacetyl-D-mannosamine). **B.** Products of 5-EU- and 7-EAA-containing RNA in reaction with 11-azido-3,6,9-trioxaundecan-1-amine (1) and N-azidoacetyl-D-mannosamine (2). NR refers to no reaction control.

Purification of RNAs. The 7-EAA containing phosphoramidite was synthesized as previously described (1). RNAs were synthesized as previously described (2). 7-EAA-containing 21 nt RNAs, the native 16 nt RNA, 7-EAA containing 16 nt RNA, the 7-EAA containing GluR B premRNA and the GluR B pre-mRNA complement were purified as previously described with a 19% (w/v) polyacrylamide gel (3). The 21 nt complementary DNA, 21 nt control DNA and GluR B pre-mRNA primer were obtained in desalted form from the manufacturer. The 5-EU containing 21 nt RNA was purified on a 19% (w/v) denaturing polyacrylamide gel. Gel bands were visualized by UV shadowing (254 nm light, F254 TLC plate as backing) and extracted from the gel by crush and soak method using a solution containing 500 mM NH₄OAc and 0.1 mM EDTA (pH 8) overnight at 4 °C (3). The solution was then filtered through a Centrex filter (0.2 mm) to remove polyacrylamide particles, phenol-chloroform extracted and ethanol precipitated. Samples were then washed with 70% (v/v) ethanol and lyophilized to dryness. Oligoribonucleotides were redissolved in DEPC treated water and quantified by absorbance measurements at 260 nm. MALDI-MS values [M+H]⁺ for RNAs are as follows: 7-EAA containing 21 nt RNA: calcd. 6767.9, obsd. 6768.7; native 16 nt RNA: calcd. 5079.7, obsd. 5079.5; 7-EAA containing 16 nt RNA: calcd. 5103.7, obsd. 5103.7; GluR B pre-mRNA: calcd. 8742.2, obsd. 8741.0; ESI-MS values for RNAs are as follows: 5-EU containing 21 nt RNA: calcd. 6766.9, obsd. 6767.0; GluR B pre-mRNA complement: calcd. 8487.1, obsd. 8487.1; 7-EAA containing GluR B pre-mRNA: calcd. 8765.2, obsd. 8763.7.

Sequences of oligonucleotides. 7-EAA containing 21 nt RNA: 5' - AUA GGA UUC NUA UUA GGA GAU - 3' where N is the 7-EAA containing analog; 5-EU containing 21 nt RNA: 5' - AUA GGA UUC AXA UUA GGA GAU - 3' where X is the 5-EU containing analog; 21 nt complementary DNA: 5' - ATC TCC TAA TAT GAA TCC TAT – 3'; 21 nt control DNA: 5' – ATA CAT ATC GTT ATC CTT ACA – 3'; native 16 nt RNA: 5' – GCA GAC UUA AGU CUG C – 3'; 7-EAA containing 16 nt RNA: 5' – GCA GNC UUA AGU CUG C - 3'; 7-EAA containing GluR B pre-mRNA: 5' - CAU UAN GGU GGG UGG AAU AGU AUA ACA - 3'; GluR B pre-mRNA: 5' - CAU UAN GGU GGG UGG AAU AGU AUA ACA - 3'; GluR B pre-mRNA: 5' – TGT TAT ACT ATT CCA CCC ACC – 3'; GluR B pre-mRNA 21 nt primer: 5' – TGT TAT ACT ATT CCA CCC ACC – 3'; GluR B pre-mRNA 18 nt primer: 5' – TGT TAT ACT ATT CCA CCC – 3'.

Inhibition of CuAAC reaction by duplex formation. For the reactions containing 21 nt complementary DNA or 21 nt control DNA, ³²P labeled 7-EAA or N²-propargyl-2-aminopurine containing 21 nt RNA was mixed with 21 nt complementary DNA or 21 nt control DNA so that the concentration of RNA was 50 μ M and DNA was 80 μ M. Samples were heated at 95 °C for 5 min and then allowed to slowly cool to 4 °C. Next, a solution of copper sulfate, sodium ascorbate, tris(3-hydroxypropyltriazolylmethyl)amine, and N-ethylpiperidine azide that was pre-equilibrated to 4 °C was added so that the final concentrations were as follows: copper sulfate at 0.4 mM, sodium ascorbate at 4 mM, tris(3-hydroxypropyltriazolylmethyl)amine at 4 mM, N-

ethylpiperidine azide at 0.2 mM, 2 mM Tris-HCl (pH 8), 25 μ M RNA and 40 μ M DNA. The reaction was allowed to proceed for 7 min at 4 °C before it was stopped by adding an equal volume of stop solution containing 80% formamide and 10 mM EDTA and freezing the sample in liquid nitrogen. Samples were thawed and resolved on a 19% denaturing polyacrylamide gel. Gels were dried and bands imaged using storage phosphor imaging plates. Each experiment was carried out in triplicate.

CuAAC reaction for 7-EAA- and 5-EU-containing RNAs in GluR B sequence. Reactions were carried out using the same procedure as the CuAAC reaction kinetics except the following: instead of using the N-ethylpiperidine azide at 0.2 mM, the biotin azide was used at a final concentration of 10 mM in 20% DMSO; there was no Tris-HCl in the reaction; the reaction was allowed to go to a single time point of 7.75 h; and samples were resolved on a 15% denaturing polyacrylamide gel.

CuAAC reaction for 7-EAA- and 5-EU- containing RNAs with other azides. For the click reactions with N-azidoacetyl-D-mannosamine and 11-azido-3,6,9-trioxaundecan-1-amine, reaction conditions were the same as with N-ethylpiperidine azide except the concentration of the azides varied (N-azidoacetyl-D-mannosamine at 2 mM and 11-azido-3,6,9-trioxaundecan-1-amine at 0.6 mM), there is no Tris-HCl in the reaction and reactions were allowed to proceed for 1 hour. Each experiment was carried out in duplicate.(*1*)

	Native	Ethyne	Triazole
Data Collection Statistics			
X-ray Source	SSRL BL7-1	SSRL BL7-1	SSRL BL7-1
Wavelength	1.148 Å	1.127 Å	1.127 Å
Resolution	1.96 (2.01-1.96) Å	1.85 (1.90-1.85) Å	1.70 (1.74-1.70) Å
Space Group	<i>C</i> 2	<i>C</i> 2	<i>C</i> 2
Cell Parameters	a = 74.98 Å b = 43.08 Å c = 48.76 Å $\beta = 120.98^{\circ}$	a = 74.80 Å b = 43.19 Å c = 48.79 Å $\beta = 120.82^{\circ}$	a = 77.36 Å b = 44.38 Å c = 48.83 Å $\beta = 121.97^{\circ}$
16mer strands / ASU	3	3	3
V_M (Å ³ /Da); % solvent	2.01 (60.0)	2.09 (60.2)	2.19 (62.0)
No. of reflections	17,295 (1,278)	28,774 (1,191)	27,547 (1,696)
No. unique	9,115 (683)	10,615 (647)	14,671 (1,004)
R_{merge}^{a} (%)	2.0 (31.0)	2.9 (33.0)	2.5 (31.4)
Mean (I) / σ (I)	17.06 (2.19)	18.04 (2.32)	16.42 (2.27)
Completeness (%)	93.4 (96.7)	91.3 (75.4)	93.7 (88.6)
Refinement Statistics			
Resolution (Å)	35.81-1.96	32.17-1.85	36.79-1.70
No. reflections in working set $(F \ge 0)$	8,672	10,100	13,931
<i>R</i> -factor ^b (%)	21.7	22.2	22.2
R-free ^b (%)	24.2	24.9	24.4
RMS Bond Lengths	0.011 Å	0.012 Å	0.012 Å
RMS Bond Angles	1.584°	1.394°	1.408°
Overall Mean B Values	38.9 Å ²	38.6 \AA^2	$19.6~\text{\AA}^2$
Asymmetric Unit Content			
Nonhydrogen atoms	1047	1055	1104
Water	22	29	78
PDB ID	4NFO	4NFP	4NFQ

Table 1.	Data	Collection	Phasing	and Refinement	Statistics
Table 1.	Data	Conection,	, i nasing,	and Kermement	Statistics

^a $\mathbf{R}_{merge} = [\Sigma_h \Sigma_i I_h - I_{hi}] / \Sigma_h \Sigma_i I_{hi}]$ where I_h is the mean of I_{hi} observations of reflection h. Numbers in parenthesis represent highest resolution shell. ^b*R*-factor and *R*-_{free} = $\Sigma ||F_{obs}|$ -|F_{calc}|/ Σ |F_{obs}| x 100 for 95% recorded data (*R*-factor) or 5% of data

(*R*-free). Numbers in parenthesis represent highest resolution shell

References:

1. Ibarra-Soza, J. M., Morris, A. A., Jayalath, P., Peacock, H., Conrad, W. E., Donald, M. B., Kurth, M. J., and Beal, P. A. (2012) 7-Substituted 8-aza-7-deazaadenosines for modification of the siRNA major groove, Org. Biomol. Chem. 10, 6491-6497.

- 2. Pokharel, S., Jayalath, P., Maydanovych, O., Goodman, R. A., Wang, S. C., Tantillo, D. J., and Beal, P. A. (2009) Matching Active Site Structure to Substrate Analog for an RNA Editing Reaction, *J. Am. Chem. Soc.* 131, 11882-11891.
- 3. Mizrahi, R. A., Phelps, K. J., Ching, A. Y., and Beal, P. A. (2012) Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases, *Nucleic Acids Res.* 40, 9825-9835.